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ABSTRACT 

This work describes a novel adaptive matrix/vector gradient (AMVG) algorithm for design of IIR filters and ARMA 
signal models. The AMVG algorithm can track to IIR filters and ARMA systems having poles also outside the unit cir- 
cle. The time reversed filtering procedure was used to treat the unstable conditions. The SVD-based null space solution 
was used for the initialization of the AMVG algorithm. We demonstrate the feasibility of the method by designing a 
digital phase shifter, which adapts to complex frequency carriers in the presence of noise. We implement the half-sam- 
ple delay filter and describe the envelope detector based on the Hilbert transform filter. 
 
Keywords: Adaptive Signal Processing; Gradient Algorithm; SVD; Noise Rejection 

1. Introduction 

Theory and design of the adaptive FIR (finite impulse 
response) filters is recently impacted by high speed digi- 
tal communication systems such as video and image pro- 
cessing. The multi-rate data acquisition VLSI devices 
based on the tree structured discrete wavelet transforms 
(DWTs) have significantly advanced with the adaptive 
techniques such as data compression, adaptive noise can- 
cellation and channel equalization [1-3]. 

The IIR (infinite impulse response) filter structures are 
not as popular as the FIR filters in signal decomposition 
and multi-scale analysis. Also the adaptive IIR filters are 
generally only marginally stable since the poles may 
travel outside the unit circle during the adaptation proc- 
ess. However, recently the time reversed filtering proce- 
dure was introduced, which enables the implementation 
of the IIR filters having poles outside the unit circle [4]. 
The IIR filter structures have many advantages over the 
FIR filters. Usually the equal performance (e.g. conver- 
gence rate and adaptation error can be obtained by a con- 
siderably lower number of filter coefficients compared 
with the FIR filters. 

The IIR filter consists of the transfer function 
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The output of the filter in discrete-time domain can be 
computed recursively as 
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In this equation k  and 0k  are the coeffi- 
cients of the nominator and denominator polynomials, 

a  1b b  

 u n  and  y n  are the input and output signals. In 
process, control literature (2) is usually named as autore-
gressive moving average (ARMA) signal model. 

In this work, we introduce an adaptive matrix/vector 
gradient (AMVG) algorithm for design of IIR filters and 
ARMA systems. We apply the SVD-based null space 
solution for the initialization of the AMVG algorithm. 
Finally, we prove the usefulness of the AMVG algorithm 
in the design of digital phase shifter, 

2. IIR Filter (ARMA Model) Formulation 

The input-output relation of the discrete-time IIR filter (1) 
can be written as 
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where  and denote z-transforms of the input 
and output signals. This yields 

 U z  Y z

        0B z Y z A z U z            (4) 

By defining the Hankel data matrices 
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where  and the coefficient vectors 
 and , we 

obtain 
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where  is a zero vector.  1 1LR  0

3. SVD-Based Initialization Method 

In the following we describe the SVD-based null space 
solution of the coefficient vectors in (7). Let us replace 
the input-output data matrix by a short notation 

 n n nH Y U . By applying the singular value decom- 
position (SVD) we have T

n n n nH U V , where matrices 
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T
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contain the left and right sin- gular vectors (column vec-
tors) and matrix 

 the singular values in descending 

order. Matrices  and V  are unitary: 
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Finally we may write 
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for . Equation (8) forms the basis for the 
SVD-based initialization method. By searching very 
small singular value 
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, the right singular vector 

k  equals vector   in (7) yielding the solution 
for the coefficient vectors. In the presence of noise the 
dimensions of the data matrix 

v

 n nH = Y U  should be 
selected so that there appears only one tiny singular value. 
This can be also achieved by zeroing the rest of the tiny 
singular values in SVD decomposition of the data matrix. 

In applications where the coefficient vector is time 
varying, the SVD computation is unacceptably time 

consuming. Therefore the SVD-based solution is only 
justified in the initialization of the IIR filter design. In the 
following we describe a fast matrix/vector gradient (AMVG) 
algorithm for adaptive computation of the IIR filter pa- 
rameters. 

4. Adaptive Matrix/Vector Gradient  
Algorithm 

For adaptation of the  and  coefficient vectors we 
define the adaptation error vector  

 as 
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The mean square error (MSE) is computed as 
2 T 1
n n ne 1R  e e . The coefficient vectors are then updated 

by the gradient algorithm as 
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where 1   denotes the adaptation gain factor. This is 
followed by the gain normalization  
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The normalization (11) fixes the coefficient 0 1b  . In 
our experience the post normalization of the gain war- 
rants more reliable convergence of the algorithm com- 
pared with fixing directly 0  in (10). Since the gra- 
dient algorithm is based on the use of the same data ma- 
trices n  and nU  as in the SVD-based solution, the 
initial selection of the coefficient vectors in (10) may be 
the same as in the SVD-based solution. Using arbitrary 
coefficient vectors as initial guess would possibly result 
in the convergence to the local minimum. 

1b 

Y

5. Implementation of the IIR Filters and 
ARMA Models 

Many IIR filters designed by the present method are not 
readily implementable, since the poles may lie outside 
the unit circle. In this case the poles outside the unit cir- 
cle must be considered separately. The denominator 
polynomial is divided into anticausal (AC) and causal (C) 
parts 
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where the roots , 1, ,ip i K 
ACB

 are outside the unit cir- 
cle. The anticausal filter  can be implemented 
by the time reversed filtering procedure [4]. The anti- 
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causal filter  in (12) as a cascade realization  ACB z
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where the poles  are outside the unit 
circle. The 
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 filters in (13) can be implemented by 
the following time reversed filtering procedure. First we 
replace z by  
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where  and  are z-transforms of the input  U z  Y z
 u n  and output  y n

Nz Y

 signals   . 0,1, ,n N 
 1zNz U  and  are the z-transforms of the 1z

time reversed input  u N n  and time reversed output  

 y N n . The i  1H z  filter is stable having a pole 
 inside the unit circle. The following Matlab pro- 

gram revfilter.m demonstrates the computation proce- 
dure: 
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In many IIR filter realizations the poles of the transfer 
function lie close to the unit circle and unstable condi- 
tions and oscillations may occur when filtering time- 
varying signals with abrupt changes and discontinuities. 
Let us consider the modification of the denominator 
polynomial of the IIR filter where the z-transform vari- 
able is multiplied by 1   
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The roots of the modified polynomial are transferred 
towards the origin of the unit circle, which increases the 
inherent stability of the filter. We may observe that this is 
equivalent if we weight the IIR filter coefficients as 

k , which can be directly inserted to the gain 
normalization procedure (11). 

k
kb 

The computation speed of the AMVG algorithm can 
be increased by using the sequential blocks of input and 
output data. We may define the data matrices as n kW  
and n kW , where  and W is the length of 
the data block. 

Y
U 0,1,2,k  

With a slight modification the AMVG algorithm can 
be implemented to state-space system identification. Let 
us define the state-space model as 
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where the state vector , the state transition 
matrix 

1N
n R x

N NR A , matrices , , N NR DB C . Vectors 

n n
1NR, u y  contain the input  u n  and output  y n  

signals. Vector 1N
n R w  is a random zero mean ob- 

servation noise sequence. By defining the Hankel data 
matrices (5) and (6) the ARMA model polynomials (1) 
can be identified. Then we may formulate (16). However, 
it should be pointed out that the state-space solution is 
not unique. We prefer the companion matrix structure of 
the state transition matrix A , which allows the direct 
insertion of the polynomial coefficients in (1). Fast com- 
putational algorithms are presented in [5,6]. 

6. Design Example: A Digital Phase Shifter 

Our purpose is to design a digital phase shifter, which 
adapts to M frequency carriers buried in heavy noise. The 
prototype IIR filter has the transfer function 
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The output signal  y n  has the π 2  phase shift in 
respect to the input signal  u n . Hence, the envelope 
 a n  of the carrier wave is obtained as 

     2
a n u n y n  2

           (18) 

The tracking performance of the adaptive matrix/vec- 
tor gradient algorithm is illustrated in Figure 1 for 

4M  . Blue waveform denotes the input signal and red 
the output of the digital filter (17). The input signal in the 
upper view contains only a low level noise component, 
whereas in the lower view the input signal is buried by 

 

 

Figure 1. The performance of the AMVG algorithm in the 
design of the digital phase shifter. 
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heavy noise. The envelope in upper picture attains a con- 
stant level in about 7 - 10 rounds. In lower picture the 
envelope is clearly fluctuating in the presence of high 
noise component. 

7. Design Example: A Half-Sample Delay 
Filter 

Our purpose is to optimize the digital IIR filter coeffi- 
cients for half-sample operation. For the input signal 
 u n , the filter output should equal    0.5y n u n  . 

The prototype was selected as 
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where g is the gain factor. Due to the symmetric structure 
the prototype contains only three adjustable parameters. 
The test signal was a neuroelectric waveform recorded 
from the frontal cortex at sampling rate of 400 Hz with a 
14 bit ADC. The experimental arrangement is described 
in detail in [18]. The input signal comprised of the even 
samples of the EEG and the output from the odd samples, 
correspondingly. After 10 - 14 rounds the parameter val- 
ues converged to (mean 1 s.d.)  

 and 
. 


10.1251 0.0009, 22.97 0.03g a   

1 4.01 0.01b  
The results correlated highly significantly (intraclass 

correlation coefficient ) with the data ob- 
tained by the B-spline polyphase decomposition method 
[7]. 

0.9998r 

8. Design Example: Envelope Detector 

The validity of the adaptive half-sample delay filter (18) 
was tested by the signal    0sin nu n n      where 
  varied randomly in the range 0.9 - 1.1. The interpola- 
tion error was between  - 1.2 percent. In our recent 
work [8] we discovered a novel way to construct Hilbert 
transform filter as 

0.25

     1
1 2 1 2z D z D z            (20) 

Figure 2 shows a typical test waveform and the enve- 
lope based on the adaptive Hilbert transform filter (19). 

9. Discussion 

In signal processing society the state-of-the art IIR filter 
and ARMA model design methods have a rich literature. 
Among adaptive filters the Kalman filter has a predomi- 
nant role [9-13]. In many industrial and medical systems 
the least mean square (LMS) and recursive least squares 
(RLS) algorithms have their earned position [14,15]. A 
common disadvantage to all adaptive IIR structures is the 
relatively slow recovery from the anomalies occurring in 
the measurement signal such as transients, edges and 

 

Figure 2. The envelope of the sinusoidal signal with ran- 
domly varying frequency. 

 
other discontinuities. 

In this work we introduced the SVD-based null space 
method for initialization of the model parameters. As a 
clear advantage is the SVD-based method is the estima- 
tion of the model order. The number of non-zero singular 
values matches the rank of the data matrix, which equals 
the model order. The SVD-based initialization method 
rapidly recovers the IIR (ARMA) signal model after a 
mismatch. It should be pointed out that in the presence of 
extreme heavy noise, the SVD-based initialization usu- 
ally achieves the correct filter coefficients for the data 
matrix T

n n nH U V , which contains only one tiny sin- 
gular value and the rest of the data matrix can be consid- 
ered to belong to the signal subspace. In the uptake proc- 
ess (10) the data matrices nY  and nU  are not noise 
free and the AMVG algorithm does not necessarily con- 
verge or has a poor convergence rate. 

Compared with the previous gradient based adaptive 
algorithms such as LMS and RLS, the main difference in 
AMVG algorithm is involved in the definition of the 
system transfer function (1). In LMS algorithm the 
nominator contains only the gain factor (autoregressive 
signal model), but in AMVG algorithm the nominator is 
defined as polynomial  A z . The measurement signals 
may contain a relatively large noise component and ad- 
aptation error in LMS algorithm is directly affected by 
noise. In definition (7) both the input and output signals 
are subspace reduced [16-18] by the SVD-based initiali- 
zation method and the noise is not directly imposed in 
the adaptation error. 

In this work we demonstrated the feasibility of the 
AMVG algorithm in the design of the digital phase 
shifter. An evident application would be the noise can- 
cellation equipment, where the measured environmental 
noise serves as an input signal  u n . The phase shifted 
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output signal  y n  drives the loudspeaker and due to 
the negative feedback, the equipment eliminates noise in 
the measurement site. In previous noise reduction sys- 
tems the fractional delay filters [4,19,20] have been im- 
plemented for that purpose. 

The second example considered the construction of the 
half-sample filter, where three parameters in the AMVG 
algorithm were successfully optimized for a neuroelectric 
waveform [7]. The half-sample delay filter has in an im- 
portant role in the computation of the shift invariant mul- 
ti-scale wavelets. We have applied the discrete B-spline 
polyphase decomposition for that purpose [7]. Our pre-
liminary tests reveal that the AMVG algorithm competes 
extreme well with the B-spline half-sample delay filters. 
The neuroelectric discharge contains fast repetitive tran- 
sients with exponentially decaying activity [7,21]. The 
AMVG algorithm converges to the asymmetric shape of 
neuronal spikes. The symmetric B-spline quadrature 
mirror filters (QMFs) with integer coefficients cannot 
perform so well. However, in practice the difference is 
small and the EEG analysis based on the AMVG algo- 
rithm does not overdrive the instrumention based on the 
B-spline signal processing [22]. 

Finally, we implemented the adaptive half-sample de- 
lay filter (18) for computation of the envelope of the si- 
nusoid with varying frequency. The frequency jittering 
signals are common in industrial and medical instrumen- 
tation. For example the 50 Hz pick-up will interfere the 
ambulatory measurement of the ECG, EEG and EMG 
waveforms [1-3,21]. An efficient noise rejection method 
is yielded by adapting the signal to the transfer function 

 H z

 R z

 in (17). A noise free signal is obtained by filter- 
ing the original waveform by the pole cancellation filter 

k , where  1 1k z 1z z z   1    denotes com- 
plex conjugation. The pole k in (17) corresponds the 
complex waveform 

z
e kj n , where 2k π kf  . The fre- 

quency kf  [Hz] should be close to 50 Hz. 
As an important application of the AMVG algorithm is 

the prediction of the signal waveform for example in 
process control. For the input signal  u n  the system 
adapts to the output    y n u n k  , where 1,2,3,k    
is the prediction step. 

After convergence of the AMVG algorithm, we may 
use the result to predict the future behaviour of the proc- 
ess. Usually this gives prophylactic information for the 
system service planning etc. As an extra value, the mag- 
niture and phase response of the system can be computed 
applying e.g. Matlab freqz  instruction.  , ,a b x 
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