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ABSTRACT 

The Hardy-Weinberg Equilibrium (HWE) can be linked to game theory. This article shows that payoffs, or resources, in 
a game with alleles as players, determine the frequency of homozygotes. The frequency of aa homozygotes in the HWE 
is an increasing function of the multiplicative difference in own payoffs for each allele. Thus, Mendelian proportions 
are variable rather than fixed depending on the resources for the alleles. Whereas the concept of evolutionary stable 
strategy (ESS) is based on non-cooperative competitive settings such as a competition between doves and hawks, this 
article explores a game theoretic situation where the mating of two alleles is presupposed. 
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1. Introduction 

There is an equilibrium concept that is not used by game 
theorists or by economists but exclusively used by biolo- 
gists. The Hardy-Weinberg Equilibrium (HWE) is the 
name of this equilibrium concept [1]. The HWE explains 
Mendelian proportions from theoretical calculation of the 
allele frequencies [2,3]. This article shows that the HWE 
can be linked to game theory so that game theorists and 
economists can reinterpret the HWE through the lens of 
game theory.  

Maynard Smith proposed the concept of evolutionary 
stable strategy (ESS) which was based on non-coopera- 
tive competitive settings such as competition between 
doves and hawks [4]. This article explores a situation 
where the mating of two alleles is presupposed. This is 
considered as one of cooperative games even though two 
alleles are influenced by the payoff structure. A basic 
notion of mixed strategy equilibrium in game theory 
[5-8] is applied to reinterpret the HWE.  

This article reveals that payoffs for alleles, or re- 
sources for players, determine the frequency of homozy- 
gotes. The main result of this article suggests that Men- 
delian proportions are variable rather than fixed depend- 
ing on the resources for the alleles encountered. Al- 
though this result may not influence the academic inter- 
ests of biologists because the author is not capable of 
reviewing the existing literature in biology, the intro- 
duction of a new equilibrium concept to the field of game 

theory may well develop yet unknown field of research 
as applications of the HWE.  

An example to apply this approach in economic phe- 
nomenon is to investigate diffusion of solar panels on 
household roofs. We can observe a fraction of cases 
where a wife and a husband agree to install the solar 
panel. The wife and the husband have options to choose 
either to consume fossil energy or to install solar panels. 
The resources or the payoffs in this game are influenced 
in various ways such as a subsidy for installing solar 
panels, the budgets of the husband and wife, the amount 
of daytime sun in the region and an electric power com- 
pany scheme to buy surplus electricity from the house- 
hold. The couple pursues an eco-friendly life when there 
are large enough payoffs for their installation. Measure- 
ment of these variables in actual data is left for empirical 
research, however. 

Section 1 shows the basic logic of the HWE. Section 2 
explains how to find a mixed strategy Nash equilibrium 
given payoffs, or resources to be utilized by each allele. 
Section 3 shows that the frequency of aa homozygotes in 
the HWE is an increasing function of the multiplicative 
difference in own payoffs for each allele. Section 4 dis- 
cusses how we can apply the HWE notion to the third 
and fourth generations with different frequencies in al- 
leles. A model in this section shows that mathematical 
structure of the HWE converges on the structure in the 
Wiener process. The concluding section sums up the 
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major propositions. 

2. The HWE with General Probability 

2.1. Basic Model 

Suppose there are two alleles: the first allele is denoted A 
and the second is denoted a [9]. Their frequencies are 
denoted by p and q resectively; ; freq pA  freq ;qa  

. If mating is random, then new individuals will 
have . AA is called homozygotes in the 
population and aa for  is called “aa ho- 
mozygotes”. And Aa for  or aA for 

 is called hetrozygotes. Given that there 
is random mating, we call the two parties male and fe- 
male in Table 1. 

1p q 
freq

 freq aA

  2pAA

qp

  2qaa
 freq pqAa

freq

2.2. Extension of the Specifications 

The ratio of the homozygotes to the hetrozygotes given 
in the above example is p2:2pq:q2. This result is derived 
only when males and females have the same ratio of two 
alleles in their frequencies p and q. Now, suppose males 
and females have different frequencies to create homozy- 
gotes and heterozygotes. Suppose further that males have 
the ratio of p and , and females have the frequency 
ratio of q and . As shown in Table 2, the ratio of 
the homozygotes to the hetrozygotes is; 

1 p
q

 

1

   : 1 : 1 1pq p q p q   1 p q . The HWE in a 
biology textbook [10] begins with a special case where p 
= q. Although this generalization seems to be a trivial 
change in the HWE model, we are now able to connect 
the HWE to game theory. 

3. The HWE and Game Theory 

3.1. Nash Equilibrium 

Table 3 shows an example of payoffs. Table 3 has three 
 

Table 1. Homozygotes and hetrozygotesa. 

Female 

 A a 

A p2 pq 
Male 

a qp q2 

aSee for example [10], p. 41. 
 

Table 2. Unique probability for mating.  

Female 

 A a 

A pq  1p q  
Male 

a  1 p q    1 1p q 

Table 3. Payoff matrix. 

Female 

 Growth Strategy Eco Strategy 

Growth Strategy 20, 20 80, 60 
Male 

Eco Strategy 60, 80 40, 40 

 
Nash equilibria: two of pure strategy and one of a mixed 
strategy. The equilibrium in the pure strategy is a com- 
bination of (Growth strategy, Eco strategy) and (Eco- 
strategy, Growth strategy). These equilibriums satisfy the 
definition of Nash equilibrium where a best response of a 
player coincides with another player’s best response. 

I can calculate the Nash equilibrium in the mixed 
strategy using the probability given in Table 3. The ex- 
pected payoffs for the player one, or the males is;  

      
 

20 80 1 60 1 40 1 1

80 40 20 40

pq p q p q p q

p q q

          

    
 

We see the following relationships. 
If 80 40 0q    then 1 2q  , or 1p  .  
If 80 40 0q    then 1 2q  , or . 0p 
If 80 40 0q    then 1 2q  , or 0 1

roup stra
p  . 

the m  are 
sh

Th es for ale g tegye best respons
own the above. If the coefficient parameter of p, which 

is  80 40q  , is positive, it is equivalent to the proba- 
bil strategic choice of the females which is 
smaller than 

ity q of the 
1 2 . The male group can maximize own 

expected payo  by maximizing p in this situation. 
Therefore, the best response of the male group is to take 
a pure strategy of 1p

ffs

 . If the coefficient parameter 
 80 40q   is nega robability q is larger than tive, p 1 2 . 

 group, the best response is to take strat  
of 0p
For the male egy

 . This means that minimizing p leads to maxi- 
mization of males expected payoffs. When the coefficient 
parameter  80 40q   is 0, which indicates 1 2q  , 
then the ex ffs for the male group d t 
depend on p. 

Expected pa

pected payo oes no

yoffs for females are; 

      
 

20 40 1 1

80 40 20 40

p q

q p p

60 1 80 1pq p q p q          

    
 

We see the following relationships: 
If 80 40 0p    then 1 2p  , or 1q  . 
If 80 40 0p    then 1 2p  , or . 0q 
If 80 40 0p    then 1 2p  , or 0 1

 for the
q  . 

st responses ale 
gr

Fro the be  femm the above 
oup are as follows: when  80 40 0p   , it is equi- 

valent to 1 2p  . The female can maximize q to get the 
highest am of payoffs. The maximum of q is 1. 

80 40 0p
ount 

   , or when probability 1 2p  , q must be 
et the highest payoffs female. The minimized to g for the 
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minimum is zero. These two cases correspond to pure 
strategies. If 80 40p   is equal to zero, then 1 2p  . 
This means xpected payoff for fem
20 40p  , which does not depend on q. 

wo pure strategies are derived

that the e

le

e male grou

ales is 

. One is that fe- 

. Th s the probability of 

Thus, t
ma

rent

les choose the Eco-strategy when the males choose 
the Growth strategy  1, 0p q  . The other is the com- 
bination that the fema he Growth Strategy 
when the male group chooses the Eco-strategy (p = 0, q = 
0). The Nash equilibrium for the mixed strategy is also 
appa

s choose t

p assign
 1 2,1 2  to p and  1 p  for its {Growth strategy, 
Eco-strategy}, and the females allocate the combinations 

 response toof the best  give  1 2,1 2  to q and  1 q  
for its {Growth strategy, Eco-strategy}. We can show 
these results as two reaction fu n Figure 1. 

Calculating the expected payoffs under this mixed 
strategy gives 

nctions i

 
      

 
      

80 40 20 40p q q   

1 2 80 1 2 40 20 1 2 40

50 80 40 20 40

1 2 80 1 2 40 20 1 2 40

50

q p p

    

    

    



 

The males and the females obtain payoffs of (50, 50) 
respectively under the mixed strategy Nash equilibrium. 
Here we can also get 1 2p q  . Consequently, 

   2 2freq 1 4, freq 1 4,q p   aa AA and 
      freq freq 1 1 2p q  Aa aA . 

e HW
min

1p q  
What is more important in relation to th E is that 

the frequency of p and q is simultaneously deter ed by 
the existing conditions of the payoffs for the mixed 
strategy. When biologists calculate the HWE, they ob- 
serve the aa homozygotes which is supposed to be given 
by   2freq qaa  in Table 1. One can see that 
 

     q 

        The Best Response  

of Females 

   1 

 

 

   

1/2 

                                     The Best Response 

                                     of Males 

 

0  1/2       1  p 

 
 

  2freq qaa
example of Ta

 is equivalent to   in our 
ble 2, which is deri e payoff 

matrix in Table 3. Eight payoffs in Table 3 collectively 
decide p and q. Mendelian proportions are not inherited 
but are determined by payoffs, or resources, for the 
alleles. 

Proposition 1. The frequency of the aa homozygotes 
in the HWE is a function of payoffs in a game for two 
alleles. 

I must emphasize that the symmetrical payoffs in Ta- 
ble 3 are not essential. I can easily show that there is a 
mixed strategy Nash equilibrium in the case where there 
is no pure strategy Nash equilibrium. What I can observe 
in Mendelian proportions is   as the fre- 
quency of the aa homozy infer th  
exis ob- 
taining a mixe ilibrium is co

 

 1 1p q 
ved from th

 1 1p q 
gotes and I can e

tence of a game behind it. The generalization of 
d strategy Nash equ nsidered 

in the next section. 

3.2. General Model with Parameters 

There are eight payoffs in the game, or four payoffs for 
each allele. We allocate eight parameters as a payoff ma- 

trix: 
, ,

, ,

a e b f

c g d h

 
 
 

. Let us start from the males’ case 

where we give four parameters, a, b, c and d as payoffs 
for the males. 

      
   

1 1 1 1a pq b p q c p q d p q

p a b c d q b d d  c d q

          

     
 

If 

  

    0a b c d q b d        

then    q b d a b c d      , or 1p  . 

If     0q b da b c d       

then    

Figure 1. Reaction functions of males and females. 

q b d a b c d      , or 0p  . 

If     0a b c d q b d        

then    q b d a b c d      , or 0 1p  . 
We ters e, f, g and h for the payoffs for the 

females’
 give parame

 case; 

      


1 1 1 1e pq f p q g p q h p q

q e f     g h q g h f h p h

          

  
 

     

If     0e f g h p g h        

then   p g h e f g      h , or . 1q 

If     0e f g h p g h        

then    p g h e f g h      , or .  0q 

If     0e f g h p g h        

then    p g h e f g h      , or 0 1q  . 

 can calculate p and q given se parameters. Ac- We  the
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cordin xpec fs of tgly we can calculate the e ted payof he 
mixed strategies. The males obtain; 

     
    
        

  


   
      

q b d c d q d

g h e f g h

a b c d b d a b c d b d

c d b d a b c d d

d b d a b c d

    

     

           

    

    

 

e females obtain their payoff

p a b c d  

c d  

  

and th s; 

      
     

q e f g h p g h f h p h

f h g h e f  h

      

      
 

y the mixed strategy 
for each of the two players do not depend on the other 
player’s payoffs in the game. 

3.3. The HWE Reconsidered 

We obtained in the former section that:  



g h



These results give paradoxical characteristics of mixed 
strategy. 

Proposition 2. Payoffs attained b

  p g h e f g h       

and   q b d a b c d      . 

Let us denote  F e f g h     and 
 M a b c  

Then we get; 
d .  

     
     

      
       

1p q g h a c F M     

1

1 1

p q e f b d F M

p q e

     

     

 

pq g h b d F M

f a c F M

     

 HWE is dependent on 

 the frequency 
of the aa homozygotes, which is supposed  be given by 

, they are looking at 

As shown in Proposition 1, the
the payoff matrix of the game.  

When biologists start off by observing
 to

  2freq qaa    1 1p q   or 

  e  f a c F sitio ssi- 

bi e off a is closer 
to c. In such cases the multiplication of  and 

hes to zero. If both re closer, 
 converges to zero at 

r hand, the difference the 
 such that e and f and c 

heir payoff levels, then t ncy 
  increases.  

y of the aa gotes 
in th
tiv

M in our expo

 is closer to f and/

n. I see the po

lity that payoff or pay
 e f

sults are 
an accelerated 
 between 

/or a and 
he f ue

 homozy

a
then 
pace. If, on 
two pay
have wi
expresse

Prop

c  approac
 1 1p q   

the othe
offs increases
der gaps in t
d by  

osition 3. The 

req
1 1p q 

frequenc
e HWE is an increasing function of the multiplica- 

e difference in own payoffs   e f a c   for each 

allele given    0e f a c    and 

   F M e f a c    . 

and Discussion: The  4. Analys  Third and
the Fo

v

there are two
ion from Figure 2. 

The  homozygotes from the top 
two sequen cases are shown underlined 

ly 
n. 

Th  homozygotes from the 

- 
rit

is 
urth Gene

WE in the third g
first case is to get he aa

ces of aa. These 

ration 

In this article the HWE has been explained through the 
logic of the game theoretic optimal behavior of alleles. 
Howe er, questions remain as to how we understand the 
third and fourth generations that have different frequen- 
cies of alleles. One of the expositions of showing the aa 
homozygotes is shown in Figure 2. The upper line of the 
tree shows an addition of the first allele A and the lower 
line shows the he second alleladdition of t e a. The HWE 
is derived from the observance of the aa homozygotes. 

The question is how one can find aa homozygotes in 
the third generation. I see that  ways to 
obtain the H enerat

 t

in Figure 2. In this case, the third generation direct
inherits the aa homozygotes from the second generatio

e second case is to get the aa
last two sequence for aa, which are depicted by rectangles 
in Figure 2. We can also get the one-fourth of the fre- 
quency for the aa homozygotes among the total popula- 
tion. Both of the cases retain the same ratio of one-fourth 
in the case of the fourth generation. 

The sequence is important because frequencies may 
differ between generations. If we assume that the top two 
sequences of alleles define the aa homozygotes, the 
fourth generation with aa homozygotes is directly inhe

ed from the third generation. This frequency is one 
 

A 

a 

AA 

AAA 

AAAA

Aa 

AAa 

AaA 

aAA 

aA 

Aaa 

aAa 

aaa 

aa 

aaA 

AAAa

AAaa

AaAA

aAAA

AAaA

AaAa

aAAa

AaaA

aAaA

aaAA

Aaaa 

aAaa 

aaAa 

aaaA 

aaaa  

Figure 2. Extensive form of allele sequence. 
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hundred percent. If the last two sequences of allele define 
the aa homozygotes, one half of the parental generation 
for the fourth generation is aa homozygotes. In the case 
of the top two sequences, the fourth generation shows 
aaAA, aaAa, aaaA and aaaa. If we check the third gene- 
ration, we get aaA and aaa as the ancestors. In the case 
of the last two sequences, we see those cases at AAaa, 
Aaaa, aAaa and aaaa. The third generation for them 
consists of AAa, Aaa, aAa and aaa. The third generation 
comes from a wider range for the hetrozygotes. 

We are now able to allocate the probabilities in any 
generations. We see that the probability of AA is pq, of 
Aa is , of aA is  and of aa is 

e can also calculate from Figure 2 the 
at are allo  the third and fourth 

generations.  
The probability distribution in Figure 2 shows a bino- 

mial distribution. Thus we see that the mathematical 
structure of Figure 2 is the same as the structure in the 
Wiener proces e ex- 

 in
H

de that proporti ble
pending on th

a homozygotes from mutation when t
fr

6.

ardy, “Mendelian Proportions in a Mixed Popula- 
. 706, 1908, pp. 49-50. 
.49

and AA homozygotes. These processes seem to be simi- 
lar to the emergence of mutations and the selection process 
of species. 
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