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ABSTRACT 

We examine variations of the harmonic series by grouping terms into “washings” that alternate sign with the number of 
terms in a washing growing exponentially with respect to a fixed base. The bases x = 1 and x = ∞ correspond to the al- 
ternating harmonic series and the usual harmonic series; we first consider other positive integral bases and further we 
consider positive real number bases with a unique way to make sense of adding a non-integral number of terms together. 
In both cases, we prove a remarkable result regarding the difference between the upper and lower convergent values of 
the series, and give some analysis of this behavior. 
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1. Introduction 

Possibly the simplest and most beautiful infinite series to 
conceptualize, the harmonic series intertwines a world of 
raw mathematical fortitude with that of elegant musical 
theory. Holding its origins in ancient Greece, the har- 
monic series was first proven to diverge in the 14th Cen- 
tury by Parisian scholar Nicole Oresme [1,2]. In 1672 
and 1689, respectively, Mengoli and Bernoulii provided 
additional unique proofs of the series’ divergence. With 
such a basic form, the harmonic series yields itself to va- 
rious manipulations and interpretations. One of the more 
fascinating alterations to the harmonic series, presented 
by A. J. Kempner in 1914, included the idea of omitting 
terms with a nine in the denominator [3]. Although this 
may seem to be insignificant when speaking of an infi- 
nite sum, it actually produces a very interesting result— 
remarkably, the sum converges! More recently, number 
theorists and theoretical physicists have taken an interest 
in double, triple, and multiple harmonic series [4-7]. To 
build, for example, the double harmonic series, consider 
the positive integer lattice  ; the series is 
then the sum of all terms of the form 

    
 

,i j
1 ij  taken over 

this lattice. Here we present our own manipulation—an 
altered version of this classic series as well. We won’t be 
omitting terms, but simply altering the way in which the 
series is summed—the “walk” of the series, if you will. 

Our paper will be organized in the following fashion. 
Section 2 will introduce our modified walk; the way in 
which we wish to view our altered harmonic series. Sec- 
tion 3 expands upon our work and progresses to the gen- 
eral positive integer case. The general case for all real 
numbers is then discussed in Section 4 followed by an 
analysis of our work in Section 5. Further questions are 
then posed in Section 6. Although pivotal in musical the- 
ory, the harmonic series, we believe, is a cornerstone 
upon which new mathematics is built. 

2. A Washed Harmonic Series 

Let us consider the following series that involves the 
terms of the harmonic series, but with an interesting 
twist: 

1 1 1 1 1 1 1 1 1 1 11
2 3 4 5 6 7 8 9 15 16 17

               

Upon first notice of this harmonic-type series there are 
a few observations. The terms of this series have had 
their signs (±) adjusted so that the first term is added, the 
next 2 terms are subtracted, the next 4 terms are added, 
the next 8 terms are subtracted, and the next 16 terms are 
added. This process continues for this infinite series 
where we either add or subtract terms in segments of 
powers of 2. 
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In terms of “walking through a room” one can think of 
themselves as standing on the opposite side of a room 
and starting to walk towards the other side (where the 
door might be). After going slightly more than 83%  

 1 1
2 3
  of the way to the other side, you decide to turn  

around and walk back towards your starting point. You 
travel a distance of almost 76% of the length of the room  

 4 11
5 7

1 1
6

 

0

,k
k

a





. You again reverse directions and con-  

tinue this process. 
We will call this particular series the washed harmonic 

series of base 2. There are obviously some natural 
questions to be asked. As one traverses the room is there 
any point at which walking would cease; that is to say, 
does this series converge? If so, then what point does this 
walking cease and/or series converge to? Or would the 
one walking leave the confines of the room; in other 
words, does the series have partial sums below 0 or 
above 1? Perhaps none of these things would happen and 
instead one would forever walk between two fixed spots, 
in essence would this “biconverge”? 

To establish a notion of biconvergence, from any 
series which has both positive and negative terms we can 
construct an alternating series that we call the “washed” 
series associated with the original (“washed” after the up 
and down motion of washing clothes prior to our modern 
day washing machines). 

Definition 2.1. To construct the washed series for a 
series 

 

we define 0f  to be the sum of all of the first positive 
terms (that is, 

01 n0 0f a a a  0a  
0na  

 where each i  
and 

0 1 ), 1f  to be the negated sum of all of the 
next negative terms (that is, 

 20 02 1n n 1nf a a   a    0i 

0a 

 where each a  and  

1 1n  ), 2f  to be the sum of all of the next positive 
terms, 3f  to be the negated sum of all of the next 
negative terms, and so on and so forth. The washed 
series associated to the original series is then 

 
0

1 .
k

k
k

f






 
0

1
k

k
k

 

Definition 2.2. A (washed) alternating series given by  

f






0 lim .k
k

f


  

k

0:f   

 is said to biconverge if 

 

Observe that a biconvergent series, as  goes to 
infinity, will oscillate between an upper partial sum and a 
lower partial sum. The limit of the upper partial sum will 

be called the upper convergent value and the limit of the 
lower partial sum will be called the lower convergent 
value. To answer some of the questions regarding the 
washed harmonic series with base 2, it helps to formulate 
this series in a concise way. Define the mapping  

 by 
12 1

2

1
k

k
k

i

f
i

 



   and notice that our series  

is 

   
12 1

0 02

1
1 1 .

k

k

k k

k
k ki

f
i

  

 

    

0 1 2 3 4 5f f f f f f

 

To note this explicitly, we see 

     



 

can be expanded as 

31 2

0
1 1 1 1 1 1 1 1 1

1
2 3 4 5 6 7 8 9 15

ff f
f

     


               
     

  

 

lim ln 2.k
k

f




 

Proposition 2.1. We have 

 

Proof: Since the function x1  is decreasing, we have 
the inequality  

1 12 1 2

2 1 2

1 1
d d

k k

k kkx f x
x x

 


  

1k 
0f

 

for all  (since we only care about long-term 
behavior, the term is irrelevant). Since 

1 1
2 1

2 1

1 2 1
d ln

2 1

k

k

k

kx
x

 




 
   

  

and 
12 1

lim 2
2 1

k

kk









 

we have that 
12 1

2 1

1
lim d ln 2.

k

k
k

x
x

 


  

Apply the same argument to the integral on the right- 
hand side of the inequality to see that  

12

2

1
lim d ln 2

k

k
k

x
x






ln 2

 

and apply the squeeze theorem to finish the proof. 
This proposition shows that this series is indeed bi- 

convergent; the person walking back and forth across the 
room will eventually be walking a distance of  
(with respect the distance across the room being 1) in 
each step before changing directions. Perhaps the most 
natural question now is what are the two biconvergent 
values? That is, what is the upper convergent value, and 
what is the lower convergent value. To analyze this 

Copyright © 2013 SciRes.                                                                                 APM 



C. M. DAVIS, D. G. TAYLOR 311

series further, let us introduce a definition. 
Definition 2.3. For a series defined as 

 
0

1 ,
k

k
k

f






k

 

the term f  will be called a washing of the series, while 
the term  1k kf f  

1m 
m

2m

0k 
1k

 will be called a complete washing 
of the series. 

A list of values for the partial sum of the series after 
each washing can be found in Table 1. Observe the 
oscillating behavior in values as the number of washings 
increases. 

3. The General Positive Integer Case 

We now consider a more general case. In the above case, 
the washing sizes are powers of 2; consider what happens 
when the washing sizes are powers of an arbitrary integer 

. That is, we again start with the first term of the 
harmonic series, then subtract the next  terms of the 
harmonic series, followed by adding the next  terms 
of the harmonic series, and so-on and so-forth. 

Let us examine the denominators of the harmonic se- 
ries elements we use in each washing. The  wash- 
ing contains only the denominator of 1, and the   
washing contains the denominators 1 + 1 through 1m   
(since we need  terms in the washing). The m 2k   
washing starts with a denominator of  and ends 
with a denominator of  since this washing 
contains  terms. The next has, as expected, the de- 
nominators of  through , 
and, in general, the -washing starts with a denominator 
of  and ends with a denominator 
of . 

1 1 

3 2 1m m m  





m
2

1  

1

1m m 

1

2m
2m m

k
1 2 1k k  

1 1k k  
x

m m
m m

For a base of , consider the function 

 
1

0

1
n

n
i

p x




  1
1

1

n
i x

x
x


 


 

 
Table 1. Partial sums of washings for base 2. 

Washing Partial Sum 

0 1.000000 

1 0.166667 

2 0.926190 

3 0.200819 

4 0.909835 

5 0.208814 

6 0.905883 

7 0.210779 

8 0.904903 

9 0.211268 

10 0.904659 

where the last equality follows from the usual partial 
sums of a geometric sum (when x 1 ) and it is under- 
stood that  p x 1n 

1
n  is always equal to  in the case 

that x  . Then we can express our washing as 

 
 

 1 11k

k

p x

k
i p x

f x
i

 



 

   
0

1 .
k

k
k

 

and our general positive integer case series as  

f x






 lim ln .k
k

 

Proposition 3.1. We have f x x




 
 

 

Proof: The proof of this proposition mirrors the proof 
of Proposition 2.1 using the fact that 

1lim ln ln .k

k
k

p x
x

p x




 
  

 

1

 

As in Section 2, we indeed obtain a biconvergent se- 
ries for x  1. We remark that in the case of x  , the 
number of terms in a washing is always 1 and the series 
we obtain is the alternating harmonic series which is 
well-known to converge to . The limiting value of ln 2

 1f ln1 0k  is actually   which agrees with the defini- 
tion of a series converging as opposed to biconverging. 

4. The General Case 

We now consider the behavior of this process with non- 
integer bases. First, of course, we need to define a notion 
of what it means to have a summation involving a 
non-integer number of terms at each step. We use the 
case when x e  as an example. First, we add together 

0e 1  terms of the harmonic series; this would amount 
to adding just the first term 1. Next we need to subtract 

 terms, meaning two whole terms, and then 
approximately 71.8% of the next term. That is, we sub-  

1e 2.718

tract the 1
2

, the 1
3

 , and about 10.718
4

2e 7.389

. Continuing,  

we need to add the next  terms. First we take  

the remaining 28.2% of the 1
4

 

, leaving about 7.107  

terms, so we add 7 whole terms, followed by 10.7% of 
another. Thus this time we add (approximately) 

 1 1 1 1 1 1 1 1 10.282 0.107
4 5 6 7 8 9 10 11 12
         

and the process continues. 
y y   and To formalize this process, denote by     

the usual floor and ceiling functions. Define the follow- 
ing functions of x  and  (where j x  is referred to as 
the base, restricted to x  1 with x  j

  

, and  will 
be called the washing number): 

 1 1j j j
j x x x x           
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   1 1
1 1

0
j j j

j j

a x
x a x x 

    
0

0

j

a x j

 jy x a x       

 j j
jx a x   

1 otherwise

x x  

 

    j jb x x a x 

j

 

 
 

 

1

1

1 i
i

j j

i
i

s x

j x










 
  







 



     
 

   11 1

1

1 1j

j

x

j j
ij j

0

1
0

j

j

a x b x j
s x s x i s x



 

f x




     


 

 

A few remarks are in order. First, note that the defini- 
tion of js x  depends on whether or not x  is an inte- 
ger. In the   case, x  a x 0j    0b x and j   for 
all ; there are no fractional parts of the harmonic series 
terms to deal with. For this reason, j

j
 s x  is adjusted in 

these cases to not leave out any harmonic series terms 
and have  jf x

 jb x

  1x 

 agree with the washings of Section 3 
so that we can define the abstraction of our series from 
Sections 2 and 3. Now when  , observe that 

 and  are the percentages of terms to use 
in our washing, so these values are between 0 and 1, in- 
clusively. Also, since a term that is only partially added 
(or subtracted) needs to be completely subtracted (or 
added) in the next washing, we must have  

. We now prove these statements. 

x
ja x

 b x



j ja 1

Lemma 4.1. For all x and j, we have  0 1ja x   
and .  0 1b x j

Proof: By definition, when 0j  , we have the iden- 
tity 

   j ja x x a x    

 1
1

j
a jy x a x

 

  1 1
1 1 .j j

jx a x 
 

 

 

Let , so that j a a , 
noting then that we must have . Similarly, 
let , so that  

a x y y   
1

a

.b by y 

 0 ja x

   j j
jx x a x  

j x

j ja

j
by x 

 b x x    

x j
 j jb x

 a x

   

We then see that  as needed.  0 1jb x 
Lemma 4.2. For all  and all , we have 

. 


  1a x 1

Proof: From the definitions of  and 1j  j xb , 
we have 

       
  

j j
j

j j
j j

a x

 
1j j jb x a x x a x x

x a x

   

    x a x

  

 

 j j
j j

 

which is equivalent to 

 x a x   

Letting j , this last equality becomes  

x a x    

y y      
1y y

 and the proof is complete by noting that  

       y

     
0

1
j

j
j

 for any non-integer value of . 
The abstraction of the series in Sections 2 and 3 is 

given by 

x f x




 H  

which we will call the washed harmonic series of base x. 
Let us define function  U x  for the upper convergent 
value of  H x  L x and function  for the lower con- 
vergent value of  H x 0k 

     
2

0

1
k

j

k j
j

U x f x


 

     
2 1

0

1
k

j

k j
j

L x f x




 

. For , denote 

 

and 

 

Also set 

   lim k
k

U x U x


  

and similarly 

   lim .k
k

L x L x


  

 U x  and We exhibit in Figure 1 the graphs of 
 L x  (the top and bottom “curves” respectively) on the 

interval  1,4x . The approximations are obtained by 
using U9(x) and L8(x) on [1,2], U6(x) and L5(x) on  2,3

e

, 
and U4(x) and L3(x) on [3,4]; observe that more accurate 
pictures could be obtained by using many more washings 
close to 1. 

xAs an interesting note, observe that when  , the 
value of  3  is very close to 0, and the value of eL

 eU
n e

4  is very close to 1, giving a possible difference in 
biconvergent values of 1 l . Let us formulate and 
prove the equivalent of Propositions 2.1 and 3.1 in this 
most general case. 

 lim lnj
j

Theorem 4.1. For all x ≥ 1, we have f x x


 ; 
 

 

Figure 1. Estimates of upper and lower convergence. 
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that is, the series biconverges. 
Proof: We first consider the definition of  jf x

0j  j 

 and 
look at each piece individually. We need not worry about 
the case when  to examine the limit as . 
Thus, we have 

     

 

 
 

 

   

 1 3

1
.j

j

b x

2

11 1

1 1j x

j j
ij j

f x a x
s x s x



 

 




i s x




 0 1ja x 
1j

 

For (1), from Lemma 4.1, we have  and 
dividing through by  s x

 

 produces 

   1 1

1 1
.

j j

0 ja x
s x s x 

 

j 

 

Observe that as , we note that  j x 


 

, 
thus  and we can conclude that   js x

1

1
m 0.

js x



j 
 0 1b x 

j

li
j

  

The squeeze theorem then yields that the quantity of (1) 
goes to 0 as . The same reasoning applies to (3) 
since j  as well. Thus it suffices to consider 
(2) as the only contributing factor to the limit. 

For (2), as with the proof of Proposition 2.1, we use an 
integral for a lower bound and upper bound on the term. 
For a fixed , we have 

 
 

 
 

11 1

1 1j x

j j
0

dj x

i

i
s x i




 s x i       (4.1) 

and 

 
 

 
  1

1
1

1j
j

x
x

i 1 1

1
d

j j

i
s x i


 



  s x i  
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    (4.2) 

where  is our variable of integration. The integral in 
(4.1) we can compute to be 

 
     

 
1

0

1
d lnj x

1 1

.j j

j j

s x x

s x



 

 
  
 

x 

   i j

i
s x i

 
  (4.3) 

Note that when , 

     
1

1
1

1 1
j

j j
i

s x x j 





     x x
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j
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j x

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1 1

.
j j

i i
i i

j x 
 

 

  

x 

 

which is simply 

 

so the inside numerator simplifies nicely. The denomi- 
nator is simply 

   1 1j x    

When , simply treat the lone j of the numerator 

and denominator as 0, or appeal to the remark about 
 j x

 

 for integer values and Proposition 3.1 for the 
desired result. 

From definition given earlier for the general case of  

  1 1j j j
j x x x x         

1 10 1j jx x  

, we can quickly observe  

that since    , we must have  

 1j j
jx x x  

 
1 1 1

j j j
i i

i
i i i

j x x x
  

   

. Thus we also have  

  
j

 

or, adding the  from the numerator back and summing 
the geometric sum,  

 
1

1 1
.

1 1

j jj

i
i

x x
x x j x

x x




    
         
     (4.4) 

Similarly, for the denominator, we will have 

 
1 11

1

1 1

1 1

j jj

i
i

x x
x x j x

x x


 



    
         
    (4.5) 

In evaluating the limit on the right-hand side of (4.3), 
we desire to bound this limit by two others. We can find 
a lower bound for 

   
 

s 1

1

j j

j

x x

s x






 

by making the numerator as small as possible, and the 
denominator as large as possible, and we can find an up- 
per bound for it by making the numerator as large as 
possible and the denominator as small as possible. Using 
(4.4) and (4.5), we have  

   
 

1

1
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1
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j
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x
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x
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x
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




 
    
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  

 
  

 
  

   (4.6) 

The quantity on the right-hand side of (4.6) can be re- 
written as 

 
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1

j

j j

j xx

x x x

 
   
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which goes to x  as . Examine the inside of 
the logarithm for the left-hand side of (4.6); its reciprocal 
can be written as 

j 

 
1

1

1

1
1 11

.
11

1

j

j

j jj

x
x j

x j xx

x x xx
x

x






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As , this quantity goes to j  1 ; thus 
x

1
lim ln

j

jj

x
x

x
1
1

ln
1

1

x
x

x

 


x j

 
   

 
 

 

ln

 

as well. The squeeze theorem concludes that the limit in 
(4.3) is indeed x , so 

 
 

0
1

1
lim j x

j
js x






 d ln .i x
i




 

 

By observing that the integral on the right-hand side of 
(4.2) can be computed in exactly the same way (adding a 
1 to the numerator and denominator of the limit in (4.3) 
has no effect for the limit), we have 

  1

1
1

1
lim j x

j
js x

 




 d lni x
i




ln

 

and applying the squeeze theorem gives a limiting value 
of x  to quantity (2) above. Combining (1), (2), and  
(3) yields , that is, biconvergence.   lnjf x xlim

j

5. Analysis 

We consider the behavior of our series under different 
bases as the base x  goes to infinity. In Table 2, we 
give estimates (up to six decimal places) for the integral 
bases 1 through 10. Note that the case when 1x   is 
again the alternating harmonic series and its upper and 
lower convergent value is . The table includes the 
various values of , , 

ln 2
  U x L x  U x L x

U x
 and 

. Recall that    L x   L x
ln

U x   is always equal 
to x  due to Theorem 4.1. 

One observation that could be made from the ap- 
proximate graphs of  and  given in Figure 
1 is that both  and  appear unbounded as x 
goes to infinity. The table above seems to confirm this, 
but we will now prove the boundedness of . 

U x


  L x
 L x

 U x


 U x

   1
j

j

U x

Theorem 5.1. The function  is bounded. U x
Proof: We prove that  is bounded above first, 

and proceed accordingly for the lower bound. Recall  

 
0j

H x



 f x   and consider the following  

grouping: 

   
      

0

1 2 3

H x f x

f x f x f x



       4 .f x 

   1k k

 

We use an integral estimate on the value of  
f x f x  k

   1k k

 for odd integers . To maximize the  

quantity f

Table 2. Upper and lower convergent estimates. 

x U(x) L(x) U(x) + L(x) U(x) − L(x)

1 0.693147 0.693147 1.386294 0.000000 

2 0.904579 0.211428 1.116007 0.693151 

3 1.013650 −0.084963 0.928687 1.098613 

4 1.083432 −0.302862 0.780570 1.386294 

5 1.132588 −0.476850 0.655738 1.609438 

6 1.169243 −0.622517 0.546726 1.791760 

7 1.197668 −0.748242 0.449426 1.945910 

8 1.220366 −0.859075 0.361291 2.079441 

9 1.238912 −0.958313 0.280599 2.197225 

10 1.254350 −1.048235 0.206115 2.302585 

 

 1k x k. Consequently, for odd , since  and maximize f

  0a x   k  0k b x , we have that fk  and x

   

, which 
equals 


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Evaluating this integral and using the identity  
     1 1k k ks x s x x  
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n
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
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for integers . Similarly, for even , we have that 
 kf x

   

, which equals 
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This latter quantity is equivalent to  
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      1ks x s x x1k k    and that using the facts that 
  1ka x   1kb x  and  . Evaluating, we have  

   
 

2
2
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n
n

n

s x
f x

s x

 
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        (5.2) 

for  Combining (5.1) and (5.2), we have, for 
, 
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and, in particular, for , we have  

        
   

2 0
1 2

1 1

ln
s x

f x f x
s x

   
1

1
1

s x

s x

 
  

 1,x   k

 

when . Using the definition of s x
2

  
  

, when 
, we have that  n
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which we can see is 
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Since the quantity 
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that appears on the right-hand side is bounded above by 
0.25 on the interval , we then have our over-es- 
timate as 

  2 2

0.25
2

1 10

0.25
1 1

j
j

H x
x x

 


 2,





    

which is bounded above on the interval , so U(x) 
is bounded above, noting that on the interval  1,2

 U x

 

 one 
can show that  is bounded above by direct com- 
putation. 

In a very similar fashion, we can obtain a lower esti- 
mate by minimizing the quantity  1k kf x f x 

 

. In- 
tegral estimates as above yield 
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for  and 

    2

1 1 1

s x

s x
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1n 

 

2 1 2 lnn nf x f x
s x    

when . 
Similarly, U(x) is then shown to be bounded below by  

the same process as above, noting that  1 2f x f x    

is bounded below by −1.2 and    3 4f x f x 

 1,

 2,

 is  

bounded below by −0.6 on the interval . Use the 
geometric series as above for the other washings for the 
interval  and observe that direct computation 
yields boundedness on  1,2

 L x

 L x

. 
As a corollary to Theorem 5.1, we have the following 

result regarding . 

Corollary 5.1. The function  is unbounded as 
x  goes to infinity. 

Proof: From Theorem 4.1 before, we know that  

    lnU x L x x  , or, by very quick rearrangement,  

     lnU x L x x  . Given that U x
ln

 is bounded above 
and below from Theorem 5.1 and x  is unbounded as 

 x  goes to infinity, L x  must also be unbounded as 
x  goes to infinity. 

6. Further Questions 

There are several natural questions that provide avenues 
for future work. First, with regards to Theorem 5.1, find- 
ing the least upper bound (and greatest lower bound) 
would be remarkable. Given the behavior of  U x

1

, it 
seems natural that the lower bound should be when 
x   (with a value of ). A more difficult question 
is regarding the upper bound; in the proof of Theorem 
5.1, the right side of  

ln 2

        
    

2 0
1 2

1 1

1
ln 1

1

s x s x
f x f x

s x s x

 
      

ln 2

 

has a limiting value of  and as x  goes to infinity, 
the terms afterwards in  H x

n 2
 do not contribute much. 

We might expect the upper bound to be 1 l , but 
computational evidence suggests that U x  is never 
above 1.5, even for large values of 

 
x . 

Another question of interest is that of determining a 
closed formula for    U x  or L x , or even whether or 
not one exists. Other natural avenues might examine the 
properties of    L xU x  and . Are these functions 
continuous, or perhaps continuous in a weaker sense? 
How fast does  xU  grow, and how fast does  L x  
grow in the negative direction? The presence of the floor 
and ceiling functions in    U x  and L x  suggest that 
 U x  is not strictly increasing and, in fact, values of x  

can be chosen so that  U x  actually decreases slightly 
on small intervals. 

Last, but perhaps certainly not least, what sort of ab- 
straction is there after our most general case? Can we 
make sense of a three-dimensional model of our “walk 
across a room”? What other patterns in the number of 
terms for a washing make sense and are not equivalent to 
our generalization? With the recent interest in the double, 
triple, and multiple harmonic series [4-7], how can we 
apply our methods to those types of series? Is there then 
a q-series analog or a q-series identity that is a direct re- 
sult of our methods, similar to [8]? 
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