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ABSTRACT 

In recent years, expansion of native and exotic 
evergreen shrubs into forest understories has 
been documented worldwide. Dense shrub 
thickets may interfere with tree establishment, 
suppress herbaceous cover, and contribute 
substantially to total standing crop of leaf bio- 
mass. Expansion may occur because evergreen 
shrubs exploit seasonal variations in irradiance 
and temperature that are characteristic of tem- 
perate understory environments. We quantified 
leaf-level light environment and photosynthetic 
activity of three sympatric broadleaf evergreens 
(Ilex opaca, Kalmia latifolia, and Myrica cerifera) 
in a deciduous forest understory in Charles City 
County, Virginia, USA in order to understand 
seasonal intra- and interspecific ranges of 
broadleaf evergreen physiology. Two species (K. 
latifolia and M. cerifera) represent a diverse 
taxonomic range within broadleaf evergreens, 
and often form expansive thickets. We measured 
parameters related to canopy structure (e.g., 
bifurcation ratio, leaf angle) and photosynthetic 
performance (e.g., electron transport rate or ETR, 
chlorophyll content), to identify potential mecha- 
nisms facilitating expansion. ETR varied both 
seasonally and among species. In summer, M. 
cerifera ETR was nearly double that of I. opaca 
or K. latifolia. Additionally, leaf temperature en- 
hanced photosynthetic capacity of expansive 
species. Evergreen species, though capable of 
fixing carbon throughout the year, often exhibit 
slow growth rates and low physiological activity. 
Yet, we observed that the range of evergreen 
physiological activity may be broader than pre- 
viously recognized. Furthermore, our results 

indicate potential for changes in composition 
and expansion of the evergreen shrub layer by 
species that exhibit structural and physiological 
mechanisms advantageous for future rises in 
temperature. 
 
Keywords: Chlorophyll Fluorescence; 
Evergreenness; Temperate Forest; Photosynthetic 
Capacity; Seasonal Irradiance 

1. INTRODUCTION 

Expansion of evergreen shrubs, both native and exotic, 
(e.g., Ligustrum robustum, Ligustrum sinense, Myrica 
faya, Rosa multiflora) into forest understories worldwide 
has been documented [1-5]. Dense shrub thickets may 
interfere with tree establishment, suppress herbaceous 
cover, and contribute a substantial amount to total stand- 
ing crop of leaf biomass [6,7]. Over the past several 
decades, expansion of the evergreen understory layer of 
deciduous forests has also been documented [8]. Within 
the Southern Appalachian Mountains of North America, 
2.5 million ha are covered by thickets of Kalmia latifolia 
and Rhodedendron maximum [6,9]. Recently Myrica 
cerifera, a nitrogen-fixing, evergreen shrub, which oc- 
curs in open environments and forest understories, has 
also received attention for forming dense, monospecific 
thickets that encroach into nearby communities [10-12]. 
Species that form dense thickets may provide insight for 
understanding what suites of characteristics and physio- 
logical responses lead to occurrence and expansion 
within the understory.  

Species that display the evergreen leaf habit may re-
main active throughout the year and invest less annually 
in carbon and nutrients necessary to maintain foliage [6, 
13-15].This leads to longer leaf life spans than deciduous 
species, but lower rates of photosynthesis [15-18], 
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growth, nutrient loss, and litter decomposition [6,13,14]. 
Evergreen trees and shrubs are favored in nutrient poor 
environments because the consequences of lower photo-
synthetic capacity can be mitigated by assimilating car-
bon over a longer growing season [19-21]. Typical 
growth characteristics of evergreens are linked to low 
responsiveness to environmental change and conse-
quently, climate change may lead to shifts in evergreen 
distribution [15].  

In temperate climates, broadleaved evergreen species 
in the deciduous forest understory are exposed to large 
fluctuations in irradiance and temperature throughout the 
year [22-24]. The light environment in the forest under- 
story is highly dynamic and photosynthetically active 
radiation (PAR) reaching leaves may increase or decrease 
over two orders of magnitude within seconds [25-27]. 
Large changes in PAR occur in the understory due to 
leaf-out in the spring and autumn canopy leaf fall. Un-
derstory leaf temperature exhibits large fluctuations due 
to seasonality, and intensity and duration of irradiance 
[22,24]. Some understory evergreens, such as Ilex opaca, 
are dependent on the relatively high irradiance when the 
overstory is leafless [28,29]. Though previous studies 
quantified variations in understory light, few studies 
have examined seasonal physiology of understory woody 
plants. 

The objective of our study was to characterize and 
compare leaf-level light environment and photosynthetic 
capacity among broadleaf evergreen species to identify 
mechanisms related to expansion. We investigated the 
response of evergreen understory woody species to sea- 
sonal differences in light environment and temperature  
by 1) quantifying seasonal variations in leaf pigments, as 
related to light availability, 2) identifying structural traits 
associated with light capture (e.g., branch bifurcation, 
leaf angle) and that were related to photosynthetic capac- 
ity, 3) comparing photosynthetic capacity across seasons, 
and 4) determining if expansive, thicket-forming species 

(K. latifolia and M. cerifera) display physiology reflec- 
tive of expansive potential in the understory. We hy-
pothesized that species would display traits enabling 
maximum light capture due to a heterogeneous seasonal 
light environment and that species considered as expan-
sive in some environments would display higher photo-
synthetic capacity than the non-expansive I. opaca 
throughout the growing season.  

2. MATERIALS AND METHODS 

2.1. Site Description 

Field work was conducted at the Inger and Walter Rice 
Center for Environmental Studies, located in Charles 
City County, VA (37˚19'N, 77˚12'W), from March 2010 
to November 2011. Species were sampled within a ma-
ture (80 - 150 years old) hardwood forest understory. The 
deciduous forest canopy was primarily composed of a 
mixture of Quercus spp., and Acer rubrum. Physiological 
measurements were conducted from March 2010 to No-
vember 2011 on Ilex opaca Aiton (Aquifoliaceae), Kal-
mia latifolia L. (Ericaceae), and Myrica cerifera L. 
(Myricaceae), broadleaf evergreen species of varying 
leaf longevity which represent a wide geographic range 
in eastern North America (Table 1).  

Ilex opaca, which grows in either the tree or shrub 
growth form, is frequently observed in forest under sto-
ries as a small tree ~10 m tall. Kalmia latifolia, which 
typically occurs on forested slopes, can grow between 3 - 
9 m tall and is capable of forming dense thickets. Myrica 
cerifera, also capable of forming dense thickets, fixes 
nitrogen symbiotically, can reach heights of 5 - 6 m, and 
typically occurs in the southern United States. 

2.2. Measurements 

Early spring, late spring, summer and autumn meas-
urements were performed in March, May, July and 

 
Table 1. General life history, physiology, and habitat characteristics of study species: I. opaca, K. latifolia, and M. cerifera. Maxi-
mum photosynthetic rates have not been published for I. opaca and therefore, values presented are from closely related Ilex aqui-
folium, which is typically observed in European oak and beech forests. 

Species N-Fixer 
Leaf life 

span (yrs) 

Maximum 
photosynthetic rate

(µmol·m-2·sec-1) 
Preferred habitat Distribution 

I. opaca N ~2.4a 
4 - 5b 

Ilex aquifolium 

an understory tree, but may grow in 
full sun: grows best in mesic, 

well-drained, slightly acidic soils 

native to eastern and southeastern United 
States from coastal Massachusetts south to 
central Florida, and west to southeastern 

Missouri and eastern Texas 

K.  latifolia N ~3c 4 - 8d 
an understory shrub, but may grow in 

full sun: grows best in mesic,  
well-drained, acidic soils 

native to eastern United States, occurring 
from southern Maine south to northern 

Florida, and west to Indiana and Louisiana

M. cerifera Y <1e 24 - 28f 
frequently occurs in open areas, but 

also along forest edges and in  
understories: grows best in mesic soils

native to eastern and southeastern United 
States from coastal New Jersey south to 

central Florida, and west to Texas 
a[30] , b[31], c[32], d[33], e,f[34]. 
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September, respectively. For each species, leaf angle to 
the horizontal  was quantified to the nearest 
5˚ using a clinometer. Leaf angle was measured in early 
spring and again in summer to track seasonal changes. 
Plant bifurcation ratios were measured for ten stems ex- 
hibiting terminal shoots exposed to partial to full sunlight. 
The following equation was used to approximate branch 
bifurcation ratio 

 , 100n  

bR : 

1

1
b

N
R

N N





              (2) 

where N is the total number of branches of all branch 
orders on the stem and N1 is the total number of first or- 
der branches [35]. Additionally, the number of leaves per 
primary branch was quantified and leaf area  25n   
was measured using an area meter (LI-3100C). In order 
to assess leaf pigments, chlorophyll concentrations were 
quantified using standard spectrophotometric methods 
following acetone extraction [36].  

Chlorophyll fluorescence analysis, including quantifi- 
cation of electron transport rate (ETR), is an increasingly 
popular alternative to gas exchange measurements for 
determination of photosynthetic performance of plants 
[37] and making comparisons among species [38]. 
Changes in fluorescence emissions correlate with the 
light use efficiency of O2 evolution [39,40] and CO2 as-
similation [41-43]. Further, maximum apparent ETR 
represents a measure for the capacity of photosynthetic 
activity [44,45]. We utilized chlorophyll fluorescence 
analysis in order to relate physiology to photosynthetic 
capacity [45,46].  

Measurements were collected on sunny days between 
1000 h and 1400 h. To estimate photosynthetic capacity, 
light-adapted leaf photosynthetic electron transport rate 
(ETR) was measured on fully expanded leaves  50n 

 
using a pulse amplitude modulated leaf fluorometer 
(PAM-2000, Walz, Effeltrich, Germany). Leaves were 
selected from partially sunlit plants to capture natural 
variation in incident light and to ensure that some sam-
ples were acclimated to full sun. Concomitant incident 
photosynthetically active radiation (PAR) and leaf tem-
perature were determined using the mini-PAM leaf clip 
(2030-B) quantum sensor and thermocouple. Apparent 
ETR was calculated as: 

0.84 0.5mETR PAF RF            (1) 

where mF F   represents quantum yield, 0.84 is the 
assumed light absorbance of the sample, and 0.5 corrects 
for 2 quanta of light required for the transport of 1 elec-
tron [41,44]. 

2.3. Data Analysis 

The program R was used for all statistical tests. One- 
way analysis of variance (ANOVA) was conducted to 

compare leaf angles, leaf PAR, parameters relating to 
leaf pigments and ETR among species. Post-hoc testing 
was performed using Tukey’s honestly significant dif-
ference (HSD). Linear regression analysis was used to 
determine relationships between PAR and leaf tempera-
ture for each species and significance of slopes was de-
termined. The slopes of significant relationships were 
compared using a Student’s t-test. Linear regression was 
also used to quantify relationships between PAR and 
ETR for determination of photosynthetic efficiency (PE) 
among species [47]. This was achieved by utilizing the 
linear portion of the relationship between PAR and ETR, 
which corresponded to PAR values ≤600 µmol·m−2·sec−1 
and resulting ETR. Steeper slope in the linear portion of 
the relationship indicates higher PE (i.e., higher capacity 
for light processing). Slopes were compared to each 
other using analysis of covariance methods (ANCOVA) 
and when appropriate, pairwise contrasts were per-
formed. 

3. RESULTS 

3.1. Canopy Architecture and Leaf Anatomy 

Frequency distributions of   among species in early 
spring were all different from one another (Figure 
1; 2,297 37.87, 0.001F P  ). Within species, frequency 
distributions of   were similar between early spring and 
summer for I. opaca and M. cerifera (  
respectively) and differed for K. latifolia 

0.41,  0.18,P 
 0.001P  . 

In early spring for both I. opaca and M. cerifera, the 
largest proportion of leaves was angled horizontally be-
tween 0˚ - 15˚. The largest proportion of leaves of K. 
latifolia displayed a 30˚ - 45˚ leaf angle. Frequency dis-
tributions θ in summer varied among species (F2,297 = 
10.26, P < 0.001; Figure 1). Leaf angle distribution of I. 
opaca differed from both K. latifolia and M. cerifera (P 
= 0.016 < 0.001, respectively). In summer the largest 
proportion of leaves for all species occurred between 0 - 
15˚, though a similarly large proportion of leaves of M. 
cerifera occurred between 15˚ - 30˚ (Figure 1).  

Bifurcation ratios  bR  were also significantly differ- 
ent among species ( 2,27  Table 2). 
Mean Rb of M. cerifera was approximately one and a half 
times the value of I. opaca or K. latifolia, but values 
were not significantly different between I. opaca and M. 
cerifera. Leaf area differed among species (F2,72 = 63.0, P 
< 0.001) such that leaves of M. cerifera were smaller 
than leaves of I. opaca or K. latifolia (Table 2). Myrica 
cerifera also produced nearly twice as many leaves per 
primary branch as I. opaca or K. latifolia (F2,12 = 16.31, 
P < 0.001). Yet, when expressed as leaf area per primary 
branch, I. opaca produced the most , 
followed by K. latifolia 

4.31, 0.02;F P 

151 20.4 cm
 2121 0.4 cm , and M. cerif-

era  2100 0.8 cm
. 
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Leaf angles class (˚) 

Figure 1. Frequency distributions of leaf angles relative to 
horizontal of I. opaca, K. latifolia, and M. cerifera during early 
spring and summer. Distributions are divided into 15˚ classes. 
Mean leaf angle ±1 standard errors (SE) are presented for each 
species during a given season. 
 
Table 2. Anatomical and structural characteristics of I. opaca, 
K. latifolia, and M. cerifera. Significant differences (P < 0.05) 
among species for a given characteristic are represented by 
letters.Mean values are presented with ± one standard error 
(SE). 

Characteristic N I. opaca K. latifolia M. cerifera 

Leaf area (cm2) 25 16.7 ± 0.7a 15.7 ± 0.9a 6.5 ± 0.5b 

No. of leaves per 
1˚ branch 

15 9.1 ± 0.6a 7.7 ± 0.4a 15.3 ± 1.6b 

Bifurcation ratio 10 2.6 ± 0.2ab 2.4 ± 0.1a 4.0 ± 0.7b 

 
Chlorophyll a:b ratios varied among species during 

early spring  and summer (F2,27 
= 12.2, ; Figure 2). Ilex opaca had the largest 
chlorophyll a:b ratio, while there were no significant 
differences between K. latifolia and M. cerifera. All spe- 
cies showed significantly reduced chlorophyll a:b ratios 
in late spring and autumn compared to early spring and 
summer (Figure 2). Carotenoid content was highest in 
all species during early spring and summer (Figure 2). 
Carotenoid content of I. opaca was significantly lower 
than K. latifolia and M. cerifera during all seasons, and 
was similar between K. latifolia and M. cerifera. 

 2,27 12.8, 0.001F P 
0.001P 

3.2. Light Environment 

Significant variation in incident leaf PAR on frequency 
distributions among species occurred in both early spring 

 and summer  2,148 3.67, 0.028F P 

 

Figure 2. Seasonal chlorophyll a:b ratio and carotenoid content 
(mg·g−1) of I. opaca, K. latifolia, and M. cerifera. Intraspecific 
seasonal significant differences (P < 0.05) are represented by 
letters. Error bars represent ± 1 SE of the mean. 
 
( 2,147 7.01, 0.001F P  ; Figure 3). In early spring the 
distribution of leaf PAR was significantly lower in M. 
cerifera compared to K. latifolia, yet the leaf PAR of I. 
opaca did not differ from the other two species. In sum-
mer leaf PAR of I. opaca was significantly lower than K. 
latifolia, yet the leaf PAR of each was similar to M. 
cerifera. Throughout the growing season, leaves of each 
species were exposed to PAR ranging from <25 µmol· 
m−2·sec−1 to ≥1600 µmol·m−2·sec−1. 

3.3. Electron Transport Rate 

ETR varied both among species and seasonally (Fig-
ure 4). Throughout the growing season, both ETR and 
PE were similar for I. opaca and K. latifolia; yet, during 
all seasons except early spring, PE of M. cerifera was 
significantly higher than I. opaca and K. latifolia (Table 
3). During most of the growing season,the slope of PAR 
and ETR for M. cerifera was steeper than that of I. opaca 
or K. latifolia (Table 3). To further investigate this rela-
tionship, light levels were classified as “low,” “interme-
diate,” and “high” intensities. “Low” intensity was con-
sidered light values ranging from 0 - 400 μmol·m−2·sec−1, 
“intermediate” intensity was alues ranging from 600 – v    
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PAR (µmol·m−2·sec−1) 

Figure 3. Seasonal frequency distributions of leaf photosynthetically active radiation (PAR µmol·m−2·sec−1), 
obtained from the mini-PAM quantum sensor, for I. opaca, K. latifolia, and M. cerifera. Mean PAR ± 1 SE are 
presented for each species during a given season and mean values are represented by dotted lines. 

 
Table 3. Slopes of seasonal relationships between incident photosynthetically active radiation (PAR) ≤ 600 µmol·m−2·sec−1 and elec-
tron transport rate (ETR) for I. opaca (I), K. latifolia (K), and M. cerifera (M). Higher slopes correspond to greater photosynthetic 
efficiency (PE). ANCOVA model significance and P-values for pairwise contrasts are presented. ES = early spring; LS = late spring; 
S = summer; and A = autumn. 

 Slope Model Significance Contrasts 

Season I K M F P I vs K I vs M K vs M 

ES 0.07 0.06 0.09 36.44 <0.0001 0.21 0.52 0.40 

LS 0.11 0.12 0.21 97.27 <0.0001 0.93 <0.0001 0.0002 

S 0.08 0.10 0.19 30.23 <0.0001 0.66 0.0002 0.005 

A 0.06 0.09 0.23 33.76 <0.0001 0.68 <0.0001 <0.0001 

 
1000 μmol·m−2·sec−1 and “high” intensity was values 
ranging from 1200 - 1600 μmol·m−2·sec−1. The only dif-
ference between ETR of I. opaca and K. latifolia was 
observed at high light during autumn  0.001P 

P

. From 
late spring to autumn, ETR of M. cerifera was greater 
than I. opaca and K. latifolia at all light levels ( 0.05  
in low light, and  in intermediate and high 
light during this time period), with the largest differences 
occurring at intermediate and high light levels. Among 
species, highest observed ETR occurred for M. cerifera 
during summer.  

0.005P 

At all light levels, ETR of M. cerifera increased with 
increasing leaf temperature (e.g., at low light, 

 at intermediate light and  in high 
light,  in all cases; Figure 5). At high light, 
ETR of K. latifolia also increased linearly with increas-
ing leaf temperature ( ; Figure 5). At low and 
intermediate light levels, no significant relationship ex-
isted between leaf temperature and ETR for K. latifolia 

(  and , respec-
tively, data not shown). No relationship existed between 
temperature and ETR for I. opaca at all light levels 
(  and  in all cases, data not shown). 
Additionally, the slope of the relationship between tem-
perature and ETR was substantially steeper for M. cerif-
era than I. opaca or K. latifolia ( ; Figure 5).  

2 0.85r 
2 0.9r 2 0.89r 

P 
9

0.01

2 0.69r 

2 0.27, 0.29r P 

2 0.5r  P 

2 0.34, 0.23r P 

0.001P 

0.1

4. DISCUSSION 

Evergreen species are often noted for the ability to fix 
carbon throughout the year at the expense of low 
physiological activity and slow growth rates [9,13,16,19]. 
Yet, the range of physiological activity that broad-leaved 
evergreens display may be more extensive than previ-
ously recognized. We quantified a wide range of re-
sponses in parameters related to light capture and photo-
synthetic potential in understory evergreens in a decidu-
ous forest demonstrating that there are several strategies 
for sur- vival in the understory among broadleaf ever 
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Figure 4. Seasonal ETR of three evergreen understory shrub 
species at low (0 - 400 µmol·m−2·sec−1), intermediate (600 - 
1000 µmol·m−2·sec−1), and high (1200 - 1600 µmol·m−2·sec−1) 
light intensities. Significant differences (P < 0.05) among spe-
cies during a given month are represented by letters. A notation 
of ns indicates no significant differences were observed. Error 
ars represent ±1 SE of the mean. 

ifera) reflected 

b
 
Plant traits associated with light capture were not neces-
sarily related to photosynthetic capacity, but all species 
showed traits aimed at maximizing light capture rather 
than light avoidance. Seasonal variations in leaf chloro-
phyll a:b ratios and accessory pigments mirrored changes 
in light availability. Photosynthetic performance varied 
substantially throughout the growing season both intra- 
and interspecifically. In addition, physiology of thicket- 
forming species (K. latifolia and M. cer

potential for expansion in the understory. 

 

600 µmol·m−2·sec−1) for I. opaca, K. latifolia, and 
. cerifera. 

 

Leaf temperature (˚C) 

Figure 5. Relationship between leaf temperature (˚C), obtained 
from the mini-PAM during seasonal leaf chlorophyll fluores-
cence readings, and ETR at “high” light (i.e., PAR ranging 
from 1200 - 1
M

Maximizing light capture through horizontal leaf ori-
entation [48] was evident in all three species. Self-shad- 
ing may be prevented at the leaf level by effective foliage 
orientation, a mechanism which enhances daily whole- 
canopy radiation capture through optimal light intercept- 
tion earlier and later in the day when radiation is reduced 
[49-51]. The difference in leaf angle of K. latifolia be- 
tween early spring and summer corresponded to closure 
of the overstory canopy; more leaves were oriented 
horizontally. In summer, the majority of leaves were 
closer to the horizontal plane, suggesting maximimum 
light capture for all three species. Instantaneous meas-
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urements of incident PAR showed that during any given 
season, leaves of each species were exposed to PAR val-
ues ranging from full shade (< 25 µmol·m−2·sec−1) to 
nearly full sun (≥1600 µmol·m−2·sec−1), which also em-
phasizes the importance of foliage orientation for optimal 
lig

mum light capture more so than I. opaca or K. 
la

nding light 
av

hanges in temperature and to a lesser extent 
PA

(~30˚C - 38˚C) may facilitate increased assimilation rate.  

5.

y lead to adjustments in the distribution 
of

ht interception. 
Canopy structure is a key factor influencing light in-

terception by a forest stand with a given leaf area index 
(LAI) [52] and may influence branching strategies that 
optimize light capture [53-55]. Trees and shrubs growing 
in low light tend to exhibit lower bifurcation ratios and 
are associated with a nonrandom monolayer canopy, as 
compared to those exposed to high light and within a 
multilayered canopy [53,56]. Bifurcation ratio was high-
est for M. cerifera, yet similar to other values reported 
for forest understories [29,35,54]. Myrica cerifera also 
produced the most and smallest leaves per primary 
branch, minimizing self-shading [35]. Coupling these 
traits with consistent seasonal horizontal leaf angles 
suggests that M. cerifera displays architecture that pro-
motes maxi

tifolia.  
Changes in carotenoids, which contribute to either 

light collection or photoprotection [57], tracked seasonal 
light availability. All species showed increased carote-
noids when seasonal light availability was highest in 
early spring. Chlorophyll a:b ratio, which increases with 
available light [58-60], also mirrored patterns in seasonal 
light availability. Interestingly, instantaneous leaf-level 
light did not vary at midday throughout the seasons for K. 
latifolia and M. cerifera, though it was lower in late 
spring and summer than early spring or autumn for I. 
opaca. Leaf pigments such as carotenoids and chloro-
phyll a:b ratios provide metrics for understa

ailability that integrates seasonal variation. 
Photosynthetic capacity varied substantially through-

out the seasons for all species. ETRs observed during our 
study were proportional to previously reported photo-
synthetic rates for these, or closely related, species (Ta-
ble 1). Most striking were the increases in ETR from late 
spring to autumn for M. cerifera. In cooler months, ETR 
of M. cerifera was the same as I. opaca and K. latifolia, 
but from late spring to early fall, ETR of M. cerifera was 
more than double that of the sympatric evergreen species. 
An increase in leaf temperature enabled M. cerifera to 
exploit higher light levels during summer. Young (1992) 
observed that field-measured net CO2 assimilation rate of 
M. cerifera peaked around 30˚C, and at 40˚C, net photo-
synthesis remained within 50% of maximum values [34]. 
These results suggest that temperature is a key driver of 
seasonal changes in photosynthetic performance of M. 
cerifera. Muller et al. (2005) also found that within a 
given light regime (i.e., that of deciduous forest under- 
story, evergreen forest understory, or a gap in a mixed 

forest), the photosynthetic apparatus of Aucuba japonica, 
a temperate understory evergreen shrub, acclimated 
mainly to c

R [22]. 
There was wide interspecific variation in chlorophyll 

fluorescence emissions in response to variation in PAR. 
Steeper slopes in the relationship between PAR and ETR 
are indicative of greater PE for M. cerifera than for I. 
opaca or K. latifolia. Also, M. cerifera displayed similar 
ETR at intermediate (600 - 1000 µmol·m−2·sec−1) and 
high (1200 - 1600 µmol·m−2·sec−1) light levels through-
out the growing season. Net CO2 assimilation rate of M. 
cerifera approached an asymptote at intermediate light 
levels, also suggesting that photosynthetic performance 
of M. cerifera saturates at intermediate light intensity 
[34]. The aforementioned results indicate a potential in-
teraction between temperature and PAR. Myrica cerifera 
may be equally efficient at assimilating carbon at inter-
mediate light intensity as at high light intensity; however, 
high light (~1600 µmol·m−2·sec−1) and high temperature 

 CONCLUSION 

We found that expansive species were more respon-
sive to changes in seasonal leaf temperature. Myrica ce-
rifera and K. latifolia, which are both thicket-forming 
and show enhanced physiological response to rising 
temperature, are expected to show future range expan-
sion in response to warming climates. Conversely, I. 
opaca, which is slow-growing and shows a low respon-
siveness to changes in temperature, is likely to occur in a 
diminished range in the future [15]. While species physi-
ologically similar to I. opaca represent the vast majority 
of evergreens, studies of expanding species, including 
some that form thickets, have shown a dramatic increase 
in range on the order of decades [8,12]. Over the past 
century, southern Switzerland forest understories have 
shifted from an indigenous deciduous to an exotic broad- 
leaved shrub layer that appears to benefit from milder 
winter conditions [61]. From a physiological perspective, 
our study provides support for the hypothesis that cli-
mate change ma

 evergreens.  
The three broadleaf evergreen species of our study 

demonstrate a wide range of physiological activity. Ilex 
opaca characteristics and physiology exemplify a typical 
evergreen species [15]. It has relatively long-lived leaves, 
slow growth rates [62], and low ETR. Kalmia latifolia 
also exhibits characteristics and physiology represent- 
tative of a typical evergreen species; however, it also 
displays some traits and physiology that reflect expan-
sive potential. Kalmia latifolia, which has equally long- 
lived leaves as I. opaca, similar seasonal PE and ETR, 
adjusted leaf angle seasonally, and responded to changes 
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in ambient temperature, while I. opaca did not. In con- 
trast to I. opaca, M. cerifera departed from characteris-
tics generally associated with evergreenness and is 
physiologically adapted for a high light environment [34]. 
It has high growth rates [34,63], PE, ETR across light 
levels, and leaf nitrogen content [64]. Thus, multiple 
strategies related to photosynthetic performance and 
carbon assimilation occur among sympatric evergreen 
species in deciduous forest understories. Furthermore, 
our results indicate potential for changes in composition 
and expansion of the evergreen shrub layer by species 
that exhibit structural and physiological mechanism
advantageous for future rises in temperature. 
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