
Journal of Modern Physics, 2013, 4, 121-126 
http://dx.doi.org/10.4236/jmp.2013.44A012 Published Online April 2013 (http://www.scirp.org/journal/jmp) 

Comparison of High Field Electron Transport in GaAs, 
InAs and In0.3Ga0.7As 

B. Bouazza, A. Guen-Bouazza, C. Sayah, N. E. Chabane-Sari 
Unite de Recherches Matériaux et Energies Renouvelables, Faculté des Sciences de l’Ingénieur,  

Université Abou-Bekr-Belkaïd de Tlemcen, Tlemcen, Algérie 
Email: bouaguen@yahoo.fr 

 
Received January 8, 2013; revised February 10, 2013; accepted February 25, 2013 

 
Copyright © 2013 B. Bouazza et al. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ABSTRACT 

An ensemble Monte Carlo simulation is used to compare high field electron transport in bulk GaAs, InAs and 
In0.3Ga0.7As. In particular, velocity overshoot and electron transit times are examined. We find the steady state velocity 
of the electrons is the most important factor determining transit time over distances longer then 0.2 μm. Over shorter 
distances velocity overshoot effects in InAs and In0.3Ga0.7 As at high fields are comparable to those in GaAs. We esti- 
mate the minimum transit time across a 1 μm InAs sample to be about 4.2 ps. Similar calculations for In0.3Ga0.7As yield 
6 ps (for GaAs yield 10 ps). Calculations are made using a nonparabolic effective mass energy band model, Monte 
Carlo simulation that includes all of the major scattering mechanisms. The band parameters used in the simulation are 
extracted from optimized pseudopotential band calculations to ensure excellent agreement with experimental informa- 
tion and ab initio band models. 
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1. Introduction 

The Ensemble Monte Carlo technique has been used now 
for over 30 years as a numerical method to simulate 
nonequilibrium transport in semiconductor materials and 
devices, and has been the subject of numerous books and 
reviews. In application to transport problems, a random 
walk is generated to simulate the stochastic motion of 
particles subject to collision processes in some medium. 
This process of random walk generation may be used to 
evaluate integral equations and is connected to the gen- 
eral random sampling technique used in the valuation of 
multi-dimensional integrals. The basic technique is to 
simulate the free particle motion (referred to as the free 
flight) terminated by instantaneous random scattering 
events. The Monte Carlo algorithm consists of generating 
random free flight times for each particle, choosing the 
type of scattering occurring at the end of the free flight, 
changing the final energy and momentum of the particle 
after scattering, and then repeating the procedure for the 
next free flight. Sampling the particle motion at various 
times throughout the simulation allows for the statistical 
estimation of physically interesting quantities such as the 
single particle distribution function, the average drift  

velocity in the presence of an applied electric field, the 
average energy of the particles, etc. By simulating an 
ensemble of particles, representative of the physical sys- 
tem of interest, the non-stationary time-dependent evolu- 
tion of the electron and hole distributions under the in- 
fluence of a time-dependent driving force may be simu- 
lated. The particle-based picture, in which the particle 
motion is decomposed into free flights terminated by 
instantaneous collisions, is basically the same picture 
underlying the derivation of the semi-classical BTE. In 
fact, it may be shown that the one-particle distribution 
function obtained from the random walk Monte Carlo 
technique satisfies the BTE for a homogeneous system in 
the long-time limit [1]. 

The purpose of this work is to compare, using Mont 
Carlo simulation, the potentialities of n-type GaAs, InAs 
and In0.3Ga0.7As. We first analyse, in Section 1, we ex- 
plain how to apply our band structure model to Monte 
Carlo simulation. In Section 2 we present to describe in 
the detail our calculation of high field transport proper- 
ties of n-type GaAs, InAs and In0.3Ga0.7As by Monte 
Carlo method. We shall also compare our results with 
other theoretical and experimental data insofar as it is 
possible highlight the accuracy of the simulation results. 
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1.1. Free Flight Generation 

In the Monte Carlo method, the dynamics of particle mo- 
tion is assumed to consist of free flights terminated by 
instantaneous scattering events, which change the mo- 
mentum and energy of the particle. To simulate this 
process, the probability density  p t

 p t t

t t
t

 is required, in 
which  is the joint probability that a particle will 
arrive at time t without scattering after the previous colli-
sion at t = 0, and then suffer a collision in a time interval 

around time . The probability of scattering in the 
time interval  around t may be written as 


 k t t    , 
where  k t     is the scattering rate of an electron or 
hole of wave vector . The scattering rate, k  k t    , 
represents the sum of the contributions from each indi- 
vidual scattering mechanism, which are usually calcu- 
lated using perturbation theory, as described later. The 
implicit dependence of  k t

k

 

    on time reflects the 
change in  due to acceleration by internal and external 
fields [2-4]. For electrons subject to time independent 
electric and magnetic fields, the time evolution of  
between collisions as 

k

   0k t k
e E v B t  


E v

            (1) 

where  the electric field,  is the electron velocity, 
and   is the magnetic flux density. In terms of the 
scattering rate,  k t  

 
t

k t t
 

 , the probability that a particle 
has not suffered a collision after a time t is given by  

0

exp       
 

t t

 
t

tk t t 

 . 

Thus, the probability of scattering in the time interval 
 after a free flight of time  may be written as the 

joint probability 

   
0

expfP t t k t
 

        
 



      (2) 

Random flight times may be generated according to 
the probability density p t  above using, for example, 
the pseudo-random number generator implicit on most 
modern computers, which generate uniformly distributed 
random numbers in the range [0,1]. Using a direct 
method, random flight times sampled from  p t

 
1

1 1
0 0

ft r

t p r r  

 may 
be generated according to 

 fr p t              (3) 

where r is a uniformly distributed random number and 

ft

 is the desired free flight time. Integrating (3) with 
p t

 
ft

k t t
 

     
  

 1
0

ln
ft

r k t t  

 given by (2) above yields 

1
0

1 expr              (4) 

Since 1 − r is statistically the same as r, (4) may be 
simplified to 

   

k

 

            (5) 

Equation (5) is the fundamental equation used to gen- 
erate the random free flight time after each scattering 
event, resulting in a random walk process related to the 
underlying particle distribution function. If there is no 
external driving field leading to a change of between 
scattering events, the time dependence vanishes, and the 
integral is trivially evaluated. In the general case where 
this simplification is not possible, it is expedient to in- 
troduce the so called self-scattering method [1-3,5,6], in 
which we introduce a fictitious scattering mechanism 
whose scattering rate always adjusts itself in such a way 
that the total (self-scattering plus real scattering) rate is a 
constant in time 

 0 Selfk t                 (6) 

where self  is the self-scattering rate. The self-scatter- 
ing mechanism itself is defined such that the final state 
before and after scattering is identical. Hence, it has no 
effect on the free flight trajectory of a particle when se- 
lected as the terminating scattering mechanism, yet re- 
sults in the simplification of (5) such that the free flight is 
given by 

 1
0

1
lnft r 


               (7) 

The constant total rate (including self-scattering) 0  
is chosen a priori so that it is larger than the maximum 
scattering encountered during the simulation interval. In 
the simplest case, a single value is chosen at the begin- 
ning of the entire simulation (constant gamma method), 
checking to ensure that the real rate never exceeds this 
value during the simulation. Other schemes may be cho- 
sen that are more computationally efficient, and which 
modify the choice of 0  at fixed time increments. 

1.2. Selection of Scattering Rate 

When the electrons are accelerated and the scattering 
time is chosen, scattering must then occur at the end of 
the scattering time period. The method used for this is the 
rejection technique. This technique chooses the scattering 
using the relative probabilities of the individual events. 
To start we construct a scattering table and normalize all 
scattering probabilities to the maximum scattering value, 
which was found in the above section for the self scat- 
tering [4]. Once the entire table is constructed, it can be 
used throughout the entire simulation without need for 
recompilation. The selection of the scattering now be- 
comes a two-part step. As the table has already been 
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normalized to one, we may use a uniform random num- 
ber to select the scattering rate. The reason why this 
works is simple. The choice of scattering is random, but 
is also governed by the relative strength of certain scat- 
tering rates in connection with others that exist in the 
system. The random numbers take care of choosing the 
scattering rate, and the relative strength of each scattering 
rate to the total in the table controls the frequency of cer- 
tain events over others. 

1.3. Scattering Angle and Final State 

For elastic scattering, the scattering is isotropic. There- 
fore, all final states in the energy-conserving sphere have 
the same probability of occupation after scattering. The 
final angle is independent of the initial state , and the 
angles of  are proportional to 

k
k  sin   

2π

cos

. Realiz- 
ing that the azimuthal angle varies between 0 and , a 
direct technique can be employed to obtain [2,4,7,8]: 

31 r    and 42π r              (8) 

1.4. Mean Velocity and Energy Calculation 

When the electric field is applied in the x direction, the 
average drift velocity and the average electron energy are 
given for each valley, respectively, by [9], 

 
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where 
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1 2

xi

i

k

miv t
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
             (11) 

  1 1 4

2i t



  
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and 

   2 2 2
2

2 xi yi zik k  k k
m

 
         (13) 

where  iv t  and  i  represent the electron drift 
velocity and the electron energy at the end of each time 
step, while 

t

,xi kyi  and k zi  are the wave vector com- 
ponents in 

k
,x y  and  direction for each electron, re- 

spectively. 
z

2. Simulation and Results 

In each simulation, twenty thousand electrons are ini- 
tially distributed in the sample according to an equilib- 
rium Maxwellian distribution at 300 K. A variety of field 
strengths are simulated to determine the effect on the 
transient behavior of the electron ensemble. The simula- 

tion steps the electric field from zero to full intensity at 
the beginning of the run  0t  , after which the velocity 
of the electrons is averaged at 10fs intervals. The average 
traveled as a function of time is found by integrating the 
drift velocity. Our Monte Carlo program is based on a 
three isotropic and non parabolic valley model. The pa- 
rameters for valleys are estimated from recent band 
structure calculations. The scattering mechanisms in- 
cluded in the simulations are polar optical phonon, 
acoustic phonons, piezoelectric, intervalley scattering, 
ionized impurities and alloy scattering. Values for the 
various coupling constants which determine many of the 
scattering rates are the same as those used in Reference 
[7]. The donor concentration is set to 1.107/cm3. 

Figure 1 shows electron velocity versus distance for 
GaAs, InAs and In0.3Ga0.7As. Previous Monte Carlo 
studies of velocity overshoot in GaAs have performed 
and are in agreement with the present results. We find the 
fields which produce the highest steady state velocities (2 
kv/cm in InAs and 5kv/cm in In0.3Ga0.7As) are similar to 
the results using the full band Monte Carlo simulation. 
Furthermore, in all three materials overshoot only occurs 
at field strengths larger than the peak steady state veloc- 
ity field and one sees that the higher amplitude of veloc- 
ity overshoot, the lower its distance (or duration). These 
observations are tentatively explained in the following 
manner. First of all, we have checked that, as long as all 
electrons remain in the  valley, the velocity increases. 
Thus, the maximum velocity is reached when the “most 
rapid” electrons have gained enough energy to transfer to 
L valley. These electrons are “lucky electrons”, which 
have suffered no, or very few, or very inefficient scatter- 
ing events. Therefore, the time needed to reach the 
maximum velocity is mainly determined quasiballistic 
motion and is sensitive to the scattering rates. On the 
contrary, the final static velocity is obtained when the 
whole electron distribution has reached its new equilib- 
rium situation. This process is completed when even 
“unlucky” widely scattered, electrons have gained 
enough energy to transfer. 

Figure 2 shows the electron transit time as a function 
of distance traveled. The field strengths transit time oc- 
curs when the steady state velocity is the highest. Using 
the relation  1 2 πfT    where    is the transit 
time at 1 μm, we estimate the corresponding cutoff fre- 
quencies for GaAs to 29 GHz. Values as high as 20 GHz 
chosen minimize the electron transit time at 1 μm. In 
GaAs, InAs and In0.3Ga0.7As the minimum have been 
measured in modern GaAs modulation doped field 
effect transistors, not far from the upper limit predicted 
from the transit time alone. 

1 μm

In Figure 3 we show the transit time as a function of 
distance in the overshoot regime. In this figure the ap- 
plied fields were chosen to minimize the transit time      
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Figure 1. Electron velocity as function of distance in each of the materials simulated. 
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Figure 2. Electron transit time as a function of distance. The field strengths chosen minimize the transit time across 1 μm. 
The applied fields are 5 kV/cm for GaAs, 2 kV/cm for InAs, and 5 kV/cm for In0.3Ga0.7As. 

 

0.0 5.0x10
-8

1.0x10
-7

1.5x10
-7

0.0

2.0x10
-13

4.0x10
-13

6.0x10
-13

8.0x10
-13

1.0x10
-12

2.0x10
-7

 GaAs
 InAs
 In0.3Ga0.7As

Tr
an

si
t T

im
e 

︵se
c 

︶

Distance ︵m ︶  

Figure 3. Electron transit time as a function of distance 0.2 μm. The field strengths chosen minimize the transit time across 
0.1 μm. The applied fields are 20 kV/cm for GaAs, InAs, and In0.3Ga0.7As. 
 
across a 0.1 μm region. In this regime, one normally ex- 
pects electrons with a lower effective mass to have greter 
acceleration and therefore have greater velocity and a 
smaller transit time. We predict however, that although 
the effective mass is larger InAs 

(In0.3Ga0.7As) its ability to operate at higher voltages 
allows the transit time to be reduced below that of GaAs. 
We therefore conclude that for device lengths less than 
0.2 μm where velocity overshoot is important, the elec- 
tronic transport properties of GaAs demonstrate no ad- 
vantage over those of InAs (In0.3Ga0.7As). 

3. Conclusion 

The authors experience has shown that the effective mass  

of the gamma valley and the relative energy gap between 
the valleys has the greatest effect on velocity overshoot 
and mobility. These parameters have been measured ex- 
perimentally or have been obtained through band struc- 
ture calculations. Several of scattering rates depend upon 
coupling constants that are currently not well known. 
Therefore, this constant for the acoustic deformation po- 
tential was varied by ±20% and ±40%. The Monte Carlo 
technique has been used to compare transit times and 
velocity overshoot effects in GaAs, InAs and In0.3Ga0.7As. 
We find that over distances longer than 0.2 μm the transit 
times in InAs (In0.3Ga0.7As) are less than those in GaAs 
due to InAs’s (In0.3Ga0.7As’s) greater peak velocity. Over 
shorter distances velocity overshoot effects dominate and  
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the transit time in InAs (In0.3Ga0.7As) is comparable or 
even less than that of GaAs. We conclude that InAs 
(In0.3Ga0.7As) devices should be capable of equal or 
higher frequency performance than GaAs when transit 
time is an important factor. 
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