
Int. J. Communications, Network and System Sciences, 2010, 3, 850-854 
doi:10.4236/ijcns.2010.311115 Published Online November 2010 (http://www.SciRP.org/journal/ijcns) 

Copyright © 2010 SciRes.                                                                                IJCNS 

Service Networks Topological Design 

Boris S. Verkhovsky 
Computer Science Department, New Jersey Institute of Technology, Newark, USA 

E-mail: verb@njit.edu 
Received June 18, 2010; revised August 12, 2010; accepted September 23, 2010 

Abstract 
 
Topological design of service networks is studied in the paper. A quantitative model and algorithm minimiz-
ing cost of processing and delivery are described. An algorithm solving combinatorial problem of optimal 
design based on binary partitioning, a parametric search and dynamic programming optimization of a binary 
tree are described and demonstrated in numeric examples. 
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1. Introduction and Problem Definition 
 
Modern satellite communication networks with their 
terrestrial users interconnected via terrestrial links with 
earth stations are an example of a service providing net-
work (SPN). 

Modern telecommunications is a highly competitive 
business. To reduce service fees and to make it eco-
nomically attractive to potential customers, a communi-
cation company must decide how many earth stations of 
each type it needs, where to allocate them, and how the 
customers must be interconnected with the earth stations. 
A correct decision can save hundreds of millions of dol-
lars annually and hence can attract more users. 

In more general terms we consider a set of users that 
require a service [1]. The type of service can be either 
water desalination and/or purification and delivery to 
customers. Or it can be a regional gas supply. Or emer-
gency services (ERs, fire departments, or police station 
or a set of first responders). Or a set of special postal 
service providers (mail deliverers, UPS offices, etc.). 

From a computational point of view, the problem is 
NP-complete, i.e., it requires brute-force algorithms or 
heuristics with exponential time-complexity. These ap-
proaches must find an optimal way of clustering all users, 
[2-5]. This paper describes a set of algorithms that solve 
the problem of clustering-and-location of all service pro-
viders with a polynomial time complexity. Preliminary 
results are provided in [6]. For more insights on prob-
lems and algorithms related with network design see 
[7-12]. 

2. Problem Statement 
 
1) Let us consider locations of n users with coordinates 
Pi = (ai, bi), i = 1, , n. Each user is characterized by a 
“volume” of required service wi (“weight” of i-th user); 



2) Let  ,k k kC u v be a location of k-th service cen-
ter (server, for short), k = 1, 2, , m; 

3) Let Sk be a set of all users connected with the k-th 
server Ck; 

4) Let f (wi, Pi, Ck) be a cost function of the link con-
necting the i-th user Pi and k-th server Ck; 
here for all i = 1, 2, , n Pi are the inputs and for all k = 
1, 2, , m Ck are decision variables. 




Then a minimal total cost of all links and all servers 
equals 

 
1 1, , , , 1

min min , ( )
m m k k

m

S S C C i k k ik i S i Si
f P C q w

  
      , 

(1) 
where (

kk i S
q


)iw  is the cost of k-th server as a non-  

linear function of all service flows. Thus the problem (1) 
requires a comprehensive analysis in order to find opti-
mal clusters (subsets) S1, , Sm. 

Models and methods of clustering in general has been 
studied and described in [5]. Surveys on models and al-
gorithms related to clustering are provided in [5,9]. 
 
3. Special Cases 
 
Case 1: The number m of servers is known and the cost 
function of every server is independent of required proc-
essing volume. If locations of all servers are specified, 
then it is easy to find the clusters Sk. 



B. VERKHOVSKY 
 

851

j

k

Indeed, in 

    1: : , , : min , ,k i i k j m i iS i f w P C f w P C    (2) 

i.e., every user is connected with the closest or least ex-
pensive delivery link. 

Case 2: If for k = 1, , m Sk are known, then the op-
timal allocation of every server can be determined inde-
pendently: 



min , ,
k kC i ii S

f w P C
          (3) 

for k = 1, , m. 
Case 3: If f (wi, Pi, Ck) = wi × dist (Pi, Ck), then the 

problem (3) is known as a Weber problem. This problem 
has been investigated by many authors over the last thirty 
years. For references see [10,13-16]. 

Case4: ( ) is a linear or convex function, 

i.e., 
kk i S

q
 iw

     2 11 2k kq w w q w q w   k  

Then 

     
2 2k k kk i k i ki S i S i S

q w q w q
  

   
1 iw

1

 

which means that the more clusters the better. 
The difficulties arise if the clusters Sk are not known, 

the cost of every server is neither small nor flow-inde- 
pendent, and the number m of servers and their optimal 
locations (uk, vk) for all k are not known. 
 
4. Division onto Two Clusters 
 
It is important to stress that there is a substantial differ-
ence between the two cases: m = 1 and m = 2. In the lat-
ter case the problem can be solved by repetitive applica-
tion of an algorithm for the Weber problem. This must be 
done for all possible pairs of clusters S1 and S2. There are 

 different ways to partite n points onto two sub-
sets S1 and S2 and, for each clustering, two Weber prob-
lems must be solved. Thus, the total time complexity of 
this brute-force approach {even for m = 2} is O(2n), [3]. 

12n 

 
5. Binary Parametric Partitioning 
 
In this section we provide a procedure that divides a 
network N1 with one server S1 onto two sub-networks N2 
and N3 with two servers. 

Step A1: {find optimal location of “center of gravity” 

0  for all n users, [1]}; consider m = 1 and solve the 
problem 
C

 1
min , ,

n

C i ii
f w P C

 .          (4) 

Step A2: consider a straight line L and rotate it around 
the center of gravity C0; {for every angle x of rotation the 
line L divides all points  onto two clusters S1(x) and 
S2(x)}; 

iP

Step A3: for every point (user) consider polar coordi-
nates (i, di) using C0 as the origin of the coordinate sys-
tem; {here i is an angular coordinate of Pi}; 

Step A4: for i = 1 to n do 

: modi ix   ;                  (5) 

sort all xi in ascending order; 
Step A5: if xi = i      then chi = 1 

else chi = 0; 
Step A6: if (xi  x and chi = 1) or (xi > x and  = 0) 

then
ich

 1iP S x  else ;  2iP S x
i SStep A7: for k = 1,2 and  compute  k x

   : min , ,
k k

k k C i i ki S g S x f w P C


   ;     (6) 

Step A8: {compute the cost of two servers and all 
links}: 

    
     

1 21 2

1 1 2 2

: i ii S i S
h x q w q w

g S x g S x


 

 

   

      

     (7) 

Remark 1: The line L divides all n points onto two clus-
ters, S1(x) and S2(x), by at most n different ways as the 
angle x changes from 0 to  ; 

Step A9: Rotate the separating line L and find an angle 
that minimizes the function 

       0(7) : : min xh x see h r h x      (8) 

Robustness of partitioning: In Step A9, the angle of 
rotation x of line L is the parameter. Several thousands 
computer experiments demonstrate that L divides all 
points/users onto two subsets S1 and S2 in such a way that 
for k = 1, 2 the following property almost always holds: 
if ( ),  ki S r  

then              (9) 3( ,  ,  ) ( ,  ,  )i i k i i kf w P C f w P C 

However, if n is large, then with small probabilities there 
are one or two points (called “fugitives”), for which (9) 
does not hold; 

Step A10: if for    iS1(r) 

f (wi, Pi, C1) > f (wi, Pi, C2), 

then reassign        iS2(r); 
if for    iS2(r) 

f (wi, Pi, C2) > f (wi, Pi, C1), 

then reassign        iS1(r); 
Remark 3: iS1(r), then 

1 2Prob [ ( ,  ,  ) ( ,  ,  )] ,i i i if w P C f w P C    
where 

0, if 400 and 1/ 200 if 500n n      

Therefore the separating like with very high probabil-
ity cluster the points onto two sets, for which (9) holds. 

Step A11: using (7) and (8) update optimal locations 
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of C1 and C2 for new values of S1(r) and S2(r); {we de-
fine S1(r) and S2(r) as the optimal binary partitioning}. 

Remark 4: The computer experiments for 25 600n   
indicate remarkable robustness of the Binary Partitioning 
Algorithm (BPA): the Step 10 and Step 11 do not create 
instability of the BPA, [6]. 
 
6. Search for “Center of Gravity” 
 
Step B1: assign flag: = 0; 

1 1

1 1

: /

: /

i i ii N i N

i i ii N i N

u w a

v w b

 

 





 
 

;w

w



 

Step B2: for all  1i N

  2 2
:i iR u a v b    i



;

; 

Step B3: old(u,v): = (u,v); 

  
  

: / / /

: / / /

i i i i ii i

i i i i ii i

u w x R w R

v w y R w R





 
 

 

Step B4: while 

   , , ,dist old u v u v    , 

repeat Steps B2 and B3; 
Step B5 {search of a stationary point SP;   is a 

specified accuracy of location of the center of gravity}: 
Assign SP: = (u,v); 

Step B6: if for all {1j N  , jdist SP P   and flag 

= 0}, then SP is the “center of gravity”; 

if for all  {1j N  , jdist SP P   and 1flag   }, 

then ; flag: = 0; goto Step B2; 1 1N N  nt: p

Step B7: if  , jdist SP P 

 pnt

 then ; pnt: = 

k; . 

1flag  

1 1:N N 

 
7. Minimax Search for Minimum of h(x) 
 
Let h be a function computable on a set S of N discrete 
points 1, , Nx x

, ,
. It is obvious that N evaluations of h at 

points 1 Nx x  are enough to solve any problem by 
total enumeration. However, since h is a periodic func-
tion with known period P, i.e.,  holds 
for every integer k, and for every i = 1, , N, an opti-
mal algorithm with time complexity of order

  i ih x kP h x 




 Nlog .is 
developed and published in [16,17]. 
 
8. Binary Partitioning & Associated Binary 

Tree 
 
Let :k k kH t s   where Hk is a combined cost of the 

network Nk. Let’s consider an algorithm that divides the 
network N1 into two sub-networks N2 and N3 with corre-
sponding service delivery costs t2 and t3 and correspond-
ing costs of servers s2 and s3. We assume that the algo-
rithm divides N1 into two subnets in such a way that t2 + 
t3 + s2 + s3 is minimal. 

For further consideration we represent the binary par-
titioning as a binary tree where the root of the tree repre-
sents a cluster (set of all users) S1 and associated with it 
the network N1. In general, a k-th node of the binary tree 
represents a cluster Sk and associated with it a network Nk. 
Two children of the k-th node represent two sub-net- 
works N2k and N2k + 1 of the network Nk (as result of the 
binary partitioning). 

From the above definitions and from the essence of the 
problem it is clear that for all k the following inequalities 
hold 

2 2 1 2 2, and k k k k k k k 1s s s s t t t     .    (10) 

The latter inequality holds because each sub-network 
N2k and N2k + 1 has a smaller number of users than Nk. 
 
9. Non-Monotone Nature of Total Cost 
 
If Hk > H2k + H2k + 1, then it is obvious that a partitioning 
into two clusters (sub-networks) is cost-wise beneficial. 

However, Hk < H2k + H2k + 1 does not imply that any 
further partitioning is not cost-wise beneficial. To illus-
trate that let’s consider a network Nk and its six subnet-
works N2k, N2k + 1, N4k, N4k + 1, N4k + 2, N4k + 3. 

Remark 6: To demonstrate various cases we consider 
two scenarios of inputs in the following table. 

Case H1 = 91 (see Table 1): since H1 > H2 + H3, then 
the binary partitioning of N1 into two sub-networks is 
gainful;  

Case H1 = 86 (see Table 2) illustrates that a local 
analysis of the total costs does not provide a correct in-
sight. 
 

Table 1. t1 = 67 and for t5 = 11. 

Sub-networks Ni N1 N2 N3 N4 N5 N6 N7

Delivery-link cost ti 67 25 29 12 11 10 7 

Server cost sk 24 19 17 10 14 12 9 

Total cost Hk 91 44 46 22 25 22 16

 
Table 2. t1 = 62 and for t5 = 7. 

Sub-networks Ni N1 N2 N3 N4 N5 N6 N7

Delivery-link cost ti 62 25 29 12 7 10 7 

Server cost sk 24 19 17 10 14 12 9 

Total cost Hk 86 44 46 22 21 22 16
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In this case H1 < H2 + H3, which only implies that 
there is no reason to divide the network N1 into two 
sub-networks N2 and N3. However, further analysis 
demonstrates that 

H1 > H4 + H5 + H6 + H7    if H5 = 21; 

{indeed, 86 > 22 + 21 + 22 + 16 = 81}; 

and    H1 > H2 + H6 + H7        if H5 = 25; 

{indeed, 91 > 44 + 22 + 16 = 82};  

These examples illustrate that for a proper partitioning 
a global rather than a local analysis is required. 

Definition 1: We say that a network Nk is indivisible if 
there is no cost-wise advantage to divide it onto any 
number of sub-networks. 

In addition, some sub-networks may not be further di-
visible if they do not satisfy at least one of the following 
threshold conditions: 

a) Their request for service is lower than a specified 
threshold; 

b) The number of users in the cluster is smaller than a 
specified threshold. 

Definition 2: We say that an optimal configuration of a 
service network is determined if all indivisible sub-net- 
works of the initial network N1 are known. 
 
10. Dynamic Programming Algorithm 
 
{The algorithm assigns final labels to all nodes of the 
associated binary tree; then determines all balanced 
nodes and then all prime nodes}; 

Bottom-up mode: a) {assign to k-node a label}; 

: , 1,2, ,k kL H k m   ;         (11) 

b) if i-th node is a leaf then its final label 

:kF L ;                (12) 

c) if both children of k-th node have final labels then 

 2 2 1: min ,k k kF L F F   k ;       (13) 

d) if the final labels Fk are computed for all nodes then 
goto the next mode; 

Top-down mode: Starting from k=1 we find a node j, 
for which holds 

j jF L .                (14) 

It can be shown that it is not cost-wise advantageous 
to consider the descendants of this node, i.e., this node is 
indivisible. 

Definition 3: We say that j-th node is balanced if 

j jF L  holds. 
Definition 4: A node that does not have a balanced 

ancestor is a prime node. 
Proposition: The set  of all prime nodes repre-

sents the optimal partitioning. 

optP

Proof: Let’s prove by reduction that (13) is always 
computable, i.e., when we need to compute a final label 
for the k-th node, the final nodes of its both children are 
already computed. 

Indeed, consider a sub-tree T1 with five nodes {A, B, 
C, D, E} and sub-tree T2 with seven nodes {A, B, C, D, 
E, G, H}, where in both sub-trees node A is a root. 

Sub-tree T1: Let B and E be the children of A; and C 
and D be the children of B. In addition, let the nodes C, 
D and E be leaves. 

Then by definition (12), 

: ; : and :C C D D E EF L F L F L   .    (15) 

Therefore, : min( ,  )B B C DF L F F   

and        : min( ,  )A A B EF L F F  .           (16) 

Thus, if T1 is a sub-tree of a larger tree, we can com-
pute five final labels, i.e., we reduce the number of un-
known final labels by five. 

Sub-tree T2: Let B and E be the children of A; C and 
D be the children of B; G and H be children of E. In T2 
nodes C, D, G and H are the leaves. 

It is easy to see that this case can be reduced to the 
previous case by computing the final label of E. Indeed, 
by definition (12), 

: and :G G H HF L F L          (17) 

Therefore,       : min( ,  )E E G HF L F F         (18) 

Thus, after the final label of node E is known, we can 
consider it as a virtual leave. In other words, we reduced 
the sub-tree T2 to the sub-tree T1. 

Hence, if T2 is a sub-tree of a larger tree, we can 
compute the all final labels of its nodes, i.e., we reduce 
the number of unknown final labels by seven. 

It is clear that in order to compute a final label for 
every node we need one addition and one comparison. 
Hence the overall complexity to compute the final labels 
has order O(M), where M is the number of nodes in the 
initial tree. In the worst case every leave has at least 2 
users. Thus the total number of nodes M on the tree does 
not exceed n – 1, where n is the number of the users. 
Therefore the complexity equals O(n). 
 
11. Optimal Algorithm for Large n 
 
It is easy to see that the parametric partitioning requires 
in general case exactly n rotations of the separating line 
L. As a result, the time-complexity f(n) to divide n users 
onto two clusters is equal f (n) = an2 + O1(n) for large n. 
However, from computer experiments for large number 
of users n h(x) has one maximum and one minimum 
when L is rotated on 180 degrees. In this case the search 
algorithm requires O(logn) rotations of the separating 
line L. As a result, f (n) = bnlogn + O2(n) for large n and 
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overall worst-case complexity is of order .  2 logn n
As it shown in [18] an average complexity of the 

problem can be further improved. The developed ap-
proach demonstrates that the average complexity of the 
overall binary partitioning is of order .  2logn n
 
12. Conclusions 
 
The ideas and algorithms described in this paper have 
numerous applications. In the set of algorithms provided 
above the Binary Partitioning algorithm (BPA) is a core 
sub-algorithm for solutions of many problems dealing 
with configuration/topological design of networks and 
other clustering problems. As the core sub-algorithm, the 
BPA has to be repeatedly executed many times; therefore 
it is essential to make the BPA computationally as effi-
cient as possible. There are several computational blocks 
within the BPA: 

 To determine an optimal location of the “centre 
of gravity”; 

 To detect of a minimum of computable function 
using the smallest number of its probes; 

 To estimate an average complexity of a di-
vide-and-conquer algorithm. 

We developed an appropriate quantitative analysis to 
handle efficiency of the BPA. 

Finally, it is shown how to apply a dynamic program-
ming to tackle combinatorial complexity of reconstruct-
ing the best network after numerous binary partitions. 
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