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ABSTRACT

This work describes a novel adaptive matrix/vector gradient (AMVQG) algorithm for design of IIR filters and ARMA
signal models. The AMVG algorithm can track to IIR filters and ARMA systems having poles also outside the unit cir-
cle. The time reversed filtering procedure was used to treat the unstable conditions. The SVD-based null space solution
was used for the initialization of the AMVG algorithm. We demonstrate the feasibility of the method by designing a
digital phase shifter, which adapts to complex frequency carriers in the presence of noise. We implement the half-sam-

ple delay filter and describe the envelope detector based on the Hilbert transform filter.
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1. Introduction

Theory and design of the adaptive FIR (finite impulse
response) filters is recently impacted by high speed digi-
tal communication systems such as video and image pro-
cessing. The multi-rate data acquisition VLSI devices
based on the tree structured discrete wavelet transforms
(DWTs) have significantly advanced with the adaptive
techniques such as data compression, adaptive noise can-
cellation and channel equalization [1-3].

The IIR (infinite impulse response) filter structures are
not as popular as the FIR filters in signal decomposition
and multi-scale analysis. Also the adaptive IIR filters are
generally only marginally stable since the poles may
travel outside the unit circle during the adaptation proc-
ess. However, recently the time reversed filtering proce-
dure was introduced, which enables the implementation
of the IIR filters having poles outside the unit circle [4].
The IIR filter structures have many advantages over the
FIR filters. Usually the equal performance (e.g. conver-
gence rate and adaptation error can be obtained by a con-
siderably lower number of filter coefficients compared
with the FIR filters.

The IIR filter consists of the transfer function
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The output of the filter in discrete-time domain can be
computed recursively as

y[n]:kzN(:)aku[n—k]Jrkibky[n—k]. @

In this equation a, and b, (b,=1) are the coeffi-
cients of the nominator and denominator polynomials,
u[n] and y[n] are the input and output signals. In
process, control literature (2) is usually named as autore-
gressive moving average (ARMA) signal model.

In this work, we introduce an adaptive matrix/vector
gradient (AMVG) algorithm for design of IIR filters and
ARMA systems. We apply the SVD-based null space
solution for the initialization of the AMVG algorithm.
Finally, we prove the usefulness of the AMVG algorithm
in the design of digital phase shifter,

2. IR Filter (ARMA Model) Formulation

The input-output relation of the discrete-time IIR filter (1)
can be written as
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where U (z) and Y (z)denote z-transforms of the input
and output signals. This yields

B(2)Y(z)-A(z)U(z)=0 ©)
By defining the Hankel data matrices
- y[n] oy y[n-M]
) Y L R L V) [
_y[n—L] y[n-L-1] y[n-L-M]
[ uln] u[n-1] u[n-M]
u - u[n:—l] u[n:—z] u[n—!\/l—l] ©)
_u[n—L] ufn-L-1] u[n-L-N]
where L >N+ M +1 and the coefficient vectors
a=[a, a aN]T and b=[b, b by, ]T, we
obtain
Y U b =0 7
Yo Ul |7 ™

L+1)x1 -
where 0e R s a zero vector.

3. SVD-Based Initialization Method

In the following we describe the SVD-based null space
solution of the coefficient vectors in (7). Let us replace
the input-output data matrix by a short notation
H,= [Yn Un]. By applying the singular value decom-
position (SVD) we have H, =U X V., where matrices
U=[u u, u,] and V=[v, v,

contain the left and right sin- gular vectors (column vec-
tors) and matrix

¥ =diag{o,0,---0,,,} the singular values in descending

VM+N+2]

order. Matrices U and V are unitary: U'U =1 and

V'V =1, where | denotes the unity matrix. This gives
HV =UZX, i.e.
Hlv, v,

Finally we may write

VN+M+2] :[O-lul o,Uu, O-L+luL+1]

Hv, =o,u, (®)

for k=1,2,---,L+1. Equation (8) forms the basis for the
SVD-based initialization method. By searching very
small singular value o, >0, the right singular vector
Vv, equals vector [b—a]T in (7) yielding the solution
for the coefficient vectors. In the presence of noise the
dimensions of the data matrix H = [Yn Un] should be
selected so that there appears only one tiny singular value.
This can be also achieved by zeroing the rest of the tiny
singular values in SVD decomposition of the data matrix.

In applications where the coefficient vector is time
varying, the SVD computation is unacceptably time
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consuming. Therefore the SVD-based solution is only
justified in the initialization of the IIR filter design. In the
following we describe a fast matrix/vector gradient (AMVG)
algorithm for adaptive computation of the IIR filter pa-
rameters.

4. Adaptive Matrix/Vector Gradient
Algorithm

For adaptation of the a and b coefficient vectors we
define the adaptation error vector
_ T (L)t
e,=[e, e, - &.] €R as
e,=Y,b-U.a 9

The mean square error (MSE) is computed as
e’ =ele, € R™ . The coefficient vectors are then updated
by the gradient algorithm as

2
n

oe,
b(—b—,uabT =b-uY'e,
o (10)
e
aea—yaar} =a+uUe,

where x# <1 denotes the adaptation gain factor. This is
followed by the gain normalization
a, < a,/b, an
b, < a,/b,
The normalization (11) fixes the coefficient by =1.In
our experience the post normalization of the gain war-
rants more reliable convergence of the algorithm com-
pared with fixing directly b, =1 in (10). Since the gra-
dient algorithm is based on the use of the same data ma-
trices Y, and U, as in the SVD-based solution, the
initial selection of the coefficient vectors in (10) may be
the same as in the SVD-based solution. Using arbitrary
coefficient vectors as initial guess would possibly result
in the convergence to the local minimum.

5. Implementation of the IIR Filters and
ARMA Models

Many IIR filters designed by the present method are not
readily implementable, since the poles may lie outside
the unit circle. In this case the poles outside the unit cir-
cle must be considered separately. The denominator
polynomial is divided into anticausal (AC) and causal (C)
parts

K M
B(z)=T1(1-pz") [T (1-pz")
i=1 i=K+1 (12)
=B, (2)B: (2)
where the roots p;,i=1---,K are outside the unit cir-

cle. The anticausal filter B, (z) can be implemented
by the time reversed filtering procedure [4]. The anti-
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causal filter B,.(z) in (12) as a cascade realization

TP | e | LAY NE)

Bac (Z) i =Pz i
where the poles p,(i=1,--,K) are outside the unit
circle. The H,;(z) filters in (13) can be implemented by
the following time reversed filtering procedure. First we
replace zby z°'

1Y@
T TR

(2-1) Z—NY(Z—I) (14)
-

-1\ _ _pi_lz_l _Y
Hi(Z )—1_pi121_u( )_Z'NU(Z_I)

where U (z) and Y(z) are z-transforms of the input
u[n] andoutput y[n] signals (n=0,1,---,N).
zNU (Z'l) and z7"Y (z") are the z-transforms of the

time reversed input U[N —n] and time reversed output

y[N-n]. The H,(z") filter is stable having a pole
p;' inside the unit circle. The following Matlab pro-
gram revfilter.m demonstrates the computation proce-
dure:

function y = revﬁlter(u, p)

u :u(end:—lzl);
y = filter ([0 — p.[1 - p].u);
y=y(end:-1:1);

In many IIR filter realizations the poles of the transfer
function lie close to the unit circle and unstable condi-
tions and oscillations may occur when filtering time-
varying signals with abrupt changes and discontinuities.
Let us consider the modification of the denominator
polynomial of the IIR filter where the z-transform vari-
able is multiplied by o >1

by (az) ™ :ia‘kbkz‘k (15)

Mz

B(az)=

=
Il

0

The roots of the modified polynomial are transferred
towards the origin of the unit circle, which increases the
inherent stability of the filter. We may observe that this is
equivalent if we weight the IIR filter coefficients as
b, < @™ b, , which can be directly inserted to the gain
normalization procedure (11).

The computation speed of the AMVG algorithm can
be increased by using the sequential blocks of input and
output data. We may define the data matrices as Y,
and U, , where k=0,1,2,--- and W is the length of
the data block.

With a slight modification the AMVG algorithm can
be implemented to state-space system identification. Let
us define the state-space model as
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XI’H—I = Anxn + Bun
Y, =Cx, +Du, +w,

(16)

where the state vector X,eRM, the state transition
matrix AeR™™ | matrices B,C,DeR™" . Vectors
u,, y, € R™" contain the input u [n] and output y[n]
signals. Vector w, € R"* is a random zero mean ob-
servation noise sequence. By defining the Hankel data
matrices (5) and (6) the ARMA model polynomials (1)
can be identified. Then we may formulate (16). However,
it should be pointed out that the state-space solution is
not unique. We prefer the companion matrix structure of
the state transition matrix A, which allows the direct
insertion of the polynomial coefficients in (1). Fast com-
putational algorithms are presented in [5,6].

6. Design Example: A Digital Phase Shifter

Our purpose is to design a digital phase shifter, which
adapts to M frequency carriers buried in heavy noise. The
prototype IIR filter has the transfer function

M Ma +a,z'+a,z”>
H()=[TH, ()= [T 3L 8T )
k=1 k=1 k

The output signal y[n] has the /2 phase shift in
respect to the input signal u[n]. Hence, the envelope
a[n] of the carrier wave is obtained as

a[n]:qlu[n]2+y[n]2 (18)

The tracking performance of the adaptive matrix/vec-
tor gradient algorithm is illustrated in Figure 1 for
M =4. Blue waveform denotes the input signal and red
the output of the digital filter (17). The input signal in the
upper view contains only a low level noise component,
whereas in the lower view the input signal is buried by
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Figure 1. The performance of the AMVG algorithm in the
design of the digital phase shifter.
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heavy noise. The envelope in upper picture attains a con-
stant level in about 7 - 10 rounds. In lower picture the
envelope is clearly fluctuating in the presence of high
noise component.

7. Design Example: A Half-Sample Delay
Filter

Our purpose is to optimize the digital IR filter coeffi-
cients for half-sample operation. For the input signal
u[n], the filter output should equal y[n]=u[n-0.5].
The prototype was selected as

l+az'+az7+27

D2 (2)=9 1+bz’11+z’2 (19)
1

where g is the gain factor. Due to the symmetric structure
the prototype contains only three adjustable parameters.
The test signal was a neuroelectric waveform recorded
from the frontal cortex at sampling rate of 400 Hz with a
14 bit ADC. The experimental arrangement is described
in detail in [18]. The input signal comprised of the even
samples of the EEG and the output from the odd samples,
correspondingly. After 10 - 14 rounds the parameter val-
ues converged to (mean = 1 s.d.)

g=0.1251+£0.0009,a, =22.97+0.03 and

b, =4.01+0.01.

The results correlated highly significantly (intraclass
correlation coefficient r=0.9998 ) with the data ob-
tained by the B-spline polyphase decomposition method
[7].

8. Design Example: Envelope Detector

The validity of the adaptive half-sample delay filter (18)
was tested by the signal u[n]=sin [(a)o + An)n] where
o varied randomly in the range 0.9 - 1.1. The interpola-
tion error was between 0.25 - 1.2 percent. In our recent
work [8] we discovered a novel way to construct Hilbert
transform filter as

H(2)=D,:(2)D4(-2) 0)

Figure 2 shows a typical test waveform and the enve-
lope based on the adaptive Hilbert transform filter (19).

9. Discussion

In signal processing society the state-of-the art IIR filter
and ARMA model design methods have a rich literature.
Among adaptive filters the Kalman filter has a predomi-
nant role [9-13]. In many industrial and medical systems
the least mean square (LMS) and recursive least squares
(RLS) algorithms have their earned position [14,15]. A
common disadvantage to all adaptive IIR structures is the
relatively slow recovery from the anomalies occurring in
the measurement signal such as transients, edges and
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Figure 2. The envelope of the sinusoidal signal with ran-
domly varying frequency.

other discontinuities.

In this work we introduced the SVD-based null space
method for initialization of the model parameters. As a
clear advantage is the SVD-based method is the estima-
tion of the model order. The number of non-zero singular
values matches the rank of the data matrix, which equals
the model order. The SVD-based initialization method
rapidly recovers the IIR (ARMA) signal model after a
mismatch. It should be pointed out that in the presence of
extreme heavy noise, the SVD-based initialization usu-
ally achieves the correct filter coefficients for the data
matrix H =U_Z V.", which contains only one tiny sin-
gular value and the rest of the data matrix can be consid-
ered to belong to the signal subspace. In the uptake proc-
ess (10) the data matrices Y, and U, are not noise
free and the AMVG algorithm does not necessarily con-
verge or has a poor convergence rate.

Compared with the previous gradient based adaptive
algorithms such as LMS and RLS, the main difference in
AMVG algorithm is involved in the definition of the
system transfer function (1). In LMS algorithm the
nominator contains only the gain factor (autoregressive
signal model), but in AMVG algorithm the nominator is
defined as polynomial A(Z). The measurement signals
may contain a relatively large noise component and ad-
aptation error in LMS algorithm is directly affected by
noise. In definition (7) both the input and output signals
are subspace reduced [16-18] by the SVD-based initiali-
zation method and the noise is not directly imposed in
the adaptation error.

In this work we demonstrated the feasibility of the
AMVG algorithm in the design of the digital phase
shifter. An evident application would be the noise can-
cellation equipment, where the measured environmental
noise serves as an input signal u[n] . The phase shifted
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output signal y[n] drives the loudspeaker and due to
the negative feedback, the equipment eliminates noise in
the measurement site. In previous noise reduction sys-
tems the fractional delay filters [4,19,20] have been im-
plemented for that purpose.

The second example considered the construction of the
half-sample filter, where three parameters in the AMVG
algorithm were successfully optimized for a neuroelectric
waveform [7]. The half-sample delay filter has in an im-
portant role in the computation of the shift invariant mul-
ti-scale wavelets. We have applied the discrete B-spline
polyphase decomposition for that purpose [7]. Our pre-
liminary tests reveal that the AMVG algorithm competes
extreme well with the B-spline half-sample delay filters.
The neuroelectric discharge contains fast repetitive tran-
sients with exponentially decaying activity [7,21]. The
AMVG algorithm converges to the asymmetric shape of
neuronal spikes. The symmetric B-spline quadrature
mirror filters (QMFs) with integer coefficients cannot
perform so well. However, in practice the difference is
small and the EEG analysis based on the AMVG algo-
rithm does not overdrive the instrumention based on the
B-spline signal processing [22].

Finally, we implemented the adaptive half-sample de-
lay filter (18) for computation of the envelope of the si-
nusoid with varying frequency. The frequency jittering
signals are common in industrial and medical instrumen-
tation. For example the 50 Hz pick-up will interfere the
ambulatory measurement of the ECG, EEG and EMG
waveforms [1-3,21]. An efficient noise rejection method
is yielded by adapting the signal to the transfer function
H(z) in (17). A noise free signal is obtained by filter-
ing the original waveform by the pole cancellation filter
R(z)= (1— zkz’l)(l— Z;Z’l) , where (*) denotes com-
plex conjugation. The pole z, in (17) corresponds the
complex waveform e'*", where @, =2nf, . The fre-
quency f, [Hz] should be close to 50 Hz.

As an important application of the AMVG algorithm is
the prediction of the signal waveform for example in
process control. For the input signal u[n] the system
adapts to the output y[n] =u [n+ k] , where k=1,2,3,---
is the prediction step.

After convergence of the AMVG algorithm, we may
use the result to predict the future behaviour of the proc-
ess. Usually this gives prophylactic information for the
system service planning etc. As an extra value, the mag-
niture and phase response of the system can be computed
applying e.g. Matlab freqz (a, b, X) instruction.
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