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ABSTRACT

In this study, the performance of chirplet signal decomposition (CSD) and empirical mode decomposition (EMD) cou-
pled with Hilbert spectrum have been evaluated and compared for ultrasonic imaging applications. Numerical and ex-
perimental results indicate that both the EMD and CSD are able to decompose sparsely distributed chirplets from noise.
In case of signals consisting of multiple interfering chirplets, the CSD algorithm, based on successive search for esti-
mating optimal chirplet parameters, outperforms the EMD algorithm which estimates a series of intrinsic mode func-
tions (IMFs). In particular, we have utilized the EMD as a signal conditioning method for Hilbert time-frequency rep-
resentation in order to estimate the arrival time and center frequency of chirplets in order to quantify the ultrasonic sig-
nals. Experimental results clearly exhibit that the combined EMD and CSD is an effective processing tools to analyze
ultrasonic signals for target detection and pattern recognition.

Keywords: Ultrasound; Hilbert Time-Frequency Representation; Empirical Mode Decomposition; Chirplet Signal
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1. Introduction

Different time-frequency analysis methods such as short-
time Fourier transform (STFT), Wigner-Ville distribution
(WVD), and wavelet transform (WT) have been utilized
to examine nonstationary signals often encountered in
ultrasonic imaging applications [1-4]. For example, Ber-
riman et al., investigated ultrasonic non-destructive test-
ing of concrete using STFT and WVD [1]. Similarly,
Kuang et al., used STFT and wavelet packet filters for
frequency measurement in a Doppler tracking system [2].
Furthermore, time-frequency analysis has been shown to
extract critical frequency-diverse information which can
be used to discriminate clutter and target echoes in ultra-
sonic detection applications [3]. However, it remains a
very significant problem to obtain a general transform
basis which is adaptive to nonstationary and interfering
narrowband, broadband and dispersive echoes corrupted
by noise. Lately, as an alternative to classical time-fre-
quency distributions, an empirical mode decomposition
(EMD) technique [4] has been used for signal analysis.
EMD splits the signal into a series of intrinsic mode
functions (IMF) by using local signal attributes such as
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the location of the extreme points and zero crossings.
Estimated IMFs are oscillatory and adaptive to the char-
acteristics of the signal. Hence, the time-frequency dis-
tribution of the signal can be obtained from the Hilbert
spectrum of estimated IMFs [5,6].

The EMD has been explored in the applications of
medical imaging and diagnostics [7,8], time-frequency
analysis of encountered waves [9], underwater acoustic
feature extraction [10], image watermarking [11], power
systems [12], vibration analysis for structural health
monitoring [13], audio source separation [14] and ultra-
sonic nondestructive evaluation [15]. Although the algo-
rithm is successfully utilized in diverse application areas,
it lacks a well-established theoretical analysis [16-18].
Therefore, any new application of EMD requires rigor-
ous verification and evaluation of the method. In this
paper, the EMD algorithm is introduced to characterize
ultrasonic backscattered echoes which are often intrinsi-
cally oscillatory and nonstationary. Furthermore, the per-
formance of EMD has been compared to the estimation
results obtained from chirplet signal decomposition algo-
rithm [19-22]. Chirplet is a type of signal frequently en-
countered in ultrasonic applications. The six parameters
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of a chirplet [19], i.e., time-of-arrival, center frequency,
amplitude, bandwidth factor, chirp rate and phase, can be
used to represent a broad range of ultrasonic echo shapes
including narrowband, broadband and dispersive echoes.
In this study, the estimated echo parameters are used to
substantiate the sensitivity of EMD to different type of
echoes in presence of noise.

2. Empirical Mode Decomposition of
Ultrasonic Chirp Echoes

The objective of the EMD is to decompose a highly con-
voluted, multi-component ultrasonic signal, s(t) , into N
series of IMFs.

N
s(1) =2 IMF, (1)+r(1) (1)
=
Here r(t) denotes the residue of signal reconstruc-
tion; and IMF, () denotes the kth IMF function. The
process to obtain these IMFs is an iterative decomposi-
tion process [5]. Figure 1 shows the flowchart of EMD
process (known as sifting process) to estimate IMFs. The
steps involved in the sifting process of signal s(t) are:
1) Prepare signal x(t) for sifting process, where x(¢) =
s(?), set the iteration index j = 1;
2) Find all the local maxima and local minima of x(t) ;
3) Interpolate the local maxima to form the maxima
envelop, A, (¢). Similarly, the minima envelop,
hy (), is obtained. Hence, the mean sequence,
m(t), can be obtained from 4, (¢) and A (7);

(1) = o (t);hmm (1)

4) Subtract the mean envelop, m(t), from the signal,
x(r) such that h(t)=x(t)—m(z). Check if h(r)
is an IMF (see below for IMF conditions); If A(¢)
is an IMF, go to Step 5; otherwise, go to Step 2 and
update x(¢)=h(r), repeat Steps 2-4.

5) Save the IMF result: IMF,(t)=h(t), update the
iteration index j= j+1, subtract the estimated IMFs
from signal s(7) to obtain residue

J
x(t)=s(t)- D IMF, (¢) 2)
k=1
6) Check the residue x(¢) from Step 5. If x(¢) is a
constant or monotonic function, save all IMFs and
complete the sifting process; otherwise, go to Step 2.
Steps 1 through 6 allow the sifting process to isolate
time-varying signal features and obtain the intrinsic os-
cillation.
IMF Conditions:
To be an IMF, the signal must satisfy the following
conditions:
1) |Num —Num

extreme ZCero-crossing
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Figure 1. Flowchart of empirical mode decomposition esti-
mation process.

where Num,. .. is the number of local extreme points
(includes local maxima and local minima), and

NUM, osing 18 the number of cross-zero points.
h .
2) (1) =[Pt hen 1) (’);hmm W,

where k() is the envelope interpolated by all local
maxima, h, (1) is the envelope interpolated by all
local minima, m(¢) is the mean sequence of local ma-
xima and minima envelops, and ¢ is a sufficiently
small positive value close to zero.

In practice, the signal segment and noise may override
the realization of condition 1) and it is also problematic
to get an absolute-zero mean sequence (g = 0) for the
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condition 2) of IMF. Therefore, different methods have
been used as an alternate to conditions 1) and 2) and to
stop the estimation searching process of IMF [6]. One
method is to check if the mean square error of //(7)
between two successive iterations is smaller than a pre-
defined value. A practical alternative method is to check
if h(t) satisfies the condition 1) of IMF for a prede-
fined number of successive iterations. In this study, a
predefined number of iterations are used to compensate
for the condition 2) of IMF.

To introduce the EMD process into ultrasonic pulse-
echo system, it is useful to analyze the EMD effect on
ultrasonic chirp echoes, a type of signal often encoun-
tered in ultrasonic backscattered signal accounting for
narrow-band, broad-band, and dispersive echoes.

An ultrasonic chirp echo can be modeled as:

fo(1)=Pexp(-a (1-7)’)

©)
xcos(2nf(,(t—r)+0+a2 (t—z')z)
where ©=[r f. B @ a, 6] denotes the pa-
rameter vector, 7 is the time-of-arrival, f, is the cen-
ter frequency, S is the amplitude, ¢; is the band-
width factor, «, is the chirp-rate, and & is the phase.
Similarly, a signal consisting of multiple chirp echoes
can be simulated and decomposed using EMD. The
simulated signal, s (t) , can be written as follows

s(t)=2fo, (t)+n(1) )
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where f, (¢) denotes the jth chirp echo, n(r) denotes a
noise.

In fact, the Gaussian-envelop chirplet echo, f (I),
satisfies IMF conditions 1 and 2. The ultrasonic chirplet
echo can be viewed, for all practical purposes, as a
band-limited and time-limited function. Signals consist-
ing of multiple partially overlapped chirplets require
multiple IMFs and the number of IMFs not only depends
on the number of the echoes, but also depends on the
degree of overlap between echoes. Figure 2 shows the
IMF results of two overlapped chirplets with the follow-
ing parameters:

© =[25us 7MHz 1 25MHZ’ 20MHz’ Orad]

and

®,=[22ps SMHz 1 20MHZ" -20MHz’ Irad |

The first IMF reveals the non-overlapping portion of
both chirplets and it takes one additional IMF with low
frequency components to compensate for the asymmetric
portion representing the overlapped. It is a non-paramet-
ric process to generate IMFs. One may conclude IMFs
tracks the oscillation within the signal, but it cannot char-
acterize the degree of overlap among multiple echoes.
Consequently, it cannot be used with certainty to esti-
mate chirplet parameters. The EMD tracks the irregular-
ity in signal instead of decomposing it into individual
chirplets. The Fourier spectrum of these IMFs (see Fig-
ure 2) shows that IMFs track different frequency bands
associated with time-of-arrival of echoes.
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Figure 2. EMD result of two overlapping chirplet echoes (left column: from top to bottom: simulated signal, IMF #1, IMF #2,
and residue; right column: Fourier spectrum of the corresponding signals in left column).
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The EMD is similar to a filter-bank process sweeping
from higher frequency bands to lower frequency bands.
This can be advantageous for denoising the signal. Fig-
ure 3 demonstrates that the performance of the EMD
when applied to chirplet echoes with the following pa-
rameters:

© =[25ps 7MHz 1 25MHz’ 20MHZ’ Orad]

and

®,=[22ps SMHz 1 20MHz" -20MHz’ Irad |

plus a white Gaussian noise with SNR of 10dB. To fur-
ther the evaluation of EMD results for ultrasonic signals,
Hilbert spectrum, discussed in next section, is used to
perform the time-frequency analysis.

3. Hilbert Time-Frequency Representation
of Chirp Echoes

Hilbert time-frequency representation [23] provides criti-
cal information about chirplet echoes such as the center
frequency and time-of-arrival parameters. Therefore, Hil-
bert transform can be successfully used in ultrasonic
echo detection and estimation applications. In this sec-
tion, we first discuss chirplet echo parameter sensitivity
and then demonstrate that Hilbert transform can be used
in conjunction with EMD for ultrasonic signal analysis.
To explore the behavior of the chirplet parameters, a
simulation has been conducted to examine the change of
reconstruction error as each parameter is altered for a
single ultrasonic chirp echo [22]. In the case of the pa-
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rameter deviation varying from —10% to 10% of the ac-
tual value, Figure 4 shows how the reconstruction error
evolves with the alteration of each single parameter. It
can be seen that the time-of-arrival dominates the effects
on reconstruction error, compared with other parameters.
Hence, the time-of-arrival, 7, is the most critical pa-
rameter to be estimated, followed by the center frequency
f., the amplitude /S, the chirp rate «,, the phase ¢,
and the bandwidth factor «, .

To analyze the time-frequency property of signal,
Jo (t) , Hilbert transform is applied to the signal, and the
analytic signal, Z (¢), can be defined as

Zo (1) = fo (1) +iH[ fo (1) ] (5)

where H [ ] denotes the Hilbert transform. Therefore,
the chirplet analytic signal, Z (t) can be approximated
with reasonable accuracy (when center frequency is lar-
ger the chirplet bandwidth [23,25-27]) as

Zo (1)
~ ,Bexp(—a1 (¢ —1)2 +i2nf, (t—7)+i0+ia, (1 —z’)z ) 6)
_ a(t)eijw(t)dt
where

a(t)= pexp(-a; (1-)') (7)

a(znfc(t—r)+9+a2 (t—r)z)

=2nf, +2a, (t—7)
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Figure 3. EMD results of a noisy signal with two overlapping chirplet echoes (left column: from top to bottom: simulated
signal, IMF #1, IMF #2, and residue; right column: Fourier spectrum of the corresponding signal in left column).
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Reconstruction Error (dB)

Bias

Figure 4. Parameter behavior analysis for a single noisy chirp echo.

Let HT, (1,w) denotes the Hilbert time-frequency
representation of the signal, f; (), which is

HT, , (t.@)=(a(t).0(1)) )

The maximum of a(r) can be obtained by taking de-
rivatives of the a(r) with respecttos.
Oa(t 2
% = B(-2¢, (t—z’))exp(—oz1 (1-7) ) =0 (10)
The solution of Equation (10) leads to an estimation of
time-of-arrival,

t=t (11)

and using Equation (8), the frequency at the time arrival
represent the center frequency

o =2nf, (12)

Equations (11) and (12) indicates that Hilbert time-
frequency (TF) representation can be used to analyze
ultrasonic chirp signal and reveal the two most critical
parameters, i.e., time-of-arrival and center frequency.

Similarly, in a multi-component ultrasonic signal,
s(t), which includes a linear expansion of chirp echoes,
Hilbert TF representation can be obtained from its ana-
lytical signal Z_ ().

Z,(t)=s(t)+iH (s(1))

M
where s(r)=3_ fo (¢), which includes M chirp ech-
=

oes; a;(t) denotes the amplitude of jth chirp echo; and
w, (1) denotes the frequency of jth chirp echo.

To demonstrate the performance of the Hilbert TF
representation in ultrasonic signal analysis, ultrasonic
chirp echo is simulated in Figure 5, where positive or
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negative chirp rate models the dispersive effect in ultra-
sonic testing of materials. This figure shows the esti-
mated time-of-arrivals and center frequencies closely
match the actual values used in simulating these signals.

4. Ultrasonic Experimental Results

To evaluate the performance of EMD in analysis of ul-
trasonic backscattered signals, chirplet signal decomposi-
tion (CSD) is included for the comparison purposes in
this study. The CSD algorithm [18] is utilized to decom-
pose the ultrasonic signal, s(t) , into a linear expansion
of chirp echoes and efficiently estimate the parameter
vectors of these echoes.

s(t):i]f@j (1)1, (1) (14)

where 7, (¢) denotes the residue of the signal recon-
struction after estimating M successive ultrasonic chirp
echoes, fo (f).

An experiment is conducted to acquire ultrasonic
backscattered signal from a steel block with a flat-bottom
hole (i.e., target) using a 5 MHz transducer and sampling
rate of 100 MHz. Figure 6 shows the experimental data
superimposed with the reconstructed signal using CSD
algorithm consisting of 6 chirplets, compared with the
experimental data superimposed with the reconstructed
signal using EMD consisting of 3 IMFs. It can be seen
that both methods can successfully perform signal de-
composition on the experimental data. Moreover, the
parameters of the target echo are shown in the first row
of Table 1, which lists the estimated parameters of chir-
plets using CSD algorithm. The target echo exhibits a
lower center frequency (Echo #1 in the table, time arri-
val = 2.7618 ps, center frequency = 4.3513 MHz) due to
the effect of frequency-dependent attenuation compared
to the surrounding scattering echoes that often exhibit
higher center frequencies [28].

The EMD has been applied to the same experimental
data set. The results from EMD are shown in Figure 7,
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Figure 5. Hilbert TF representation of ultrasonic chirp (Row 2: Hilbert TF representation of the ultrasonic chirp echoes in
Row 1; Row 4: Hilbert TF representation of the ultrasonic chirp echoes in Row 3).
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Figure 6. a) Ultrasonic experimental data superimposed with the reconstructed signal using CSD algorithm; b) Ultrasonic
experimental data superimposed with the reconstructed signal using EMD.

Table 1. Estimated parameters of chirplets (CSD method).

Echo a [MHz]> @, [MHz]? 7 [us] f. [MHz] ¢ [rad] B
1 4.0471 0.9305 2.7618 4.3513 -0.351 0.664
2 47087 27232 0.4432 5.3029 -1.641 0.416
3 2.6697 0.9354 3.7730 5.3614 2.995 0.305
4 4.0741 13073 2.5763 5.8642 -0.182 0.268
5 16.187 0.2435 1.5719 5.0293 3.790 0.300
6 10.316 3.7598 4.7039 44164 -1.064 0.240

where the ultrasonic experimental data, IMF #1, IMF #2,
IMF #3 and residue function are plotted from top to bot-
tom. It can be seen that the dominant echo location in
IMF #1 is around 2.76 microseconds, which is close to
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the time of arrival, 7, of the target echo (see parameters
of Echo #1 in Table 1). Furthermore, the Hilbert time-
frequency representation of the ultrasonic signal (see
Figure 8b) shows that the target is emphasized in the
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Figure 7. EMD results of ultrasonic backscattered signal (left column: from top to down: experimental data, IMF #1, IMF #2,
IMF #3, and residue; right column: Fourier spectrum of the corresponding signal in left column).

T Target—
o I AR Ak
U R R Y
1'50 1 2 Tionells] 3 4 5
g opmetre uﬁ,{k P

Time[us]

8 | ]
0 P, v
7, [ 4:, LA . -, "y
We:.l'".:"‘|"- :.c-: T ..i-. s el & .:.‘ »
S %y S I - i T4y LR
=5 (3 a ot G :—” -‘ ]
ol O A N T Y
2 % . P ol B SR
S 4-'& S )Q-?‘:e i A 2 - s
= i - e, Tl 3 b =
o » - -~ o e -
93 " - - L) -t =
- Target-, Y o
2 "
1
0 1 7 3 4 5
Time[us]
8
d)
7 ¥
N6
T
= ke
5 y
o ..
54 -t
:’c;- Target B
L3
2
1
0 1 7 3 4 5
Time[us]

Figure 8. a) Ultrasonic backscattered signal; b) Hilbert time-frequency representation of ultrasonic backscattered signal in a);
¢) IMF #1 from EMD results of ultrasonic backscattered signal in a); d) Hilbert time-frequency representation of IMF #1 in c).

Hilbert time-frequency domain. It also can be seen that
the information of the target time-frequency characteris-
tic is smeared by the surrounding scattered echoes caused
by the microstructure of the test object. After the EMD
process, by further examining the Hilbert time-frequency
representation of the IMF #1, the useful information of
the target, such as center frequency and time-of-arrival,

Copyright © 2013 SciRes.

is clearly displayed in Figure 8d.

The center frequency of the target is around 4.4 MHz
and the time-of-arrival of the target is around 2.76 mi-
croseconds, which is in agreement with the estimated
parameters using CSD algorithm. Therefore, combining
with Hilbert time-frequency analysis, the EMD can suc-
cessfully analyze ultrasonic backscattered signal and ob-
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tain useful information related to the target. However,
unlike CSD algorithm, the EMD and Hilbert time-fre-
quency representation cannot decompose the ultrasonic
backscattered signal into a well-defined chirplet model
and cannot estimate the specific chirplet parameters.
These parameters are critical for nondestructive testing
and quantitative material characterization.

5. Conclusion

In this study, the EMD has been introduced to analyze
ultrasonic backscattered signals for ultrasonic nondestruc-
tive evaluation of materials. Numerical and analytical
results indicate that the EMD is a unique tool for ultra-
sonic signal analysis and is sensitive to center frequency
of echo, and their interference amongst them. Compared
with CSD algorithm, the EMD has limitation on signal
decomposition and accurate parameter estimation. The
EMD is a unique and effective method to track signal
changes while the estimation results obtained by CSD
algorithm quantify the ultrasonic signals accounting for
narrow-band, broad-band, and dispersive echoes.
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