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ABSTRACT 

This paper shows how agent-based stochastic approaches can provide a complementary and more flexible approach to 
study investment incentives and price dynamics in a real options framework. We particularly study the case of two- 
stage production chains in which one sector produces an intermediate product and the other the final product, and the 
intermediate product is traded on the spot market. An agent-based competitive model using a genetic algorithm allows 
us to explicitly model the behaviors and interactions of the firms competing in each subsector and trading the interme- 
diate product with each other on a spot market, and optimal investment strategies can be identified. 
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1. Introduction 

According to the real options approach, irreversible in- 
vestment decisions under uncertainty should consider the 
opportunity costs of deferring the investment decision in 
order to obtain improved information on the involved 
risks ([1,2]). Particularly [3,4] illustrate how option val- 
ues as well as optimal investment triggers can be deter- 
mined. Numerous empirical applications apply the deve- 
loped concepts and show that price uncertainty creates 
investment reluctance beyond risk aversion. The very 
most of these studies ignore strategic aspects and pre- 
sume the uncertainty to be exogenous. This simplifica- 
tion can be justified by [5] who showed that under per- 
fect competition the endogenous price response to de- 
mand shocks leads to price dynamics with identical in- 
vestment triggers, i.e. a myopic investor can ignore com- 
petition. Comparatively little research has been under- 
taken to study the more complex strategic interactions. 
Nevertheless, there are a number of analyses which iden- 
tify equilibrium conditions for game theoretic settings, in- 
cluding [6-8]. A particular strength of these studies is that 
the equilibrium conditions are based on closed-form ana- 
lytical solutions. While this allows the derivation of quite 
general results, also limitations exist such as restrictive 
assumptions regarding e.g. the assumed stochastic proc- 

ess and homogeneity. 
Because of the limitations of the analytical approaches, 

the objective of this paper is to illustrate that agent-based 
stochastic approaches may provide a complementary ap- 
proach to study more flexible settings. Therefore, we 
show how agent-based models can be applied to a real 
options framework and what additional insights into the 
resulting market dynamics they can provide. Starting 
point is a simple two-stage value chain in which one 
sector produces an intermediate product while a second 
sector produces the final product. An empirical applica- 
tion of such a situation is provided by [9] who study the 
pork chain in Finland using a real options approach. The 
pork chain also provides a good example for our setting 
as we can presume a polypolistic market structure, a one 
to one relation between the two sectors as well as a non- 
storable intermediate product. This results in a high vola- 
tility of the intermediate product’s price. To compare the 
alternative production chains, we apply an agent-based 
framework. As an example of a perfectly integrated sys- 
tem, every firm can invest in an integrated system in 
which the intermediate product and the final product are 
produced in equal amounts. In the alternative production 
system, one group of firms can invest in the intermediate 
product, while a second group of firms can invest in the 
final product. The intermediate product is assumed to be 
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traded on a spot market. As source of uncertainty, it is 
assumed that an iso-elastic demand curve for the final 
product follows a random walk.  

Within this setting, the subsectors and the spot market 
interaction are explicitly modeled. Instead of looking at 
the market at an aggregate level, we develop an agent- 
based model which follows a bottom-up approach by 
explicitly modeling the firms and their behavior, as well 
as their interaction. In this discrete-time model, a number 
of agents represent identical firms which compete within 
their subsector and trade with another subsector. The 
firms identify optimal investment strategies for Monte 
Carlo simulations of demand shocks for the final product 
and can invest irreversibly into production assets without 
knowing how the market environment will evolve in the 
future. Producers of the intermediate product and pro- 
ducers of the final product are assumed to be aware of 
the investment strategies and the production capacities of 
other producers, i.e. we presume a rational expectation 
hypothesis. Moreover, the producers of the intermediate 
product are assumed to know the actually existing pro- 
duction capacity of the producers of the final product, but 
not the actual (dis-)investments. Every firm invests ac- 
cording to its individual investment trigger which is de- 
rived by linking Monte Carlo simulations of the agent- 
based model with a genetic algorithm (cf. [10,11]). The 
combination with genetic algorithms allows identifying 
dynamic investment equilibria for polypolistic as well as 
for oligopolistic settings by either using a social or an in- 
dividual learning approach ([12]). As we address a poly- 
polistic market structure, we apply a social learning ap- 
proach. 

The model is adapted to parameters and cost structures 
reflecting pork production in the EU and thus considers, 
as in [9], piglets as the intermediate product and finished 
hogs as the final product. Our analysis shows that the 
closed system and spot market solutions both lead to very 
similar production dynamics. Differences in investment 
behavior are only marginal, even in the case of inelastic 
demand respectively high price flexibility for the inter- 
mediate product. This contradicts what [9] found for pork 
production chains in Finland but the differences can be 
attributed to the different methodological approaches ap- 
plied; e.g. we here model firms’ behaviors explicitly as- 
suming rational expectations instead of looking at the 
market at an aggregate level. 

The outline of this paper is the following. First, the 
model and the application of the genetic algorithm are 
described, followed by a description of the parameters re- 
flecting the pork supply chain which are used in the si- 
mulations. The model is thereafter validated and the simu- 
lation results presented. Summary and conclusions end 
the paper. 

2. Model and Scenarios 

2.1. An Agent-Based Investment Model of a Two  
Stage-Value Chain 

In order to model the interactions between firms within a 
two-stage value chain in which one sector produces an 
intermediate product and the other sector produces the 
final product, an agent based approach is used. This al- 
lows for explicitly modeling the behaviors and interac- 
tions of the firms competing in each subsector and trad- 
ing the intermediate product with each other on a spot 
market. The two-stage scenario is compared with a sce- 
nario of one sector producing the final product in a one- 
stage production system, i.e. a vertically integrated (or 
closed) production system. We begin the model descrip- 
tion by presenting the investment problem in the latter 
case, which is similar to [11,13]. Thereafter we extend 
the model to the case of a two-stage system in which the 
intermediate and final products are produced by the sepa- 
rate sectors and traded on a spot market. 

In a time-discrete setting it is assumed that N firms re- 
peatedly have the opportunity to invest in identical assets 
or a fraction thereof, and that no firm has initially invest- 
ed. The asset stock of firm n has a maximum size of 1 
and can be used by the firm to produce up to , 1t nx 

 
units of output per period. Size, investment outlay and 
production are assumed to be proportional, i.e. there are 
no economies of scale. If a firm invests for the first time, 
its maximum initial investment outlay  is . The 
investment outlay ,t n

max
,t nM I

M  is assumed to be totally sunk 
after the investment is carried out. In every future period, 
a geometrical decay of the asset with a depreciation rate 
  is assumed. However, in every period, the firms can 
invest or reinvest in order to increase production or to 
regain a production capacity of up to one unit of output. 
The total asset of firm  in period  can thus be 
written as: 

n t t 

  ,
, ,1

t t n
t t n t n

M
x x

I
 

                 (1) 

such that max
, 1t t nx    and where ,t nM I is the additional 

available asset in t t   due to investment decision in t.  
Each firm’s investment decisions aim to maximize the 

expected net present value of future cash flows by choos- 
ing an optimal investment trigger, nP . The objective func- 
tion of firm  is thus represented by: n

  ˆmax
n

n n
P

P


                   (2) 

        , , ,
0

ˆ , 1
t

n n t n t t n t n n
t

P E x P c M x P r


 



         
   

(3) 

and where t  is the output price in period t, c is the vari- 
able production costs per unit of output and period, and r 

P
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is the risk-free interest rate. To capture competition, the 
firms and their interaction are represented in an agent- 
based setting in which the firms are represented as agents 
that perceive their environment and respond to it indivi- 
dually and autonomously ([14]).  

The environment of a firm n consists of two parts: the 
behavior of other firms and the demand for outputs. Total 
supply in period t is 

,
1

N
S
t

n
t nX x



                  (4) 

and demand is 

 
D t
t

t

X
P




                (5) 

where   is the elasticity of demand. For the identity of 
demand and supply, (6) must hold: 

1 1

t t
t D S

t t

P
X X

     
    
   

            (6) 

The demand parameter t  is assumed to follow a ge- 
ometric Brownian motion. Assuming discrete time, this 
can be modeled as 

2

exp
2t t t tt t
    

 
        

 





    (7) 

with a volatility  , a drift rate μ, and where εt is a nor- 
mally distributed random number and ∆t is the time step 
length. 

 Firm n invests in period t if the expected price t̂ tP  
is larger than or equal to the trigger price nP . For the 
expected price t̂ tP , the following holds: 

1

ˆˆ
ˆ

t t
t t

t t

P
X

 




 
 
 

  with            (8) 
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The questions now are: Which firms invest and how 
much do they invest? It is assumed that firms with lower 
trigger prices nP  have a stronger tendency to invest. 
Consequently, all firms can be sorted according to their 
trigger prices, starting with the lowest investment trigger, 
i.e., 1n nP P 

M  
1n 



0 M 

 . It is considered that: 1) If firm n does not 
invest in t , firm  will also not invest in t, i.e., 

, , 1t n t n , 2) If firm n does invest in t, then 
firm will invest  in t, i.e.  

, 3) In every pe- 
riod , a marginal (or last) firm t  exists which invests 

,t n
 such that the expected price for the next period is 

equal to the investment trigger of firm , i.e. 

1n 


M
0

1

max
, 1t n

max
, , 1 , 1 1,0 1t n t n t n t nM M M x       

t n

M 

tn t̂ tn
P P

  
with  and 0 1. max0 M M   n N 

tn

 

, ,t n t n t

The investment of firm can be computed according 
to 
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 1 1 n   (11) 

tn can now be identified by iteratively testing all firms 
for 

tn
ˆ n
t tP P






. The last firm with a positive investment 
is . t

Equation (11) is an equilibrium condition: All firms 
which fully invest and hence produce at maximum ca- 
pacity have trigger prices which are less than or equal to 
the trigger price of firm t

n

1n   which is also equal to the 
expected price for t + ∆t. All firms which do not invest 
have trigger prices which are higher than or equal to the 
expected price for t + ∆t. 

For a given set of trigger prices, , and arbitrary ini- 
tializations of 

P

0 , the expected profitability of each 
strategy 

 
    

 

,
0

ˆ

, ,l t n l t n l t n

l t

E x P c P

r


   

 



   




, ,l tM  ,

1

n n

l

P








 

 n 

in

l t nx

fi

(12) 

can be simultaneously determined by a sufficiently high 
number of repeated stochastic simulations of the market. 
Due to the competitive environment and identical produ- 
ction technologies, the expected profitability of a rational 
strategy will fulfill the zero-profit condition given all other 
strategies are also rational. 

Until now, the model reflects a firm’s investment pro- 
blem for a closed production system in which the inter- 
mediate product and the final product are produced in 
appropriate amounts within a production unit. The in- 
vestment cost I is then assumed to cover the costs for 
both production assets, i.e., I I  I , where the italic 

1Note that  is zero if there is no investor in period t. 
tn
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superscripts on the left side denote intermediate and the 
final product respectively. 

The question is now what the consequences of a spot 
market relationship between the producers of the inter- 
mediate and final product for their investment triggers 
are. In such a system, the production capacity of the pro- 
ducer of the final product can be interpreted as a demand 
parameter of the producers of the intermediate product, 
i.e.  

fi inX                  (13) 

Regarding the price formation for the intermediate 
product, a logistic relationship is considered. This allows 
for a maximum price of maxin

tP  to avoid that the expec- 
ted gross margin of the final product is negative as well 
as to ensure that there is a minimum price for the inter- 
mediate product minin

tP , assuring non-negativity of gross 
margins for the intermediate product. Considering iso- 
elastic demand for the intermediate product, then the mar- 
ket equilibrium for the first-stage producers fulfills 

1
max

max
with and

1 e 1
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t t
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a normalization parameter
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The normalization parameter t  ensures that in case 
of identity of production capacities of the two producers, 
the price of the intermediate product is proportional to 
the relation of the price triggers of the final and interme- 
diate products. Rt is to be interpreted as a price response 
coefficient considering the relation of supply and demand 
for the intermediate product where 

Q

in  represents a kind 
of “demand elasticity” for the intermediate product.  

The intermediate producer n invests if the expected 
price for the intermediate product ˆin

t tP  is larger than 
or equal to her trigger price in

nP . Total production of the 
intermediate product in the period t + Δt is  
  *ˆin in

t t nP P  where is the price trigger of the mar- 
ginal investor, n˚. The production of the intermediate 
product by the marginal investor in the period t + Δt is 

*
nP 

1

,*
1 1

ˆ in in
t

in
t

in n N
in n in Max in int t

t t n t nin
n n nn

P
x x

P












  

    x    (15) 

where , i.e. an adaptive price ex- 

pectation is used as a proxy2. Note that in contrast to the 
one-stage case, the net return for the producers of the 
final products  must be adjusted by the price of the 
intermediate product and other variable costs in the sec- 
ond stage, 

   0.8 0.2ˆ ˆ in
t t t tP P P

fi
tG

fi c . Additionally, since the second stage pro- 
ducers would not spend more money on the intermediate 
product and other variable costs than the expected return 
for the final product, the expected minimum net return is 
zero which is formalized in Equation (16): 

1

ˆ0,





if

,otherwise

in fi fi
t t

fi

in fi
t
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G
P c



 


 

fifi
t

fi
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  (16) 

The following is assumed to hold for the second stage 
producers: 

 
fi

fi
fi X t

in
tP




                 (17) 


As for the closed system, the optimal trigger prices, 
fi

nP  and in
nP , are determined by combining the multi- 

firm market models with a genetic algorithm (GA), which 
is described in the following section. 

2.2. The Genetic Algorithm and Its  
Implementation 

Even though many variations of GA exist, some common 
elements can be recognized (cf. [15-18]). The first task of 
a GA application is to specify a way of representing each 
possible solution or strategy as a string of genes located 
on one or more chromosomes. Since our problem is rela- 
tively simple, i.e. we are searching for a single value 
(every strategy consists just of a certain trigger price) and 
we can assume a convex search space, we take the in- 
vestment trigger as a real value and apply the GA opera- 
tors to the nominal value of trigger price. The second task 
is to define a population of genomes to which the genetic 
operators, i.e. selection, crossover and mutation, can be 
applied. The population size is set equal to , the num- 
ber of firms. This allows the direct mapping of the set of 
genomes to the various firms’ strategies, i.e., every firm’s 
trigger price in our model is represented by one genome 
from the genome population.  

N

After random initialization, the genome population 
passes, in every generation, through the steps of fitness 
evaluation, selection, recombination (crossover) and mu- 
tation. These operators are in our model implemented in 
the following way: 

Fitness evaluation: The fitness value is directly deri- 
ved from the strategy’s average profitability for 1000 to 
5000 repeated stochastic simulations of the market model.  

2This formation of expectations is a slight deviation of the rational 
expectations assumption. Alternatively, it can be assumed that inter-
mediate producers are perfectly aware of the investment strategies of 
final producers, and vice versa. This would lead to identical prices of 
the final product as in the perfectly integrated system and thus to iden-
tical investment triggers. The introduction of adaptive expectations can 
therefore be understood as some boundedly rational behaviour. 

Selection: The selection procedure replaces the least 
profitable strategies with the most profitable ones. The 
higher the relative profitability, the higher is the prob- 
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ability for replication.  
Recombination: For recombination or crossover, the 

geometric average of two parent genomes is calculated 
resulting in one offspring which replaces one parent.  

Mutation: Mutation is implemented here by multiply- 
ing every solution by chance (with a small likelihood) 
with a random number within a closed range (e.g., [0.95, 
1.05]. The mutation likelihood, as well as the range of 
the random number, may be chosen according to experi- 
ence or according to the already obtained results.  

These steps are repeated until the model converges (i.e. 
the strategies are similar from one generation to the other). 
A flow diagram of this procedure can be found in Figure 
A1 in the appendix. In one particular point, our GA ap- 
plication deviates from the conventional use of GA for 
optimization problems. Here, the GA is not just used to 
solve a complex optimization problem in which the good- 
ness of the solution respectively the problem at hand are 
directly related. In our case, the goodness of a solution 
rather depends on the alternative solutions generated by 
the GA, i.e., the genomes compete directly. Thus, we are 
applying the GA to a market and we are searching not 
just for an optimal solution, but for an equilibrium solu-
tion (i.e., the Nash-equilibrium strategy). A number of 
publications during the past 15 years show that agent- 
based GA approaches function quite well for analyzing 
such strategic interactions. Examples and discussions are 
given, for instance in [10,19-22]. However, as [12] shows, 
one has to differentiate whether one aims to identify an 
equilibrium for perfect competition or for oligopolistic 
competition. Since we assume perfect competition, in our 
model all agents on each production level (i.e., integrated 
firms, intermediate product firms, final product firms) 
share the same genome population. We thus apply the con- 
cept of social learning [12]. Nevertheless, for the spot 
market model, the genome populations for investment 
triggers on the intermediate and the final product stage 
co-evolve, i.e., optimal triggers on the intermediate and 
the final stage depend on each other. 

2.3. Applying the Model to the Pork Production  
Chain 

The model described above is applied to the pork pro- 
duction chain, in which piglets represents the intermedi- 
ate product used in the finishing (hog) stage. There is a 
one to one relation between the two sectors making this a 
particularly suitable example for our model. The calcula- 
tions are based on an interest rate of r = 6%, a deprecia- 
tion rate of 5% (in the base scenario), and a time step 
length of 0.25. This implies that an investment cost of 

5%  implies a periodical fixed production 
cost of 1 per unit of output. For modeling external mar- 
kets shocks through demand shocks a drift rate, μ, is as- 
sumed to be zero and the volatility, σ, is assumed to be 
either 5%, 10% or 15%. The total time span T simulated 

in every stochastic simulation is determined as 100 years. 
For later periods, the expected returns are set equal to the 
returns in year 100. The possible error can be assumed to 
be negligible since later returns are discounted by more 
than 99.7%. 

 36.0112I 

Regarding production costs, it is assumed that the total 
production cost per piglet is 2.5 (which, multiplied by 20, 
corresponds to 50 € per piglet), of which 1.0 (20 €) is fix- 
ed costs (related to the annual irreversible investment 
cost) and 1.5 (30 €) is variable costs. The production 
costs for pork (per hog) are 3.5 (which multiplied by 20, 
corresponds to 70 € per hog), of which 1.0 (20 €) is fixed 
costs (related to the annual irreversible investment cost) 
and 2.5 (50 €) is variable costs, plus the cost of the piglet. 
These production costs correspond approximately to the 
cost structure of pig production within the EU3. 

3. Validation and Results 

3.1. Validation of the Model 

In order to validate the agent-based model of multiple 
competing farms, it can be shown that the agent-based 
approach leads for the standard case of a one-stage pro- 
duction system to the same dynamics as a direct simula- 
tion of the price dynamics.  

Consider the existence of an equilibrium investment 
trigger P  at which all firms invest and assume that in 
period t t  firms have invested according to t̂P P . 
From Equations (6) and (7) we know that after the in- 
vestment decisions are made, t  purely depends on the 
relation of 

P

t and t t  . Hence, the price in t will be 
2

exp
2t tP P t t
     

         
    .

    (18) 

Consider now that the actual price in period t is 

tP P
t̂ t

. Then the firms will respond and invest such that 
P P

  . For tP P , two cases have to be differenti- 
ated. If  1  t

tP P P
   

t̂ t

then some firms will rein- 
vest, such that P P

  . Otherwise, if  
 1tP

t
P  

 no firm will reinvest and  

P̂ P 1
t

t t t  
 . With this knowledge and in accor- 

dance with Equations (1) to (12) the price dynamics can 
be described as: 

 

  

 

2

2

exp ,
2

if exp ln 1

exp ln 1 ,
2

otherwise.

t

t t

t t t

t

P t t

P t

P P

t t

  

  

    








   
          

    


         
 


P

                     



(19) 

3The figures are within the same range as those reported by [23,24]. 
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Equation (19) represents the discrete time version of a 
so-called regulated Brownian motion, which permits the 
simulation of price dynamics directly, i.e., without the 
explicit representation of firms ([5,25]). Moreover, (19) 
can be used to determine the equilibrium investment trig- 
ger . Repeated stochastic simulations of Equation (19) 
for various values of  should reveal that the zero- 
profit condition will only be fulfilled if  is equal to 
the equilibrium investment trigger. If  is higher, the 
dynamics should allow for profits. If  is smaller, this 
should imply losses. Accordingly, the equilibrium trigger 
price  can be determined by minimizing the square 
of the expected profits, i.e. 

P

P

P

P
P

P

 

     

2

2
, , ,

0

min

, , 1

P

l t

l t n l t l t n l t n n
l

E P

E x P c M x P r






 

   


     
      

  


 

(20) 

with 0P P  and Pt follows Equation (19). 
Figure 1 shows that for identical trigger prices, P , 

and identical αt, the agent-based model and the direct 
price simulation lead to an identical price path. Moreover, 
the direct price simulations lead to identical trigger prices. 
Hence, the direct price simulation validates the results of 
the agent-based approach. 

3.2. Results 

Our results suggest that vertical integration does not 
strongly influence production volume and welfare. This 
is shown by Figure 2. For given dynamics of demand for 
pork, the scenarios lead to very similar price paths. The 
fluctuations in piglet prices in the simulated data arise 
because we assume there is not an exact adjustment of 
piglet production to the hog finishing capacities (this is 
implied by Equation (14)).  

Table 1 presents the trigger prices for investments 
under alternative assumptions concerning the parameter 
values for demand elasticities and volatility. For a given 
demand elasticity, the trigger prices for pork in the closed  
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P
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Year
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Figure 1. Price dynamics in the agent-based model and in 
the direct price simulation (identical trigger prices for all 
genomes). 
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Figure 2. Price paths as results from alternative scenarios 
(identical trigger prices, P*, and demand parameters, αt, for 
pork assumed,  . ,  pi ho 0 05    ho pi 1 2  , and  

 10% ). 

 
systems do not differ substantially from the trigger prices 
of the spot market solution. In general, the difference is 
below 0.1% of the trigger price respectively 0.5% of the 
difference between the trigger price and the total produc- 
tion cost4. Thus, our results suggest that from a pure real 
options perspective, a stronger vertical integration does 
not significantly increase investments. This result contra- 
dicts the empirically-based results of, e.g., [9]. This may 
be explained by our implicit assumption of rational ex- 
pectations regarding the behavior of competitors as well 
as the information about the current production capacities 
on the other production stage. This, however, is not un- 
realistic considering that public statistics usually provi- 
des information about production capacities of piglet and 
pork producers. Moreover, capacity differences are usu- 
ally reflected in market prices, which give signals to in- 
vest or disinvest in reasonable time. In the following ana- 
lysis, the assumptions of σ = 10% and  

1 2ho pi     will be used (estimated demand elas- 
ticities for pork that can be found in the literature are 
often around −0.55). 

In order to analyze the impact of the price flexibility 
on the spot market for piglets, demand elasticities for 
piglets have been varied. In Table 2, it is illustrated that 
the trigger prices are not affected substantially when 
varying the demand elasticity for piglets. Accordingly, 
the above presented findings can be considered as robust 
against assumptions regarding the definition of the piglet 
prices. 

A variation of the useful lifetime of the breeding barns 
(represented by the depreciation rate) changes the price 
dynamics for piglets. This is illustrated in Table 3. How- 
ever, variations of the depreciation rate of breeding barns 
do not affect the trigger price for finishing barns strongly. 
Higher depreciation rates for piglet breeding barns lower 
their trigger price as a consequence of the higher flexibi- 
lity of piglet production. Vi e versa, lower depreciation c       
4If we would consider that piglet and pork producers would be per-
fectly aware of the investment behaviour of each side, identical trigger 
prices for closed systems and market interaction would be achieved. 
5E.g., [26] obtained an elasticity of demand for pork of −0.47.

Copyright © 2013 SciRes.                                                                                 JMF 
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Table 1. Trigger prices in closed systems and spot market solutions for different demand elaticities .  .  0 05 pi ho

Closed system Spot market Relations 
 

η P  
ho pi   piP  hoP  

hoP C  hoP P   ho X X   

−2 6.037 −2 2.515 6.037 1.006 1.000 1.000 

−1 6.072 −1 2.530 6.073 1.012 1.000 1.000 

−1/2 6.140 −1/2 2.560 6.141 1.024 1.000 1.000 

−1/3 6.200 −1/3 2.583 6.205 1.034 1.001 1.000 

σ = 5% 

−s1/6 6.338 −1/6 2.684 6.346 1.058 1.001 1.000 

−2 6.188 −2 2.575 6.188 1.031 1.000 1.000 

−1 6.368 −1 2,653 6.369 1.062 1.000 1.000 

−1/2 6.677 −1/2 2.783 6.687 1.115 1.001 0.999 

−1/3 6.934 −1/3 2.891 6.943 1.157 1.001 1,000 

σ = 10% 

−s1/6 7.325 −1/6 3.037 7.345 1.224 1.003 1.000 

−2 6.430 −2 2.680 6.436 1.073 1.001 0.998 

−1 6.825 −1 2.836 6.829 1.138 1.001 0.999 

−1/2 7.459 −1/2 3.082 7.470 1.245 1.001 0.999 

−1/3 7.882 −1/3 3.220 7.910 1.318 1.004 0.999 

σ = 15% 

−s1/6 8.297 −1/6 3.237 8.349 1.392 1.006 0.999 

 
Table 2. Trigger prices in closed systems and spot market solutions for different demand elasticities for piglets ( , 1 2ho  

). .   0 05 and 10%  pi ho

P  
pi  piP  hoP  

−2 2.776 6.687 

−1 2.778 6.687 

−1/2 2.783 6.687 

−1/3 2.806 6.688 

6.677 

−1/6 2.871 6.694 

 
Table 3. Trigger prices depending on depreciation rates  ,   1 2 10%  ho pi . 

Closed system Spot market 

  (in %) P
 

pi  (in %) ho  (in %) piP
 

hoP
 

5% 6.677 

5% 

10% 

20% 

5% 

2.783 

2.669 

2.631 

6.687 

6.672 

6.650 

10% 6.245 

5% 

10% 

20% 

10% 

2.764 

2.604 

2.545 

6.259 

6.251 

6.246 

20% 6.036 

5% 

10% 

20% 

20% 

2.769 

2.585 

2.506 

6.058 

6.045 

6.044 
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rates for piglet breeding barns lead to a higher volatility 
of the piglet prices and therefore to higher trigger prices.  

Figures 3 and 4 illustrate the dynamics of prices for 
hogs and piglets for different depreciation rates for 
breeding barns (  and  for  

). Note that if the depreciation rates for piglet 
and hog producers are equal, higher depreciation rates 
lead to lower trigger prices and vice versa. Higher depre- 
ciation is equivalent to higher flexibility of adjustment. 
That is to say, investments with high depreciation rates 
can be considered as less irreversible and thus also in- 
vestment reluctance is lower. On the aggregate level, this 
means that production can relatively quickly respond to 
negative demand shocks. In [25] it is shown that the de- 
preciation rate corresponds to a positive drift rate for 
prices. In the case that depreciation rates differ within a 
supply chain, this allows in certain situations the sector 
with the higher depreciations rate to exploit the upstream 
(downstream) sector. 

 20%pi    5%pi 
10%ho 

Although the experiments show that certain assump- 
tions regarding elasticities and depreciation rates have an 
impact on investment triggers of the different production 
steps, our general result is that from a pure real options 
perspective, closed systems are hardly superior to market 
solutions.  

4. Summary and Conclusions 

Participants along a production chain which exchange 
intermediate products on spot markets face price risks  
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Figure 3. Price dynamics for  and   10%ho  20%pi

 ,   1 2 10%  ho pi . 
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Figure 4. Price dynamics for  and   10%ho  5%pi

 ,   1 2 10%  ho pi . 

such as a certain transmission of price fluctuations of the 
final product. In a real options environment this uncer- 
tainty may cause investment reluctance on the different 
steps of the production chain. This paper analyses whe- 
ther stronger vertical integration along the production 
chain reduces investment reluctance. For this purpose an 
agent-based competitive model of production chains was 
developed in which firms use optimal investment strate- 
gies identified by genetic algorithms. Two production sys- 
tems were compared: As an example of a perfectly inte- 
grated system, it was considered that every firm can in- 
vest in closed systems in which the intermediate produc- 
tand the final product are produced in equal amounts. In 
an alternative production system, firms can either invest 
in the intermediate product or the final product. The in- 
termediate product is traded on a spot market.  

Our simulations showed that the spot market solution 
and the closed system lead to practically the same pro- 
duction dynamics. The only precondition is that for the 
spot market system, producers of the intermediate prod- 
uct and producers of the final product have a good guess 
of the investment strategies and production capacities of 
other producers. This general finding is independent of 
different depreciation rates of the production steps, though 
the price dynamics for the intermediate product is strong- 
ly affected by the relation of depreciation rates on the 
different levels of the chain.  

At first glance, our results may be intuitively surpris- 
ing, but this is in accordance with several other surpris- 
ing insights provided by the real options theory, for ex- 
ample, that myopic investors who ignore the impacts of 
competition behave efficiently ([5]) or that real options 
theory does not justify price stabilization policies ([27]).  
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Appendix 

 

Figure A1. Flow diagram of the agent-based simulation approach. 
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