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ABSTRACT 

This paper outlines the application of the multi-layer perceptron artificial neural network (ANN), ordinary kriging 
(OK), and inverse distance weighting (IDW) models in the estimation of local scour depth around bridge piers. As part 
of this study, bridge piers were installed with bed sills at the bed of an experimental flume. Experimental tests were 
conducted under different flow conditions and varying distances between bridge pier and bed sill. The ANN, OK and 
IDW models were applied to the experimental data and it was shown that the artificial neural network model predicts 
local scour depth more accurately than the kriging and inverse distance weighting models. It was found that the ANN 
with two hidden layers was the optimum model to predict local scour depth. The results from the sixth test case showed 
that the ANN with one hidden layer and 17 hidden nodes was the best model to predict local scour depth. Whereas the 
results from the fifth test case found that the ANN with three hidden layers was the best model to predict local scour depth. 
 
Keywords: Artificial Neural Network, Scour Depth, Ordinary Kriging, Inverse Distance Weighting, Bridge Piers, 

Bed Sill 

1. Introduction 

The accurate estimation of maximum scour depth around 
and downstream of bridge piers is critical and very im-
portant for design engineers. The prediction of scour 
depth around bridge piers has been the subject of many 
experimental studies, and has resulted in a number of 
prediction techniques being presented. Scour depth is a 
significant limiting factor when assigning the minimum 
depth of substructures, as it decreases the lateral capacity 
of the substructure. 

To determine a technique for predicting scour depth 
for different pier positions, comprehensive experimental 
tests have been conducted. In the past, a number of re-
search studies had been conducted to determine tech-
niques for the estimation of local scour around bridge 
piers and their abutments. These have been reported in 
literature. Of these studies, the first extensive experi-

mental work on bridge pier scour was conducted and 
reported by Chabert and Engeldinger (1956) which is 
cited by Jeng et al. [1]. A study was also conducted by 
Blodgett (1978), again is cited by Jeng et al. [1], to report 
the cause of failure of 383 bridges. It was reported that 
most failures were caused by catastrophic floods. This 
study also found that the incorrect prediction of local 
scour depth during engineering design lead to enlarged 
local and contraction scour. Yankielun and Zabilansky [2] 
pointed out that this serious problem costs millions of 
dollars worth of damage, leaving foundations of bridge 
piers and bridge abutments insecure. Johnson [3] com-
pared some of proposed prediction methods with the 
available field data, and concluded that more research is 
still required to accurately determine local scour.  

To overcome this complicated problem, the artificial 
neural network (ANN) was found to be useful as a com-
prehensive function approximator, especially when the 
relationship between dependent and independent vari-
ables is inadequately understood [1]. Trent et al. [4,5] 
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applied ANN to estimate local pier scour and sediment 
transport in open channels. Choi and Cheong [6] esti-
mated local scour around bridge piers using ANN and 
concluded that the ANN can successfully predict the 
depth of scour over a wider range of conditions with a 
greater accuracy than existing empirical formulae. 

Butcher [7] pointed out that the kriging methods of 
geostatistical analysis provide valuable techniques for the 
analysis of sediment contamination problems, including 
interpolation of concentration maps from point data and 
the estimation of global mean concentrations. Biglari and 
Sturm [8] pointed out that bridge failure due to local 
scour around piers and abutments has motivated many 
examinations into scour prediction, as well as reliable 
design methods. Liriano and Day [9] compared current 
prediction equations for culvert outlets with results ob-
tained from two ANN models. They concluded that the 
ANN model can be used to predict local scour in labora-
tory and in the field better than other empirical relation-
ships that are currently in use.  

Kambekar and Deo [10] analyzed scour data using 
different neural network models that were developed to 
predict scour depth. They found that the neural network 
provides a better alternative to statistical curve fitting. 
Jeng et al. [1], Bateni et al. [11] and Lee et al. [12] ap-
plied neural networks to predict scour depths around 
bridge piers. Bateni et al. [13] used Bayesian neural 
networks for the prediction of equilibrium and time- de-
pendent scour depth around bridge piers. They showed 
that the new models estimate equilibrium and time-de-
pendent scour depth more accurately than the existing 
expressions. 

The results of training and testing ANN obtained from 
these models have been analyzed and an accurate model 
to predict local scour depth around a bridge pier in a river 
environment has been produced. (see Figures 1 and 2) 
These results contribute to the understanding of local 
scour and provide engineers with a way of determining 
scour depth for a variety of pier situations. 

In most previous studies, scouring was studied around 
bridge piers installed without the presence of a bed sill. 
This paper presents the experimental data used to inves-
tigate bridge scour around a pier installed upstream of a 
bed sill and explores the use of artificial neural networks, 
kriging and inverse distance weighting models to esti-
mate the scour depth around a bridge pier. 

2. Experiment Setup and Procedure 

A dimensional analysis was conducted to find the most 
important parameters for bed scouring around a curved  

 

 

Figure 1. Conceptual diagram of a feed forward network 
with one hidden layer. 
 

 

Figure 2. Variogram parameters. 
 
bed sill installed downstream of a bridge pier. The most 
effective parameters were found to be; 

50( , , , , , , , , )S w sY f g q W d r D           (1) 

in which Ys is the scouring depth, g is the acceleration of 
gravity, w is the flow density, s is the particle density, q 
is the flow discharge per unit width, d50 is the median 
particle diameter, W is the width of the channel, r is the 
arch distance of the circular sill and D is sill diameter. In 
this experimental study the r/W and D/W are investigated 
only during the laboratory experiments. 

The laboratory experiments were carried out with 50 
mm diameter circular piers installed at different distances 
from bed sill. The sill height was 12 cm and it was in-
stalled in a 15 m long, 0.5 m wide, 0.5 m deep experi-
mental flume in the Hydraulic Laboratory College of 
Agriculture, Shiraz University. The scour depth and flow 
depth were measured using a sandy surface meter. The 
experiment setup and pier installation are shown in Fig-
ure 3. 

The length and width of the scour were measured after 
each experiment. The longitudinal profile and maximum    
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Figure 3. Experimental setup and pier installation. 
 
depth of the scour were measured during the experiments. 
The scour measured on the side and at the rear of the pier 
were approximately the same, whilst the scour measured 
at the nose of the pier was less than the back scour. 

A false bottom was installed in the flume to create a 
recess for the sediment bed. The recess was 2.5 m long, 
0.5 m wide and 0.12 m deep and filled with non-cohesive 
sediment with 50 equal to 0.5 mm diameter and stan-
dard deviation equal to 1.23 mm. The pier was installed 
firstly by preparing an undersized pilot hole, pushing the 
pier in, and then trimming off the remaining sediment. 
Water entered the flume smoothly from an inlet reservoir, 
and a sediment trap was used at the downstream end of 
the test reach. Downstream of the trap, water passed over 
a tailgate into a sump. Water depth in the in-floor flume 
was controlled by a tail gate located at the downstream 
end of the test section. All the experiments were con-
ducted under steady flow conditions. The flow discharge 
was measured by a 90 degree V-Notch and an electro-
magnetic flow meter.  

D

Experimental test cases were conducted in eight dif-
ferent bed sill models (Figure 4). Table 1 explains the 
flow condition of the experimental tests. 

3. Results and Discussions 

3.1. The ANN, OK and IDW Estimations for 
Scour around Piers 

The whole data set, consisting of 2754 data points, was 
composed of eight different conditions. Each condition 
was divided into two parts randomly: a training set con-

sisting of 80% of the data points and a validation or test-
ing set consisting of 20% of the data points. 

In this study, two types of ANN models were devel-
oped: 1) single hidden-layer ANN model consisting of 
only one hidden layer, and 2) multiple hidden-layer ANN 
model consisting of two and three hidden layers. The 
task of identifying the number of neurons in the input 
and output layers is usually simple, as it is dictated by the 
input and output variables considered to model the 
physical process. 

As previously mentioned, the number of neurons in the 
hidden layer(s) can be determined through the use of trial 
and error procedure [1]. The optimal architecture was 
determined by varying the number of hidden neurons 
(from 1 to 20), and then the best structure was selected. 
The training of the ANN models was stopped when ei-
ther the acceptable level of error was achieved or when 
the number of iterations exceeded a prescribed maximum 
of 2500. The learning rate of 0.05 was also used. 

ANN was implemented using the MATLAB software 
package (MATLAB version 7.2 with neural network 
toolboxes) [14]. 

The performance of ANN, OK and IDW configura-
tions were assessed based on calculating the mean abso-
lute error (MAE), and the root mean square error 
(RMSE). (see Table 2). 

The coefficient of determination,  of linear re-
gression line, between the predicted values from each 
method and the desired output were also used as a meas-
ure of performance. The three statistical parameters used 
to compare the performance of the various method con-   
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*D = sill diameter، W = channel width 

 

Figure 4. Schematic configuration of eight bed sill models used in this study. 
 

Table 1. Hydraulic condition and geometric parameters of the experimental tests. 

Test Case D/W* Discharge (lit/sec) Head water (cm) sill radius (cm) Velocity (m/s) Fr Pier diameter (cm)

1 1 13.3 9 25 0.2955 0.31 5 

2 1 12.64 7.9 25 0.32 0.363 5 

3 1 10 8.3 25 0.241 0.267 5 

4 1 11 9.2 25 0.239 0.252 5 

5 - --- 9.5 7.8 - --- 0.244 0.279 5 

6 1.2 9.5 7.6 30 0.25 0.289 5 

7 1.2 8.4 7.2 30 0.233 0.277 5 

8 1.2 7 5.2 30 0.269 0.377 5 
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where: i  and  are observed and predicted for the 
th output, and 

O it
i iO  is the average of predicted, and N is 
the total number of events considered.    
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Table 2. Performance of all test cases. 

Validation Training 
Test Cases Methods 

MAE RMSE R^2 MAE RMSE R^2 

ANN 1.93 5.48 0.989 0.46 2.14 0.998 

OK 2.99 6.83 0.954 2.73 5.19 0.957 First test case 

IDW 4.31 8.19 0.912 3.74 6.08 0.913 

ANN 4.92 4.39 0.931 1.71 2.85 0.993 

OK 4.45 4.47 0.927 5.47 5.09 0.861 Second test case 

IDW 6.90 5.57 0.918 8.37 6.30 0.831 

ANN 2.62 3.40 0.970 1.64 2.52 0.992 

OK 2.99 3.64 0.945 5.42 4.57 0.844 Third test case 

IDW 3.91 4.16 0.937 6.18 4.89 0.839 

ANN 4.36 5.10 0.951 3.41 4.21 0.971 

OK 3.95 4.91 0.916 3.27 4.12 0.944 Fourth test case 

IDW 4.64 5.32 0.909 3.99 4.56 0.941 

ANN 0.78 4.38 0.997 0.71 3.65 0.998 

OK 1.04 5.05 0.995 1.26 4.88 0.994 Fifth test case 

IDW 1.28 5.61 0.991 1.43 5.19 0.992 

ANN 2.37 3.31 0.931 2.58 1.92 0.980 

OK 4.32 4.47 0.930 11.79 4.11 0.609 Sixth test case 

IDW 4.99 4.80 0.918 11.80 4.11 0.609 

ANN 2.35 6.78 0.937 1.59 5.16 0.980 

OK 3.65 8.46 0.897 3.78 7.96 0.934 Seventh test case 

IDW 3.92 8.76 0.878 2.99 7.08 0.945 

ANN 1.75 3.53 0.987 0.90 2.63 0.998 

OK 2.99 4.62 0.963 3.22 4.98 0.965 Eighth test case 

IDW 3.07 4.68 0.961 2.60 4.47 0.969 

 
Cross-validation analysis was used to evaluate effec-

tive parameters for OK and IDW interpolations and to 
compare the different estimation techniques to determine 
the best approach for accurate prediction data. In 
cross-validation, each measured point in a spatial domain 
is individually removed from the domain and its value is 

estimated by kriging and compared to the actual value as 
though it were never there (Gamma Design Software 
[15]). 

3.2. First Test Case 

In first test case, the tip of the sill was set in the flow 
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direction (in the shape of a convex) and a space of 25 cm 
was set between the sill and bridge pier. The diameter of 
the sill is equal to the flume width. 

In ANN prediction, optimal architecture is determined 
by varying the number of hidden neurons (from 1 to 20), 
and the best structure is selected. It was found that the 
most accurate results involved use of the feed forward 
back propagation with two hidden layers and an archi-
tecture of configuration: 2-7-4-1.  

To evaluate the performance of the ANN, OK and 
IDW, observed local scour depth values are plotted 
against the predicted values. Figure 5 illustrates the re-
sults with the performance indices between predicted and 
observed data for the training and testing data sets, re-
spectively. 

Figures 5(c-f) also exhibit that kriging has a lower 
training error compared with IDW, and its validation 
error becomes lower than IDW. In other words, kriging 
validation results have a lower scatter than IDW. As it 
can be seen from Figure 5(a-b), ANN has performed 
well in predicting the local scour depth. 

Comparing ANN results with those of OK and IDW it 
is found that ANN has the lowest training error and vali-
dation error, then kriging and IDW. Also interpolated 
local scour maps (Figure 6) show that the interpolated 
map of the ANN model is more similar to the interpo-
lated map of the observation map as compared with the 
interpolated map of kriging and IDW. 

3.3. Second Test Case 

In the second test case, the bed sill was set in the flow 
direction (in the shape of a concave) and spaces of 25cm 
were set between the bridge pier and bed sill. Figure 7 
illustrates the results with the performance indices be-
tween predicted and observed data for the training and 
testing data sets, respectively. 

When the methods were compared, the training accu-
racy was significant. It is observed that all models per-
form with poor accuracy in comparison with results of 
the first data set. Comparison between these three valida-
tions of evaluating scour depth in all runs for ANN, OK 
and IDW revealed that the difference in accuracy be-
tween those was not significant. Also the accuracy of 
training in OK and IDW was less than the validation. It is 
shown that these methods are not reliable in this condi-
tion because it cannot predict the training data well. In 
this condition, the ANN model performed well and the 
IDW had the lowest accuracy. The interpolated maps are 
demonstrated in Figure 8. 

3.4. Third Test Case 

In a similar manner, the third condition data was used to 

predict local scour depth with ANN, OK and IDW. In 
this third test case, similar to second test, the bed sill was 
set in the flow direction but the distance between the 
bridge pier and bed sill was set to 15 cm. 

Figure 9 shows the results with the performance indi-
ces between predicted and observed data for the training 
and testing data sets, respectively. Again, the ANN 
model performs well in training and validation. The ac-
curacy of prediction was not considerably different be-
tween OK and IDW and as it is shown in Figure 10. The 
interpolated map of observation data, ANN, OK and 
IDW for the third test case is shown in Figure 10. 

Accuracy of training was more than validation in the 
ANN prediction, whereas in the two other mentioned 
methods, correctness of training was less than the valida-
tion. In other words, the results of the OK and IDW were 
not as precise as for ANN. The accuracy in training of 
ANN was more reliable when compared with OK and 
IDW methods. 

3.5. Fourth Test Case  

The fourth test case was similar to second test, but the 
distance between bridge pier and bed sill was set to 5cm. 
From ANN prediction, the best structure was found to be 
a configuration of 2-4-4-1. 

Figure 11 shows the results with the performance in-
dices between predicted and observed data for the train-
ing and testing data sets, respectively. 

The three interpolated maps of the aforementioned 
methods are very similar (Figure 12) and comparison 
between these three training and validations for evaluat-
ing scour depth in all runs for ANN, OK and IDW re-
vealed that the difference in accuracy between them was 
not significant.  

3.6. Fifth Test Case 

In the fifth test case the bridge pier was set separately in 
the flume. From ANN estimates, unlike the previous four 
conditions, the best result was obtained for a 2-4-4-4-1 
structure.  

The comparison between these three training and 
validations for evaluating scour depth in all runs for 
ANN, OK and IDW revealed that the difference in accu-
racy between these was not significant (Figure 13). It 
was found that the ANN accuracy was better than other 
methods. 

This test was similar to the fourth test where the three 
interpolated maps of the methods were very similar to 
interpolated map of observed data (Figure 14). 

3.7. Sixth Test Case 

This experiment was similar to the second test case,   
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(a)                                                            (b) 

 

     
(c)                                                            (d) 

 

     
(e)                                                            (f) 

Figure 5. Performance of ANN, OK and IDW for the first test case: (a) ANN Validation; (b) ANN Training; (c) OK Valida-
tion; (d) OK Cross Validation; (e) IDW Validation; (f) IDW Cross Validation. 
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Figure 6. Interpolated maps of observed data, ANN, OK and IDW test for first test case. 

 

     
(a)                                                            (b) 
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(c)                                                            (d) 

 

     
(e)                                                            (f) 

Performance of ANN of first test case (convex type); (a) testing, (b) training 

Figure 7. Performance of ANN, OK and IDW for the 2nd test case: (a) ANN Validation; (b) ANN Training; (c) OK Valida-
tion; (d) OK Cross Validation; (e) IDW Validation; (f) IDW Cross Validation. 
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Figure 8. Interpolated maps of observed data, ANN, OK and IDW test for second test case. 

 

     
(a)                                                            (b) 

 

     
(c)                                                            (d) 
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(e)                                                            (f) 

Figure 9. Performance of ANN, OK and IDW for the third test case: (a) ANN Validation; (b) ANN Training; (c) OK Valida-
tion; (d) OK Cross Validation; (e) IDW Validation; (f) IDW Cross Validation. 

 

  
 

  

Figure 10. Interpolated maps of observed data, ANN, OK and IDW test for third test case. 
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(a)                                                            (b) 

 

     
(c)                                                            (d) 

 

     
(e)                                                            (f) 

Figure 11. Performance of ANN, OK and IDW for the fourth test case: (a) ANN Validation; (b) ANN Training; (c) OK Vali-
dation; (d) OK Cross Validation; (e) IDW Validation; (f) IDW Cross Validation. 
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Figure 12. Interpolated maps of observed data, ANN, OK and IDW test for fourth test case. 
 

     
(a)                                                            (b) 
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(c)                                                            (d) 

 

     
(e)                                                            (f) 

Figure 13. Performance of ANN, OK and IDW for the fifth test case: (a) ANN Validation; (b) ANN Training; (c) OK Valida-
tion; (d) OK Cross Validation; (e) IDW Validation; (f) IDW Cross Validation. 
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Figure 14. Interpolated maps of observed data, ANN, OK and IDW test for fifth test case. 
 

     
(a)                                                            (b) 

 

     
(c)                                                            (d) 
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(e)                                                            (f) 

Figure 15. Performance of ANN, OK and IDW for the sixth test case: (a) ANN Validation; (b) ANN Training; (c) OK Valida-
tion; (d) OK Cross Validation; (e) IDW Validation; (f) IDW Cross Validation. 

 

  
 

  

Figure 16. Interpolated maps of observed data, ANN, OK and IDW test for sixth test case. 
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(a)                                                      (b)       

 

     
(c)                                                      (d)       

 

     
(e)                                                    (f) 

Figure 17. Performance of A NN Training; (c) OK Vali-

        

NN, OK and IDW for the seventh test case: (a) ANN Validation; (b) A
dation; (d) OK Cross Validation; (e) IDW Validation; (f) IDW Cross Validation. 
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Figure 18. Interpolated maps of observed data, ANN, OK and IDW test for seventh test case. 
 

     
(a)                                                      (b)       
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(c)                                                      (d)       

 

    
(e)                                                     (f) 

Figure 19. Performance of AN ali-

 

similar to the third case, how-

 

       

N, OK and IDW for the eighth test case: (a) ANN Validation; (b) ANN Training; (c) OK V
dation; (d) OK Cross Validation; (e) IDW Validation; (f) IDW Cross Validation. 

 
however the diameter of bed sill was equal to 1.2 times 
the channel width. 

From ANN prediction, the optimal architecture was 
determined by varying the number of hidden neurons 
(from 1 to 20), and the best structure was selected. It was 
found that best structure has only one hidden layer and 
its architecture has the configuration of 2-17-1.  

Figure 15 shows training and validation results, re-
spectively. Again, the ANN model performs much better 
in training and validation. In OK and IDW the accuracy 
of training is less than validation, but OK showed the 
best results after ANN. An interpolated map of ANN 
(Figure 16) conforms to the interpolated map of ob-
served local scour depth but the OK and IDW interpo-

lated maps are not matched to the observed interpolated
map. 

3.8. Seventh Test Case 

This seventh test case was 
ever the diameter of bed sill was equal to 1.2 times the 
flume width. 

From ANN prediction the best structure was selected. 
It was found that the most accurate results involved use 
of configuration 2-7-4-1. 

Figure 17 depict training and validation results sepa-
rately for ANN, OK and IDW, respectively, for the sev-
enth data set. When these methods are compared, it was 
shown that ANN had the best accuracy and IDW had a  
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Figure 20. Interpolated maps of observed data, ANN, OK and IDW test for eighth test case. 
 

w accuracy. Comparisons between these three interpo-

e bed sill was set in the flow 

or Prediction of 

In  accurate of the three pre-

sented methods, Table 1 represents the results of the 

 the application of artificial neural 
mely the multi-layer perceptron, the 

The results of this study showed that the ANN model 

lo
lated maps show that the interpolated map of ANN is 
very similar to the interpolated map of observed local 
scour depth (see Figure 18).  

3.9. Eighth Test Case 

In the eighth test case, th
direction with a distance of 25cm between the bridge pier 
and bed sill. From ANN prediction the best structure was 
selected. It was found that the most accurate results in-
volved the use of a configuration 2-12-4-1. In the esti-
mate from this test case, like the last seven estimates, 
ANN has better results when compared with the other 
methods (Figure 19) and the difference in accuracy be-
tween OK and IDW isn’t significant, as confirmed by the 
interpolated maps (Figure 20). 

4. Appropriate Methods f
Local Scour Depth  

order to identify the most

research for all conditions. For all conditions, the ANN 
has the best accuracy in training and validation. ANN 
performance shows significant preciseness under every 
condition for the prediction of local scour depth. Only in 
the fifth test case, the difference in accuracy was very 
close for all methods. Performance of OK reveals good 
accuracy, but it has lower precision when compared with 
the ANN performance. In OK and IDW, accuracy of 
training is almost the same but OK has better precision in 
validation performance. Consequently, IDW shows lower 
performance over all conditions. 

5. Conclusions 

This paper outlines
network (ANN), na
ordinary kriging (OK) and the inverse distance weighting 
(IDW) models in the estimation of local scour depth 
around bridge piers where bed sills have been installed. 
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A

rk that includes one hidden layer and 17 hidden
no

Neural Network
Assessment for Scour Dep art-
ment of Civi ersity of Sydney

, San Fran-

eural Networks,”

Local Scour 

porate Screening Data: 

glary and T. W. Sturm, “Numerical Modeling of 

d R. A. Day, “Prediction of Scour Depth 

n of Group 

, “Neural Net-

eu-

 B. W. Melville, “Bayesian 

Neural Network Toolbox for Use with 

urfer Contouring and 

gives more accurate local scour depth predictions than 
the existing methods. As such, it is recommended that the a

NN model be used for local scour depth predictions 
instead of the kriging and inverse distance weighting 
models. 

The ANN with two hidden layers was selected as the 
optimum network to predict local scour depth, whereas 
the netwo  

Hud

des within that layer was the best model to predict 
local scour depth as it is shown in the sixth test case with 
D/W = 1.2 and r = 5 cm. Also three layers was found the 
best model to predict local scour depth for test case with 
no sill as it is shown in the fifth test case. 
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