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ABSTRACT 

The present work proposes a methodological approach for modeling decisions regarding energy reduction in an elevator. 
This is achieved with the integration of existing as well as acquired knowledge, in a decision module implemented in 
the electronics of an elevator. So far, elevators do not exploit information regarding their recent usage. In the developed 
system decisions are driven based on information arising from monitoring the use of the elevator. Monitoring provides 
various records of usage which consequently are used to predict elevator’s future usage and to adapt accordingly its 
functioning. Till now, there are only elevators that encompass in their electronics algorithms with if then rules in order 
to control elevator’s functioning. However, these if then rules are based only on good practice knowledge of similar 
elevators installed in similar buildings. Even this knowledge which unavoidably is associated with uncertainty is not 
encoded in a mathematically consisted way in the algorithms. The design, the implementation and a first pilot evalua-
tion study of an elevator’s intelligent decision module are presented. The study concludes that the presented application 
sufficiently reduces energy consumption through properly controlled functioning. 
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1. Introduction 

A large number of techniques in the field of artificial 
intelligence used to represent knowledge and/or des- 
cribe decision problems: production rules, semantic nets, 
Bayesian networks, frameworks, scripts, statements, logic, 
fuzzy logic and possibility theory, causal networks, among 
others. They have been shown to be effective especially 
in domain dependent decision tasks. The choice of a 
particular technique is based on two main factors: the 
nature of the application and the skills of the user/de- 
signer.  

The present work describes a specific technological 
application of bayesian networks. The bayesian networks 
that were implemented, incorporated certain and uncer-
tain knowledge as well as fuzzy rules in order to guide 
the proper functioning of an elevator with respect to en-
ergy consumption minimization. bayesian networks are 
well-known and efficient mathematical models based on 
subjective probability theory to model knowledge and 

making inference. Moreover, probabilistic modeling 
among these observed parameters of interest are central 
to science. In order to algorithmically consider causal 
probabilistic relations, the relations must be placed into a 
representation that supports manipulation. 

Fuzzy rules were used because fuzzy logic is very 
close to the expert’s reasoning. Its utilization became 
very popular in attempting to resolve the problems of 
imprecision and uncertainty. It is easier for engineers to 
express their knowledge using fuzzy If-Then rules in-
stead of using conditional probabilities. Thus, experts can 
express their knowledge through a number of fuzzy rules 
to describe the observations and their impact into the 
problem. 

A common problematic feature of these bayesian mod-
els is that a very detailed amount of information is used 
to fill all the involved conditional probability tables 
(CPTs). Our approach suggests a simple working solu-
tion for modeling this particular decision problem of en-
ergy saving. This approach determines the CPTs taking 
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probabilities from the measured frequencies of the last 
week usage of the elevator. In addition the proposed so-
lution suggests a particular novel way for assigning fuzzy 
linguistic values, extracted from rules, in order to fill 
conditional probability tables in these BBNs. 

Based on searches of the relevant literature, no previ-
ous work was found suggesting a bayesian decision sys-
tem for driving the functioning of an elevator. However, 
there are some interesting applications of intelligent con-
trol units in elevators [1-6]. 

The paper is organized into the following sections: the 
second section presents a description on Bayesian net-
works influence diagrams and Fuzzy rules. The third 
section provides a description of the designed and de-
veloped decision networks. The fourth section describes 
the first evaluation of the system. Finally, the fifth sec-
tion discusses the results of the developed tool, outlining 
is also the main conclusions of the study. 

2. Bayesian Networks and Fuzzy Logic 

The imprecise and insufficient information that always 
appears in technology cannot be incorporated in models 
using the framework of “if-then” rules. However human 
experts are able to reach decisions with a high level of 
validity even if the input data are almost always uncer-
tain. This fact led to the development of mathematical 
models capable to manipulate pieces of information that 
are associated with an uncertainty value, named Bayesian 
networks. 

Early developed rule based systems were consisted of 
a knowledge base and an inference system. The knowl-
edge base is a set of rules of the form “If A (with cer-
tainty 1) then B (with certainty 1)”. Implementing an 
inference system it is possible to combine these rules and 
other observations in order to finally reach a decision. 
Although this framework can tackle a considerable 
amount of adaptation functioning it cannot be general-
ized in order to include cases where the condition (A) 
or/and the act (B) is subject to an uncertainty level. 

The construction of a consistent mathematical frame-
work that is allowed to incorporate uncertain pieces of 
information into a plan of reasoning exists and is the so 
called belief network or Bayesian network or causal 
graph [7-11]. It is a graphical representation of a problem 
domain, which consists of informational nodes (pieces of 
information) that are known with certainty or with an 
uncertainty described by a subjective probability. Sub-
jective probabilities express measures of a person’s belief, 
given a certain knowledge background carried by that 
person. This notion of probability differs from the most 
used classical probability. The subjective or Bayesian 
probabilities can describe a value of belief to unique 
events that are not repeatable. Thus, a subjective prob-

ability ,P O X C
O

 describes the subjective estimate 
(belief) of certainty of an event , given as known that 
the event X  occurred and given a certain background 
knowledge . C

An important property of this framework is the fact 
that the direction of probabilistic inference can be re-
versed. This is allowed due to the Bayes’ theorem. Sup-
pose that we know the belief of the influence of a hy-
pothesis H  on the observable evidence , E ,P E H C

E

. 
Then Bayes’ theorem allows us to compute the belief on 
the influence of  on H  (the so called posterior pro- 
bability) as a function of the prior probability  P H C . 

     
 
,

,
P E H C P H C

P H E C
P E C

        (1) 

It is now possible, through this theorem, for domain 
experts to provide estimates of subjective probabilities in 
the causal direction and calculates beliefs in the back-
ward the so called diagnostic direction i.e. learning the 
belief in a hypothesis given the relevant evidences. In 
real life problems we face situations where there are rela-
tionships among a large number of variables. A Bayesian 
network is a representation of such cases. 

Formally, a Bayesian network is a graph with the fol-
lowing elements and properties 1) A set of variables 
(shown as nodes in the diagram). Each variable has a set 
of mutually exclusive states; 2) A set of directed edges 
between these variables; 3) The variables and the edges 
form a directed acyclic graph and 4) To each node-vari- 
able there is attached a conditional probability that de-
pends on the parents of the node. 

Thus, the design of a Bayesian network is required to 
draw arcs from cause variables to their immediate effects. 
In this way causal relationships reveal the conditional 
dependencies and independencies. After constructing the 
network based on our prior knowledge and data, appro-
priate algorithms [7,12-14] exist, in order to determine 
various probabilities from the network. Probabilistic in-
ferences can be produced with the estimation of a certain 
probability of interest from our model. 

An additional issue is the combination of Utility the-
ory and Bayesian graph theory. This synthesis formulates 
Decision theory [15-18]. Utility theory provides the 
axiomatic framework for consistency among preferences 
and decisions. The axioms introduce the concept of a 
lottery which is an uncertain situation with various out-
comes assigned with a probability of occurrence. Then a 
set of rules define which outcome is preferred from 
which lottery. Accepting these axioms we can always 
define a utility function. A utility function is a scalar that 
assigns a cardinal scale to each outcome and decision 
indicating its desirability. The preferred set of decisions 
is the one that maximizes the expected utility given, with 
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known uncertainty, the various relevant parameters. 
For a decision problem where there is a set of mutually 

exclusive decision states i  with  and one 
determining variable V  with possible states 

D 1, ,i n 
jV  with 

 (an hypothesis that drives the decision). 
Further, we are interested in cases with non intervening 
decision states or in other words decisions that their 
states does not have any correlation with 

1,j  ,m

 P H

D

. The 
determining variable V  is part of Bayesian network, 
and has various parents and child nodes in general. 

Constructing an influence network [7] or otherwise 
called decision network (a Bayesian network with utili-
ties and decision/action nodes) means finally to set the 
values of a utility table that determine for each action 

i  and each state jV
 ,V

   ,j j jD V P V

 

 a number that expresses the util-
ity i i  that we gain. Then the expected utility for 
taking actions is 

U D

 i
j

EU D U           (2) 

The preferred decision is associated with the action 
that gives the maximal expected utility M D

 max i
i

. 

 M D  EU D

N kD
1, ,k N 

 
     

N

k k kV P V

w

  2

              (3) 

For cases, we have  decision/action variables  
with determining variables  where , 
and we would like to drive a decision based on all the 
combinations of actions, then it is straightforward to 
generalize for a new expected utility as follows 

 kV

    

 
 

 

1 2, , ,

,
k

j

kk
k V

EU D D D

w U D 


        (4) 

where  k  are the weights that reflect the significance 
of its action variable with respect to its other. It is impor-
tant to note that we have treated the various combinations 
of action states        1 2 1, , , N ND D 

N

i j lD D D D   
belonging to different action variables as states of one 
action variable which is the Cartesian product of the  
decision/action variables. 

Here we assume that in the previous decision model-
ing the actions have no impact on the variables in the 
networks which affect the belief on the hypothesis nodes. 
In other words we described the framework for sets of 
non-intervening actions. 

Finally, the various nodes in an influence diagram, can 
be deterministic informational nodes, statistical results or 
beliefs given as probability distributions, utilities and 
action (or otherwise called decision) nodes. Decision 
nodes represent possible actions, informational nodes 
represent pieces of certain or uncertain relevant knowl-
edge while utility nodes encapsulate designer’s prefer-
ences, goals etc. Such a diagram then represents a deci-

sion basis. 
For the problem of making technological decisions, 

engineers are usually thinking in order to reach a deci-
sion or suggest a solution in a form of if-then rule, i.e. 
Furthermore, a rule-base is more transparent and under-
standable for engineers. Fuzzy logic is based on fuzzy 
if-then rules which have the general form “IF X is A 
THEN Y is B,” where A and B are fuzzy sets. A fuzzy 
set is a set containing elements that have varying degrees 
of membership in the set. Elements in a fuzzy set can 
also be members of other fuzzy set on the same universe 
[19,20], because their membership need not be complete. 

Following a knowledge representation viewpoint, a 
fuzzy if-then rule is a scheme for capturing knowledge 
that involves imprecision. A key property of reasoning 
using these rules is its partial matching capability, which 
enables an inference to be made from a fuzzy rule even 
when the rule’s condition is only partially satisfied. 

Randomness describes the uncertainty in the occur-
rence of an event while fuzziness describes the ambiguity 
of an event. In classical sets there is no uncertainty, 
hence they have crisp boundaries, but in the case of a 
fuzzy set, since uncertainty occurs, the boundaries may 
be ambiguously specified. The membership function for 
a set maps each element of the set to a membership value 
between 0 and 1 and uniquely describes that set. The 
values 0 and 1 describe “not belonging to” and “belong-
ing to” a conventional set respectively; values in between 
represent “fuzziness.” The determination of the mem-
bership function is subjective to varying degrees de-
pending on the situation. It is determined on an individ-
ual’s perception of the data in question and does not de-
pend on randomness. The latter is a significant point and 
distinguishes fuzzy set theory from probability theory. 
The membership functions that constitute the fuzzy sets 
which describe the inference of the fuzzy rules are de-
picted in Equation (5). A numerical value of each fuzzy 
set is produced after defuzzification with the Center of 
Area method. The produced numerical value is used to 
fill the probabilities in CPTs. 

3. Designing the Bayesian Network 

Some common critics about applied Bayesian networks 
concern the necessity of filling correctly a lot of condi-
tional probability tables. On the other hand, the appear-
ance of all these probability tables make this decision 
tool extremely precise, expressive and mathematically 
consisted. It makes also profound emphatically to the 
decision builder and/or the interviewed expert how many 
pieces of information are involved for precise decision 
making. This set of probabilities by no means can be 
disregarded unwisely for the sake of simplicity or a fault 
decision will be driven. On the other hand, experts com-
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plained that the human brain does not work in this way 
and even scientists (not experienced in “Bayesian lan-
guage”) cannot easily report safely all these numbers in 
order to describe a domain knowledge. Thus, it is vital 
for the construction of a proper decision network, a cor-
rect set of all involved probabilities. This is a task that 
should be carried from the designer of the bayesian net-
work who usually is a person familiar with the bayesian 
mathematical framework. Engineers should be allowed to 
report their knowledge in the form of fuzzy if then rules, 
thus avoiding misunderstandings with the bayesian rea-
soning. In the present work engineers reported relevant 
knowledge in the form of if then rules. A practical solu-
tion of this problem is presented in this work for the de-
cision model in study. 

The decisions that our decision module has to take are 
two. First if the elevator after its last use will be on a full 
activation mode (FM), in a standby mode (SM) or in an 
off mode (OM). Second the engine should decide in 
which of the n-th floors the elevator cabinet should rest 
after its last usage. Both these decisions will be driven 
according the recorded knowledge of the last week’s 
usage. More specifically both these decision are affected 
by the following informational deterministic and decision 
nodes. 
 Date. 
 Twenty four times seven times 24 7 n   infor-

mational nodes that provide the frequency of calls 
(number of calls of ith floor over total calls of all n 
floors at the same timezone) from every one of the 
n-th floors, each for every time zone of each one of 
the seven days. 

 n

 

 Node expressing the reasoning of common practice 
fuzzy rule that refers to the preference of the floor 
chosen to rest, for either a specific season or day or 
timezone (this helps to make better prediction in cases 
such as the end of the two weeks Christmas vacation 
period and the beginning of a full working week). 

 Subjective probability expressing the preference of 
the medium floors as far as the energy consumption is 
concerned. 

 Twenty four times seven (24 × 7) informational nodes 
that provide the normalized duration of idle use (idle 
time length over the time duration of the time zone = 
1 hour) each for every time zone of each one of the 
seven days. 

 Node expressing the reasoning of common practice 
fuzzy rule that refers to the preference of the type of 
functioning mode (FM or SM or OM) for either a spe-
cific season or day or timezone (this helps to make 
better prediction in cases such as the end of the two 
weeks Christmas vacation period and the beginning 
of a full working week). 

 Subjective probability expressing the preference of 

the FM status compared to SM and SM compared to 
OM mode as far as the user annoyance is concerned 
(this information makes a difference in case of almost 
equal balance among two modes). 

 One utility comprising the overall utility driven by 
historic data. Utility values are associated on each of 
the three states the elevator will have to choose: a full 
activation mode (FM), in a standby mode (SM) or in 
an off mode (OM). 

 One utility comprising the utility driven by the pref-
erence of each of the three states the elevator: a full 
activation mode (FM), in a standby mode (SM) or in 
an off mode (OM). 

 One central multi attribute utility comprising the 
overall utility of each of the three states the elevator: 
a full activation mode (FM), in a standby mode (SM) 
or in an off mode (OM). This utility is driven be the 
positive effect of the historic data utility and the 
negative effect of the preference utility. 

 Decision node concerning which of the three states 
the elevator will choose to rest: a full activation mode 
(FM), in a standby mode (SM) or in an off mode 
(OM). 

Note that in the implemented system we have defined 
24 timezones per day and seven days per week. The his-
tory records concern last 7 days period data. 

In Figure 1, a small simplified part (it is not possible 
to present the full bayesian network due to its size) of the 
real constructed bayesian network is presented. Note that 
the preference utility expresses the fact that the FM state 
is preferable for users contrary to the suggestion of the 
historic data that choose the most economic mode as far 
as energy consumption is concerned. The multiattribute 
utility realizes the trade off of the two utilities according 
to the designer’s tuning. 

The fuzzy rules that are integrated into the bayesian 
network are of the general form: 

“If the season is A and the day is B and the time zone 
is C then the floor N (much less, less, more, much more) 
preferable”. 

“If the season is A and the day is B and the time zone 
is C then the mode (FM or SM or OM) is (much less, less, 
equally, more, much more) preferable”. 

In order to translate these fuzzy rules into probabilities 
through the defuzzification process we have to define 
first the membership function in use. 

1
1

1 1

1
1

1 1

,

,

n
n n

n n n n
n

n
n n

n n n n

xx
x x x

x x x x
B
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x x x

x x x x






 




 

      
   
  

1,2, ,5n

      (5) 

where    with 6.nx n  In Equation (5), x 
akes values from 0 to 1 and B1 = v.v.weak, B2 = v.weak,  t   
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Figure 1. Simplified influence diagram for the decision concerning functioning mode. 
 

Also B3 = weak, B4 = weak-med, B5 = medium, B6 = 
med-high, B7 = high, B8 = v.high, B9 = v.v.high. Central 
values are given in Equation (6). 

 
 

 

1

2
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4

5
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1,

n
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B
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B

B




 



    







much less

less

equal

more

much more








     (6) 

 

Based now, on the defined membership functions, lin-
guistic values contained in the rules are transferred to 
numerical values in order to fill the conditional probabil-
ity tables, through the defuzzification approach of fuzzy 
logic. In order to show how the probability tables for 
BBNs are developed using the above type of if-then rules, 
a generic approach is provided. Let’s consider the fol-
lowing rule for the assessment of preferability to SM 
mode during a timezone: “If the day is X and the time 
zone is Y then the mode (SM) is (more) preferable”. This 
rule suggests information capable to provide probabilities 
for the conditional probability table (CPT) between the 
preferability of mode SM and the observables X, Y. 

   4 , t
,

1 3, t
P SM X Y

 


imezone ;

imezone .

B Y

Y

 


        (7) 

4

4
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1
, timzone ,mode ;

2
1

, timzone ,mode ;
2

1 3, timzone ,mode or mode .

P X Y

B
Y OM

B
Y FM

Y FM OM








 




 


  



(8) 

These probabilities Equations (7) and (8) concern only 
day X in the simple case that there are no other rules for 
this day. 

Since all informational nodes affect the final decision 
naturally a first approach is to connect all informational 
nodes to a central node representing a total utility. How-
ever, this leads to a huge and quite confusing probability 
table. For example, in a case of entering values for a new 
rule, it would be necessary to change the values for the 
already entered rules. Furthermore, a table containing 
values gained from more than two or three nodes is 
highly inflexible. It’s not possible to distinguish the val-
ues between the different nodes. Therefore intermediate 
deterministic nodes are necessary for a solvable network 
topology, see Figure 1. 

4. Evaluation 

Genie tool has provided the C code which consequently 
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has been integrated for research purposes in the electron-
ics of the control unit see Figure 2. 

4.1. The VDI Directive 

The reduction of energy consumption in modern lifts has 
become a critical parameter for their commercial com-
petitiveness, especially in the EU market. For this reason, 
all important lift developing companies are making Re-
search and Development efforts through the introduction 
of improved driving techniques (in terms of the electro-
mechanical part) as well as of “smart” energy manage-
ment methods (in cases of multiple installed lifts at the 
same building). 

However, the determination of the exact energy con-
sumption for a lift is a rather complicated issue, taking 
into account their stochastic use and the variety of the 
load and of the total trip—even on an annual basis. 
Hence, for the ensuring of the healthy competitiveness in 
the lift market specific and common energy consumption 
measuring rules have been set. To this direction VDI 
4707 is a commonly accepted guideline [21] which de-
scribes a transparent method for the assessment and clas-
sification of the power requirement and consumption of 
lifts. According to VDI 4707 the lift consumption can be 
distinguished to the following categories: A. Travel De-
mand, is the total energy consumption of the lift during 
trips at specified trip cycles with a defined load. Travel 
demand is expressed as energy consumption per traveled 
distance multiplied by load weight, Wh/(m·kg). B. 
Standby Demand, is the total energy consumption of the 
lift in standby mode. Relevant studies in this issue 
[22-25], have highlighted that the standby mode con-
sumption is a very important part of the annual energy 
consumption, which may reach (in some cases of rarely 
used lifts) even the 80 percent. Standby demand is ex-
pressed as power consumption, (W). 

Today commercial lifts are adopting energy saving 
methods in order to be included in the higher possible 
energy category (according to VDI 4707). These energy 
saving techniques are aiming to the reduction of energy  

consumption in terms of travel demand as well as of 
standby demand. In more details, travel demand is re-
duced by using regenerative breaking through AC/DC/ 
AC power electronic drives as Figure 3. Presents [26,27]. 
For the standby mode energy saving is achieved by 
switching off lighting and inverter electronic circuits. 
Additionally, some modern lifts use more sophisticated 
software in order to cut down standby consumption; 
these lifts are programmed in such a way, so as to power 
off during intervals that are not used. The main difficulty 
in this type of lift control is that after powering off a 
critical time interval is necessary until the lift comes 
again in full operation (reset of electronic circuits, self 
test, etc). Moreover, this time interval protects the in-
verter from frequent restarts which would jeopardize its 
health status (mainly due to the start up overcurrents). 
Nevertheless, this sophisticated operation is not adaptive, 
but it is standard for each building category. In the pre-
sent work the option of implementing an adaptive con-
troller for lifts is investigated. The proposed control al-
gorithm modifies the standby and power off modes time 
intervals according to the lift use—as daily as seasonal— 
achieving so lower annual energy consumption. Fur-
thermore, the proposed algorithm aims also at the travel 

 

 

Figure 2. Control unit. 
 

Active Rectifier-Regenerative Breaking Inverter (variable frequency driver)

3 phase induction 
motor 

 

DC link
capacitor Rotating axe

AC line 
(3 phase) 

 

Figure 3. AC/DC/AC inverter drive schematic with regenerative breaking. 
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demand reduction through the decrease of the annual lift 
traveled distance. 

The proposed algorithm has been tested to the follow-
ing elevator type—derived by VDI 4707 sample calcula-
tion: 
 Type of building: Residential block/ doctor’s practice. 
 Nominal load: 320 kg. 
 Speed: 0.63 m/s. 
 Stops: 5. 
 Vertical rise: 11.2 m. 
 Trips per day: approximately 100. 
 Travel distance: 1,134 m per day. 
 Travel demand: 8.93 mWh/(m·kg). 
 Standby demand: 200 W. 
 Usage category (according to VDI 4707): category 1. 
 Travel energy demand per day: 8.93 mWh/(m·kg) 

1134 m 320 kg = 3.24 kWh. 
 Standby energy demand per day: 110 W 23 h = 2.59 

kWh. 
 Total energy demand per day: 3.24 kWh + 2.59 kWh 

= 5.82 kWh. 
 • Specific energy demand: 5.82 kWh/(1134 m 320 kg) 

= 16.05 mWh/(m·kg). 
 Energy efficiency class (according to VDI 4707 cal-

culation): class F. 

4.2. Test Procedure/Results 

Kleemann Hellas was founded in 1983, based on the 
know-how and licence of the german company Klee-
mann HUBTECHNIK GmbH. The head office of the 
company is based in the Industrial Area of Kilkis in 
Northern Greece. Kleemann company’s activities con-
cern both the manufacturing and trading of Complete Lift 
Systems. Kleemann is enlisted among the largest compa-
nies of the lift industry in the European and international 
market (more than 12,000 new systems or three percent 
of the world’s new lift units annually). 

Tests were performed for a Kleeman elevator carrying 
the developed research decision support system on its 
electronic control unit. The evaluation took place in the 
Tower for Experiments based on the headquarters of the 
company. This tower belongs to the main industrial 
campus in Kilkis city, Macedonia, Greece, see Figure 4. 
The test procedure comprised two main scenarios: 1) A 
heavy load scenario (meaning 100 trips/day) with two 
peaks morning (08:00 - 10:00) and afternoon (16:00 - 
18:00) and 2) An average use scenario (meaning 50 
trips/day and less dense peaks). Each scenario was fol-
lowed for one week. The final outcome of this pilot study 
evaluation was: A fourteen percent energy saving, for the 
heavy load scenario, was achieved compared to the energy 
consumption of the same elevator with a conventional 
control unit. In addition, a five percent energy saving, for 

 

Figure 4. Kleemann tower for elevators testing. 
 
the average load scenario, was achieved compared to the 
energy consumption of the same elevator with a conven-
tional control unit. 

These first results together with an analytic list of all 
decisions that have been performed by the decision sys-
tem will be the input for improving the whole system 
during the second evaluation run. 

5. Discussion 

Engineers as experts have reported certain and uncertain 
scientific knowledge in the form of fuzzy rules. The de-
cision system suggests actions based on their reported 
fuzzy rules and the frequencies that the control unit 
evaluates from the last week usage of the elevator. The 
decision support system encapsulates two specific topol-
ogy bayesian networks which were designed for the two 
main decisions that ensure energy saving. 

After construction of Bayesian network using the Ge-
nie tool, a number of test cases have been examined in 
order to set evidences to the network and illustrate its 
decision making capabilities. Specifically, one hundred 
fifty (150) trips each associated with the relevant deci-
sion making actions were performed. The decision mak-
ing capabilities of the system were tested and they will 
guide the reforming of the whole system in order to 
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eliminate false responses. However even in this first pilot 
study a non negligible energy saving was achieved. 

The developed system gives a front-end decision sys-
tem about the functioning of elevators with the aim to 
save energy. Of course, more trials and real tests are 
needed for a large number of cases in order to confirm or 
improve the system. Future work will be directed to-
wards this direction. The aim of this research paper was 
two fold. First, a new techniques for integrating into BNs 
fuzzy if-then rules was proposed and second an efficient 
modeling and reasoning concerning the integration of all 
informational nodes into the network with a specific 
workable and solvable topology was presented. 

This approach for modeling decisions has several 
advantages: 1) a graphical way of encoding the informa-
tion is used; 2) certain and uncertain pieces of knowledge 
can be consistently incorporated and interweaved; 3) 
nodes in these diagrams are able to represent information 
coming from engineers/experts and historic data; 4) the 
system can be adjusted to different decision policies and 
strategies; 5) beliefs associated with some of the infor-
mational nodes can be altered dynamically and a new 
decision based on the new evidences can be driven; 6) 
decisions are not hard-coded into the system, this means 
that the influence diagram comprises a high level de-
scription of the decision reasoning that could be easily 
modified, customized and re-used; and, 7) if during the 
intermediate evaluation of the application, new knowl-
edge (rules) has to be built in, the designer either simply 
corrects the various conditional probabilities or more 
alters the topology of the network and the probabilities. 
Some difficulties and disadvantages are: 1) the designer 
or developer needs to understand the Bayesian reasoning; 
2) the designer or developer needs to test the network for 
sensitivity in order to check if the changes of the various 
probabilities have the correct and desired impact on the 
utilities driven decision. However, the latter is not a dif-
ficult task since for most of the cases only a small part of 
the network is activated. 

Novel ideas that have been materialized in the present 
work are: 1) Experts/engineers have not been involved 
for the probability assignments but only for reporting 
fuzzy rules; 2) Fuzzy rules have been translated to prob-
abilities according to a specific technique; 3) Historic 
data concerning the last week usage of elevator alter non 
trivially the functioning of the elevator; 4) There is an 
intermediate layer of utilities that transfer their values to 
a central utility node 

A particular set of cases were studied as a pilot pre-
liminary study. In upcoming work, more tests and trials 
have to be made for model validation. Future work will 
be focused to analyze and implement this approach in 
other type of elevators too as well as on a different con-
text, i.e. large buildings with more than one elevator. 
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