
Journal of Software Engineering and Applications, 2013, 6, 30-40
http://dx.doi.org/10.4236/jsea.2013.64A005 Published Online April 2013 (http://www.scirp.org/journal/jsea)

Source-to-Source Translation and Software Engineering

David A. Plaisted

Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, USA.
Email: plaisted@cs.unc.edu

Received February 5th, 2013; revised March 7th, 2013; accepted March 15th, 2013

Copyright © 2013 David A. Plaisted. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Source-to-source translation of programs from one high level language to another has been shown to be an effective aid
to programming in many cases. By the use of this approach, it is sometimes possible to produce software more cheaply
and reliably. However, the full potential of this technique has not yet been realized. It is proposed to make source-
to-source translation more effective by the use of abstract languages, which are imperative languages with a simple
syntax and semantics that facilitate their translation into many different languages. By the use of such abstract lan-
guages and by translating only often-used fragments of programs rather than whole programs, the need to avoid writing
the same program or algorithm over and over again in different languages can be reduced. It is further proposed that
programmers be encouraged to write often-used algorithms and program fragments in such abstract languages. Libraries
of such abstract programs and program fragments can then be constructed, and programmers can be encouraged to
make use of such libraries by translating their abstract programs into application languages and adding code to join
things together when coding in various application languages. This approach can also improve program reliability, be-
cause it is only necessary to verify the abstract programs once instead of verifying them separately in each application
language. Also, this approach makes it possible to generate code faster than programming from scratch each time. This
approach is compared to the use of libraries and to other methods in current use for communication between program-
ming languages and translation between languages.

Keywords: Source-to-Source Translation; Libraries; Legacy Code

1. Current Software Practice

Problems with producing and maintaining software are
well known. For example, Hinchey et al. [1] write “While
hardware dependability has increased continually over
the years, and with mean time to failure (a measure of
dependability) for the most reliable systems now ex-
ceeding 100 years, software has not kept up with this
pattern and indeed has been exhibiting declining levels of
dependability.” Denning and Riehle [2] write “Approxi-
mately one-third of software projects fail to deliver
anything, and another third deliver something workable
but not satisfactory. Often, even successful projects took
longer than expected and had significant cost overruns.
Large systems, which rely on careful preplanning, are
routinely obsolescent by the time of delivery years after
the design started.” The problems of buggy software in
big data applications are also highlighted in [3].

The problem is exacerbated by the need to rewrite
programs over and over again for different languages and
machines. Such rewriting would not be necessary if it

were possible to translate programs, or portions of pro-
grams, from one high-level language to another so that
they would not have to be written from scratch in each
language. This would be especially helpful for high-
level imperative programming languages with side ef-
fects, arrays, and pointers or structures, because such lan-
guages tend to be efficient and are widely used. Pro-
grams that do such translation have been written, and are
called source-to-source translators.

2. The Potential of Source-to-Source
Translation

The widespread use of source-to-source translation for
imperative languages would help software engineering if
such translators could be written and if it were easier to
translate an existing program in another language than to
program from scratch. Under these assumptions, coding
would be faster and the resulting programs would be
more reliable because they would be more widely used.
In addition, programs might last a lot longer than they

Copyright © 2013 SciRes. JSEA

Source-to-Source Translation and Software Engineering 31

currently do; if their original language became obsolete,
they could be translated into other existing languages,
and thus become effectively immortal, that is, their life-
time could be effectively as long as civilization continues
in its current form. They could also be more widely used,
because they could be translated into other languages.
This would aid program reliability, because programs
that last a long time and are heavily used tend to be more
reliable. Furthermore, people would be more likely to
write programs carefully if they knew that the programs
would be preserved a long time and widely used.

Source-to-source translation has been studied by va-
rious researchers, and is often used together with pro-
gram optimization. However, it has also been used even
without program optimization, and in this way can still
be of great benefit. Translators that do not optimize pro-
grams but simply preserve the same program structure
from one language to another have significant potential
for software engineering. Such translators are also easier
to write and faster to execute than those that perform
substantial program optimization. It is also important for
the translation to preserve execution speed as far as pos-
sible, so that the resulting program is nearly as fast as the
original. The translator also should translate correct pro-
grams into correct programs, and should be automatic, as
far as possible. The translator may not work on all source
programs, but it should work on as many as possible.

However, even if the translator is not fully automatic
or fully verified, it can still be helpful. Requiring some
human interaction in the translation process or requiring
some coding can still be easier than coding everything
from scratch. If the resulting program is not guaranteed
to be correct, then it can be tested and debugged; if the
program is close to correct, this may still be easier than
writing it from scratch. Some language features may be
difficult or impossible to translate automatically, but the
translator can still be of use on programs or portions of
programs not containing these features.

As an example of parts of languages that may not be
translatable, Bates [4] writes “But in the following de-
cade, the industry reversed course, choosing C and later
C++, which not only allow, but routinely require, highly
unsafe methods scarcely above the assembly-language
level, with huge regions of semantics that are explicitly
disavowed as ‘undefined.’” Such regions of language
may not be possible to translate, unless subsets of them
are better behaved.

Formally, one can define a program fragment to be a
portion of a program that is a syntactic unit, such as a
procedure, a statement, or a sequence of statements. Then
associated with each source-to-source translation there
would be a core, or set of fragments, on which the trans-
lation can be done. Of course, different translators may
have different cores; the larger the core, the more comp-

licated and time-consuming the translation process may
be. It may also be convenient to define abstract lan-
guages, which are languages with a simple syntax and
semantics, making it easier to translate the entire lan-
guage into other high-level imperative languages. Figure
1 illustrates translating an abstract language into n appli-
cation languages. For the sake of efficiency and applica-
bility, such abstract languages should be imperative lan-
guages with side effects, arrays, and pointers or struc-
tures.

Source-to-source translation could be of greatest bene-
fit to programmers if program libraries were available
having program fragments in various languages and tran-
slators into other languages. Associated with each pro-
gram fragment would be a specification, or text descrip-
tion, and there would be a means of searching the library
for fragments having a given specification or description.
It might be helpful for the programmer to be able to
specify the names of certain variables and procedures in
the target program. Then programming would involve
searching for program fragments in various languages,
translating them to the same language, putting them
together, possibly adding some code by hand, and testing
portions of the target program at various stages in this
process.

For this purpose, it is not necessary to have translators
between every pair of programming languages. Instead, it
may be possible to translate between two languages
through a series of intermediates. For example, if there is
an abstract language A with translations into and out of
languages P1, P2, …, Pn, then it is possible to translate
between any two languages Pi and Pj by going through A.

This only requires 2n translators to translate between n
languages. Other arrangements are possible; for example,
one can arrange languages in a tree structure, with trans-
lations in both directions along each edge of the tree. It is
also possible to translate between n languages by putting
them into a loop, but this may require many translation
steps to get from one language to another.

3. Legacy Code and Algorithms

Source-to-source translation is often thought of in
connection with legacy code, which is large application
code written by industry or another organization that
originates from an earlier software release. “These legacy

Figure 1. An abstract language.

Copyright © 2013 SciRes. JSEA

Source-to-Source Translation and Software Engineering 32

systems often date from 1970’s when the concepts of
proper software engineering were relatively new and
proper documentation techniques were not a concern” [5,
p. 18]. Such code may represent decades of development
effort [6, p. 343]. Frequently large portions of operating
systems are legacy code from previous versions of the
system. Much legacy code is still in COBOL or Fortran,
languages that are not widely taught today. This code
frequently contains errors and security vulnerabilities and
is not well understood. Sometimes good documentation
may be lacking, and sometimes the source code is not
even used or has been lost and the code is run in binary.
Legacy code may be expensive to maintain because it is
poorly understood, runs on obsolete hardware, lacks a
clean interface, or is difficult to modify. Legacy systems
continue to be used by industry “because of the prohi-
bitive cost of replacing or redesigning them, despite their
poor competitiveness and compatibility with modern
equivalents” [7, pp. 601-602]. Most of the time this code
is run in its original language and interfaced to from
more recent code, possibly by message passing. A sys-
tem often used for this is the MPI message passing
interface [8].

For large, poorly understood legacy code containing
errors, source-to-source translation is of limited value.
Translating such code into a more modern language does
not eliminate the errors or make the code easier to under-
stand; the translated code may even run slower and be
harder to understand than before. However, sometimes it
is necessary to modify legacy code due to changing re-
quirements, and translation to another language may
make the code easier to modify and maintain. Some le-
gacy code is even in a current language but still may
have errors and be poorly understood. Of course, for such
code, source-to-source translation is most likely not
helpful.

In addition to legacy code, which is used for appli-
cation programs, there are many other programs that may
be smaller, well-understood, well-structured, and well-
commented, but for which it would help to translate the
code into a currently maintained language. An example is
a program written by students, or a general algorithm
such as a maximum flow algorithm or programs for
red-black trees. Such general programs or modules are
not likely to have many operating system calls, goto
statements, or unusual parameter passing methods, which
can be difficult for source-to-source translation. General
algorithms are likely to have a clean, simple specification
and be used by many different persons and organizations,
unlike legacy code, which is typically used by a single
organization. General algorithms are also most likely
written over and over again in many different languages
or even in the same language by many different people. It
is likely that a programmer, in the course of writing an

application program, will use many such modules, and
the resulting application program will call each module
many times. Communicating with such modules or al-
gorithms using messages, which is commonly used for
legacy code, does not seem as desirable for such modules;
it introduces inefficiencies and may be difficult to im-
plement in some cases, such as recursion. Use of mes-
sage passing may also make verification and compiler
optimization more difficult.

These things make the cost tradeoffs for general
algorithms different than for legacy code; because such
general programs tend to be small and frequently used
and called, it makes more sense to invest extra effort to
make them translatable into many languages, as opposed
to complex legacy code used by one organization. For
widely used, general modules, source-to-source trans-
lation is a viable alternative to writing the program again
from scratch in many different languages. Such widely
used programs are the main concern in this discussion
rather than legacy code. A better source-to-source trans-
lation methodology could even encourage the develop-
ment and availability of many such widely used modules
and thereby make programming easier. Still, if there are a
large number of calls to legacy code, translation of this
code into a currently used language would improve effi-
ciency because the interface to the code would be faster.

It is possible that in the future people will decide to
use message passing even for interfacing with general
modules in other languages; it is hard to predict the
course people will choose to follow. This approach would
avoid the need for source-to-source translation for this
application. In general, it is not reasonable to expect all
programs to be written in the same language because
different languages are suited to different applications.
Therefore it is sometimes better to interface programs or
algorithms in different languages instead of translating
everything to the same language.

Another possibility would be to have a multi-language
library with common algorithms written from scratch in
many different languages. If one wanted an implemen-
tation of red-black trees in some language, for example,
one could go to such a library, look up red-black trees,
and find programs for them written in many languages.
Of course, this approach requires more storage than
having a single program and translators from it into many
languages. Also, when a new algorithm is added to such
a library, it requires considerable work to program it in
many languages; if translators were available, the algo-
rithm would only have to be coded once in a form
suitable for translation into other languages. Furthermore,
use of a verified translator would increase reliability
because it would not be necessary to verify so many
different programs that do the same thing in different
languages.

Copyright © 2013 SciRes. JSEA

Source-to-Source Translation and Software Engineering 33

4. Past Work

The source-to-source approach has been considered by a
number of authors, and various systems are or have been
in use.

Some systems that have been implemented or consi-
dered, use the source-to-source approach for translating
between languages without attempting to optimize the
code. For example, Wallis [9] considers automatic trans-
lation of other high-level languages to Ada. He mentions
that various systems have been implemented or designed,
but emphasizes their limitations. He considers that code
may have to be redesigned to take advantage of the
features of Ada, that translated code may be difficult to
maintain, and that certain features of other languages
may be difficult to translate into Ada. His emphasis is on
totally automatic translation of an entire high-level lan-
guage into Ada.

Albrecht et al. [10] discuss the translation between
Ada and Pascal. They define subsets of each language
and only translate between these subsets. These sub-
languages were not easy to define. The translations
preserve the semantics and structure of a program from
one language to the other. The translations are mostly
local in nature. They believe that this methodology can
be applied to any two high-level languages.

Huijsman et al. [11] also consider translating Algol 60
into Ada. They note that there have been many attempts
to translate programs between languages, even in 1986.
They also note that it is difficult or even impossible to
translate some Algol 60 constructs into Ada, particularly
in the areas of goto statements, parameter passing, and
interaction with the operating system. However, they
note that “in a large number of cases large parts of the
Algol 60 programs can be translated mechanically”
(Huijsman et al. [11], p. 48). Overall, they found that 80
to 90 percent of Algol 60 code could be translated auto-
matically. Sometimes a manual coding of the remaining
10 to 20 percent requires a restructuring of the entire
program. Still, they conclude that such a translation can
be worthwhile for large amounts of source text. They
note also that maintainability of the translated code can
be a problem; if the maintenance is done on Algol 60
code, then the manual part of the coding must be done
repeatedly, and if it is done on the Ada code, then this
code tends to be hard to read and understand.

Plaisted [12] gives an abstract language and methods
for translating it into other languages. This language is
imperative in nature, with arrays, pointers, and side-ef-
fects. However, the level of presentation is fairly abstract,
without specifying in detail the semantics of pointers, for
example. There are some corrections to this paper
available from the author.

Another example of the language translation approach
is the “filtering” approach [13]. In this paper, parsers of

languages are expressed in pure Horn clause logic pro-
gramming. The denotational semantics of languages are
also expressed in pure Horn clause logic programming as
functions from parse trees to semantics. Then one writes
a logic program asserting that two programs in two
different formalisms have corresponding semantics. By
running this logic program, one obtains a translator from
a program in one language to an equivalent program in
another language. Because everything is expressed de-
claratively, the system is guaranteed to be correct, as-
suming all the Horn clauses are correctly specified. This
system has been implemented and applied to some lan-
guages with quite complex specifications. This is really a
platform for writing translators, in which some trans-
lators have been implemented.

One issue with the filtering approach is specifying the
denotational semantics of high-level imperative program-
ming languages with side effects, arrays, and pointers or
structures. Another is making the logic program effi-
ciently executable. There is no inherent guarantee that
the logic program will be efficient or will even terminate
(especially because it is in pure Prolog), so it must be
written carefully to ensure its efficiency.

Brant and Roberts [14] discuss the SmaCC application,
which has been used to create a wide variety of trans-
formations ranging from simple refactorings to much
larger ones, such as converting entire code bases between
languages. They write, “The SmaCC Transformation En-
gine has been used by the presenters for transformations
ranging from a custom Java refactoring that took 15
minutes to create, to a source code migration project that
converted a 1.4 million line Delphi project into C# with-
out halting the development process.”

Andrews et al. [15] write, “Automated source-to-
source translation is an attractive vehicle for migrating
legacy code out of a proprietary programming language.
The techniques described here are motivated by the need
to translate software comprising millions of lines of code,
of which hundreds of thousands of lines are shared
interfaces which contain many thousands of macros” (p.
281). “Source-to-source translation to a standard, por-
table, and widely-available language, such as C, has been
shown to be an excellent means of making exotic langu-
ages available on many platforms” (p. 282). The authors
discuss translations that preserve the structure of macros
and files in the context of the Rosetta system that
translates pTAL to C++. This preservation makes the re-
sulting code more readable and easier to maintain. They
define fragments as portions of a program and translate
fragments in one language to fragments in another.

Tansey et al. [16] discuss source-to-source transfor-
mation of JAVA code to JAVA with annotations. They
write, “We demonstrate the effectiveness of our approach
by automatically upgrading more than 80 K lines of the

Copyright © 2013 SciRes. JSEA

Source-to-Source Translation and Software Engineering 34

unit testing code of four open-source Java applications to
use the latest version of the popular JUnit testing frame-
work” (p. 295).

From these references, it should be clear that source-
to-source translation from one language to another, or
from one version of a language to another, is in many
cases possible and profitable. The emphasis of this work
is on preserving the structure of a program using mostly
local information, and not on decreasing the running time.
It may be necessary to restrict the translation to subsets
of the original language to make this approach feasible,
and in some cases, manual translation of parts of the
program may be necessary. Of course, these references
are only a small sample of the work that has been done in
this area.

Also, Trudel et al. [17] discuss source-to-source trans-
lation of C to Eiffel, Verdoolaege et al. [18] discuss a
source-to-source compiler of a sequential program for
parallel execution on a modern GPU, and Song and Ti-
levich [19] discuss preserving non-functional aspects of
languages in source-to-source translations,

Source-to-source translation has also been used for
program optimization or development in a given lan-
guage. For example, LLVM (the low level virtual ma-
chine [20]) can translate from any language supported by
GCC (C, Ada, C++, Fortran, Objective C, Objective C++,
or Java) to C, C++, or the common intermediate language
CIL (MSIL) [21]. LLVM includes extensive analysis,
transformation, and code optimization facilities. One of
the LLVM projects even uses a theorem prover to
evaluate symbolic paths through a program. Also, ROSE
[22], developed at Lawrence Livermore National Labo-
ratory, can generate source-to-source analyzers and
translators for multiple source languages including C,
C++, and Fortran. The intermediate representation (IR)
used in ROSE is an abstract syntax tree, preserving all
information from the source code, and is a possible
candidate for an abstract language, as are other interme-
diate languages. ROSE includes tools for static analysis,
sophisticated program optimization, arbitrary program
transformation, domain-specific optimizations, complex
loop optimizations, performance analysis, and cyber-se-
curity.

As another example of this approach, Standish et al.
[23] discuss using interactive source-to-source transfor-
mations in the context of program improvement and
program refinement.

Arsac [24] considers node-splitting transforms, which
do not modify execution history and are asserted to be
complete, as well as other transformations that modify
the execution history. Used in an interactive system,
these transformations are applied to program manipu-
lation and development. For example, these rules some-
times permit recursive programs to be transformed to

iterative ones.
Cameron and Ito [25] discuss metaprogramming for

source-to-source program transformation, taking a high-
level program and producing another, more efficient
program in the same language. Their approach can be
applied to transformation of programs or program frag-
ments in the context of program development, but it also
has other applications.

Source-to-source transformation can also be used to adapt
a program to a different machine architecture. As an ex-
ample, Kuck et al. [26] are concerned with FORTRAN
compiler optimizations for several different types of high-
speed architectures, but their approach can be applied to
many high-level languages.

Lee et al. [27] discuss programming for general pur-
pose graphics processing units (GPGPU’s). They present
a compiler framework for automatic source-to-source
translation of standard OpenMP applications into CUDA-
based GPGPU applications. OpenMP is convenient for
programming, but CUDA from NVIDIA permits the use
of graphics processing units with increased execution
efficiency.

Basumallik et al. [28] “present compiler techniques for
translating OpenMP shared-memory parallel applications
into MPI message passing programs for execution on
distributed memory systems” (p. 189).

There are other approaches besides source-to-source
translation that permit programs in different languages to
work together. As one example, the .NET system deve-
loped by Microsoft can combine programs in many
languages (the CLI languages) and permit them to work
together [29]. This system therefore has advantages in
that programs written in one language can be used with
programs written in another language. However, it re-
quires current versions of all compilers for supported
languages to be included in the system, increasing its
complexity.

Molloy et al. [30] discuss testing equivalence of pro-
grams in different languages. Their approach is appli-
cable for testing the code produced by a source-to-source
translator to ensure that it is equivalent to the original
program. Their system found bugs in their source-to-
source translator, as well as bugs in the compilers of the
original and target languages, and other types of defects.
Concerning the general topic of source-to-source trans-
lation, they write, “Automated source-to-source trans-
lation is an attractive vehicle for migrating legacy soft-
ware out of a proprietary programming language. Auto-
mated translation that preserves macros and source file
structure is the most practical, economical, and reliable
way to reduce and eventually eliminate dependence on a
less desirable programming language while supporting
huge bodies of legacy software…We have developed the
Rosetta Translator, which implements this method. It has

Copyright © 2013 SciRes. JSEA

Source-to-Source Translation and Software Engineering 35

been used to translate software comprising millions of
lines of code, of which hundreds of thousands of lines are
shared interfaces” (p. 97).

5. Comments on Past Work

From the preceding references it is clear that many
people are using source-to-source translation to advan-
tage, so although the technique was rejected in the past
for Ada, it is being widely used today. Sometimes it is
difficult to know if the described systems are fully auto-
matic or guaranteed correct, but the work is relevant
either way. Even a system that requires some human
interaction and some testing at the end still can be a
significant help in software design. Of course, it is better
if the system is automatic and guaranteed correct.

The translations defined by Albrecht et al. [10] used
mainly local information, preserved the structure of the
original program, and only applied to a subset of the ori-
ginal language. This gives us an indication of the kinds
of translations that may be most helpful for avoiding reco-
ding the same algorithm in many different languages.

At least the past work shows that it is possible to
define large translatable subsets of languages and trans-
late efficiently between them using mostly local informa-
tion, even for fairly complex high-level languages. Thus
the source-to-source approach is feasible.

Some of the past works (Wallis [9], Huijsman et al. [11])
rejected or questioned the source-to-source approach be-
cause it could not be made fully automatic or guaranteed
correct, thus setting the bar too high. These researchers
also required the source-to-source system to translate the
entire program automatically, and to work for all pro-
grams. The fact that a small untranslatable portion of the
program could require reprogramming the rest in some
cases was also given as a reason to reject this approach.

Huijsman et al. [11] and Wallace [9] also mentioned
the problem of maintaining the target program for
source-to-source translation. However, if the structure of
the program is largely preserved, as Albrecht et al. [10]
and Andrews et al. [15] mention, then similar variable
names can be used in the original and target programs,
and comments can be inserted in corresponding places,
making the target program easier to maintain without
reference to the original program. Also, Andrews et al.
[15] and Molloy et al. [30] feel that if the translation
preserves macros and source file structure, then the target
program can be maintained without reference to the
original language.

Another problem with some of the previous work is
that it was restricted to translations from other languages
into Ada. Current languages may have greater applica-
bility to source-to-source translation.

It was mentioned by Huijsman et al. [11] that the 20
percent of a program that needs to be coded by hand can

sometimes cause the remaining 80 percent to need reco-
ding, too; this is not necessarily a serious problem be-
cause such recoding may only be needed a small portion
of the time, and even when it is, advances in program-
ming languages such as abstract data types, objects, and
encapsulation may restrict this problem further.

6. Possible Future Research Directions

Despite the successful use of source-to-source trans-
lation in the past, the full potential of this approach has
not been realized. It is still frequently necessary to write
the same programs over and over again in different lan-
guages. Examples of such programs include standard
searching and sorting algorithms, algorithms for dic-
tionaries, graph algorithms, maximum flow algorithms,
number theory algorithms, encryption algorithms, fast
Fourier transforms, string searching algorithms, and
many, many more. Programs written by students in the
past often become unusable because of a change of ma-
chines, languages, or versions of languages. This should
not be so. Once a program is written, it should be possi-
ble to execute it at any later time despite changes in ma-
chines or languages. If the language or machine changes,
then it should be possible to translate the program into a
language that is still in use, possibly with a small amount
of the code needing to be rewritten by hand.

Also, new software is frequently written from scratch
even when portions of it may already exist in other
languages or even in the same language. Source-to-sou-
rce translation is not used much in typical programming
projects. A wider use of this technique has the potential
to make programming easier and the resulting programs
more reliable.

How can the potential of source-to-source translation
be more fully realized?

Based on the work surveyed above, it is possible to
sketch approaches for making source-to-source transla-
tion a more integral part of the typical programming
endeavor.

One significant feature of previous work is that it
showed the value of only defining translations on well-be-
haved subsets of the original language, rather than the
entire language. It was stated in Albrecht et al. [10],
Wallis [9], and Huijsman et al. [11] that certain features
of a language may be difficult or impossible to translate
into another language; such features can be omitted from
the well-behaved subset of the language. As an example,
restrictions on actual parameters of procedures to pro-
hibit the same actual parameter to be used for two formal
parameters, may be helpful in some cases. A related
technique is the translation of fragments of a program,
rather than requiring the entire program to be translated.

Because of their simple syntax and semantics, abstract
languages have the possibility to be easily translated into

Copyright © 2013 SciRes. JSEA

Source-to-Source Translation and Software Engineering 36

many other programming languages. These abstract lan-
guages could be at the level of the pseudo-code used for
descriptions of algorithms found in typical algorithms
textbooks; the essence of the algorithm is described, but
inessential details and complexities of the particular lan-
guage are omitted. This facilitates translation into other
languages. Then programmers could be encouraged to
code in such abstract languages, and translators from
these languages into other languages could be written.
Another possibility is to encourage programmers to code
in well-behaved subsets of existing languages, such as
were mentioned in Albrecht et al. [10] and Huijsman et
al. [11]; then translators from these subsets into other
languages could be written.

It’s not often that an entire program to be written can
be obtained from another language. It’s more likely that
portions, or fragments, of it exist in other languages. It
would be convenient to be able to access these frag-
ments and translate them into the implementation langu-
age to simplify the programming process.

For this purpose, it would be helpful to have source-to-
source translators widely implemented and available to
the community along with libraries of program fragments
suitable for translation. With each such program frag-
ment, a specification or text description of it could be
kept, and means could be provided to search the library
for programs satisfying a given specification or having a
given text description.

Note that it may be helpful to have more than one
translator out of a given language; one translator may
apply to more features than another, which increases its
range of applicability but also may increase its comple-
xity and running time. Of course, it is easier to translate a
feature into another language that already has a similar
feature.

It would be good to integrate this approach with a
testing tool, as was done by Molloy et al. [30], to execute
corresponding procedures in the original and target
languages on corresponding inputs and check if their be-
havior is the same. This approach may be able to identify
in which fragment or procedure the error lies.

The main purpose of the source-to-source translation
approach is not to translate legacy code into other lan-
guages, but to encourage new programs to be written in a
way that facilitates source-to-source translation, and
possibly identify fragments of existing code that are
suitable for translation. Perhaps some legacy code can be
made available to source-to-source translation, if it hap-
pens to be written in a suitable subset of its language, or
can be modified to be so.

Differences from Current Practice

Source-to-source translation is currently used mostly to
translate large complex application codes used by one

organization internally or in a product, rather than smal-
ler portions of programs used by many people, such as
algorithms and modules with precise specifications. In
contrast, what is being proposed here is to use source-to-
source translation in different ways, namely,

1) Develop abstract languages or subsets of application
languages and write source-to-source translators out of
them into many other application languages.

2) Develop libraries of algorithms and modules in such
abstract languages or subsets of application languages.

3) Use source-to-source not on large application pro-
grams but on algorithms and modules with precise speci-
fications, used by many people.

It is also proposed to adopt a programming style in
which portions of a program are obtained by translation
from other languages and code is added to these by hand.

This approach would make more software building
blocks available in more languages and would make
these building blocks more reliable and accessible, thus
aiding the process of software development.

7. Discussion

In general, a hand-coded program or a highly optimized
library program from a library in the application lan-
guage is likely to be more efficient than one obtained by
source-to-source translation from another language. Such
hand-coded programs can be optimized using guidance
from design patterns. Also, if a suitable program is found
in a library in the application language, then the best
choice is just to take it from there. Then why would one
use source-to-source translation? The answer is that a
program translated from another language may be pre-
ferable to a hand-coded program or even a library pro-
gram in the application language for reasons of produc-
tivity and reliability, even though such translation may
degrade efficiency, and even efficiency may not be an
issue in many cases.

7.1. Efficiency

First, efficiency is not always a major concern. Some-
times one just wants to get something running, perhaps
for test purposes, perhaps for an application where run-
ning time is not critical. Then source-to-source trans-
lation is a good choice because it is easier than coding
from scratch. If efficiency is a concern, then it is possible
to hand optimize the translated program, perhaps optimi-
zing only the inner loops, and thus get a considerable
gain in efficiency with a relatively small effort. This may
also produce a more reliable program than a hand-coded
one if the original program in another language is reliable.
A program hand-coded and optimized using guidance
from design patterns is not guaranteed to be correct.
Even if a program overall is time critical, and needs to be

Copyright © 2013 SciRes. JSEA

Source-to-Source Translation and Software Engineering 37

hand-coded, parts of it may not be time critical, and
source-to-source translation may be acceptable for them.

Also, many algorithms require little more than arrays
and possibly pointers or structures, features present in
many languages, so translating from an abstract language
might not significantly degrade efficiency. For programs
using more language features, the situation could be
different.

However, abstract languages can be developed with
various combinations of features. Then there should be
some abstract language sufficiently close to one’s imple-
mentation language so that one could translate an ab-
stract program from there instead of writing it from
scratch in the implementation language, and not lose
much efficiency.

7.2. Abstract Programs

It is proposed to write programs in abstract languages or
subsets of languages having a simple syntax and seman-
tics, and translate programs from there into other lan-
guages. The reason for this is that verification and analy-
sis may be easier in such abstract languages than in
complex application languages.

Also, such abstract languages are likely to last much
longer than complex application languages. Abstract lan-
guages are much closer to mathematical notation than a
typical programming language. A proof of correctness of
a program in an abstract language is like a mathematical
lemma that only needs to be done once, and never re-
peated. Complex application languages are harder to
prove correctness in and tend to go out of use faster.

The number of abstract languages is likely to be small
and they will tend to be closely related, so that it should
be easy to translate between them. Therefore people all
over the world can work on verifying libraries of abstract
programs. Eventually more and more abstract programs
can be formally verified and then translated into appli-
cation languages with proofs also translated, increasing
reliability. Verification is much harder with libraries
written separately in many different languages.

Thus with the use of abstract languages, program re-
liability can continually increase with time, and verified
programs can all be kept in one place and accessed by
many people, rather than being kept in many different
places that people don’t know about and are hard to find.

If programs in other languages have been translated
from an abstract language, then any corrections to these
programs can be propagated back to the abstract lan-
guage and thence to programs and libraries in other app-
lication languages, helping reliability. Thus abstract pro-
grams become reliable even if not verified, as fixes pro-
pagate back to them, and programs translated from such
abstract languages also become reliable. Even if an abs-
tract language does go out of use, its programs can be

translated into another abstract language, with verifica-
tions, thus preserving reliability.

7.3. Reliability

Knowing that a program might be translated into other
languages might make it cost effective to do a more tho-
rough job of testing and verification, making verification
more practical than it currently is.

If a program is known to be reliable or has been
verified, one may want to translate it into other languages
instead of trusting library programs in those languages.
In fact, abstract programs can be verified, and the proof
translated along with the program as in proof carrying
code. Thus one need not trust the translator, but can just
check the translated proof.

Translation may also help people move out of old and
little used languages and thereby reduce the number of
languages, thus increasing program reliability.

8. Libraries

Libraries in an application language serve a useful pur-
pose and are heavily used today. However, there is a
limit to what such libraries can do; otherwise we would
not need to program at all, and could just get all our
programs from the libraries. Source-to-source translation
can be helpful when a desired program is not in a library
in the application language.

8.1. Libraries May Not have Some Programs

Libraries in an application language generally only con-
tain widely used programs already written in the lan-
guage. This leaves out many programs, such as programs
written or modified by users that they might want to have
available in other languages. This may be the case, for
example, when a language is no longer supported. Even
when code is widely used, it may not end up in a library.
It may be difficult for the compilers of a library to know
how often various programs are used, or how reliable
they are, to decide whether they should be in a library.
Some code might be proprietary, and thus cannot be put
in a library. It’s also a significant effort to put code in the
library because it ideally should be extensively tested.
Therefore libraries may have a lot of inertia, so that in
fast-moving areas of computer science it may take them a
while to catch up. Also, putting too many programs in a
library might make it unwieldy, or reduce reliability, so
the maintainers have to be selective in what goes in; if
there are too many similar programs, it can be confusing
for the user to find what he or she wants. In addition,
libraries can’t be as responsive to the needs of local
communities. For little used languages, there may not be
any good libraries. Very simple programs such as binary
search may not be in a library. Some libraries may be

Copyright © 2013 SciRes. JSEA

Source-to-Source Translation and Software Engineering 38

small, and lacking many programs.
One may want to use programs in another language

that are not in the library, for whatever reason. This
could include programs in libraries in other languages,
programs that have not been extensively tested, or re-
cently developed programs in another language. It might
also include earlier versions of programs, or even obso-
lete programs, to compare them with current ones. Per-
haps one does not have confidence in the programs in a
library. In general, source-to-source translation permits
rapid interaction between research being done in dif-
ferent languages, with programs developed by one group
being immediately usable by the other group.

8.2. Libraries May Not Have Highly Optimized
Programs

If one really wants highly optimized code, then even a
library routine may not be optimized enough. Highly
optimized code is generally more complex and therefore
requires greater testing to insure reliability, so a library
will not always have the most highly optimized code, in
order to help ensure correctness. In addition, if library
code is highly optimized, then it may be harder for the
user to understand and verify and modify it for his or her
own purposes. Furthermore, for some areas optimization
and performance continually increase depending on re-
cent theoretical developments, so a library cannot always
keep up with the state of the art. Optimization techniques
may also differ depending on preprocessing time, the size
of the input data, whether the data is stored in main
memory or in secondary storage, the nature of one’s data,
the architecture of one’s machine, interaction with other
parts of the program, and storage allocated, so one cannot
generally have a program that is optimized for all app-
lications. A library may not choose to have multiple
versions of a program optimized for different require-
ments, so one cannot always rely on a library for extreme
optimization requirements.

8.3. Libraries May Be Hard to Search

Even if a good library exists, it may be difficult to find
what one is looking for there. One might not know the
term that is used to describe a desired program in the
library.

8.4. Source Code May Not Be Available

Programs from a library (if they have been compiled
already) are harder to modify for one’s own purposes
than programs translated from another language, where
one can make small changes with ease, especially if the
programs are commented and the comments survive the
translation in a helpful form. Also, a library program may
be proprietary so that one may not have access to the

source code to modify it to suit one’s purposes. In such a
case it may be preferable to translate a program from
another language and modify it by hand.

8.5. Libraries Are Needed for Each Language

New languages and language revisions are being deve-
loped constantly, and all would benefit by having lib-
raries of programs in the language, but such libraries take
time and effort to develop and make reliable; in a new
language, no such libraries may be available.

Source-to-source translation can help to develop libra-
ries for new languages or versions of languages. One can
translate from programs in several other languages, pick
the best result, and modify it by hand if necessary. Trans-
lation also reduces the cost of implementing new langu-
ages, because the libraries can be constructed faster. Sou-
rce-to-source translation can reduce the number of lib-
raries one needs, and can reduce the number of programs
in each one, because many programs can be obtained by
translation from other libraries. This is especially true for
languages that are very similar to each other. Having
fewer libraries helps to increase reliability.

8.6. Reliability Issues for Libraries

If one simply programs a new library from scratch for
each new language that is developed, and languages con-
tinue to go out of style, then there is no guarantee that
program reliability will continue to increase with time.
One has the same kind of problem as before, in that the
same program is written over and over in different lan-
guages.

To increase reliability, one can compare the perfor-
mance of a library program with a source-to-source pro-
gram to test the correctness of both of them.

9. Conclusions

Though the source-to-source technique was rejected for
porting code to Ada, it is widely used today. Many
groups are still pursuing various forms of source-to-
source translation with substantial success. However, the
full potential of this method has not been realized yet.

It would be worthwhile to further develop and use this
technology. For this to happen, more translators have to
be written, abstract languages and translatable subsets of
application languages need to be defined, and libraries of
program fragments in abstract languages or subsets of
application languages should be created and made widely
accessible. Also, programmers have to be trained in this
approach and convinced of its value. One cannot say for
sure exactly how such a system or systems would be
designed or used until more experience has been gained.
At any rate, source-to-source translation systems have
already been tested by many users and have been found

Copyright © 2013 SciRes. JSEA

Source-to-Source Translation and Software Engineering 39

to be practical and useful in some cases. The full impact
of this technology cannot be evaluated, however, until it
is more widely implemented.

This technology could lead to significant increases in
productivity and reliability of software. The potential
benefits include faster coding and more reliable software,
though testing, debugging, and hand coding would still
be necessary.

The approach outlined here could also lead to a change
in the nature of programming. It could encourage people
to think of programs as abstract objects, not tied to a par-
ticular language, rather than as objects in a particular
programming language. This technique might also im-
pact language design, in favoring languages that facilitate
source-to-source translation into and out of other lan-
guages. Perhaps it would be an additional encouragement
to standardization between languages, as well.

REFERENCES
[1] M. Hinchey, M. Jackson, P. Cousot, B. Cook, J. P.

Bowen and T. Margaria, “Software Engineering and For-
mal Methods,” Communications of the ACM, Vol. 51 No.
9, 2008, p. 55. doi:10.1145/1378727.1378742

[2] P. J. Denning and R. D. Riehle, “Is Software Engineering
Engineering?” Communications of the ACM, Vol. 52, No.
3, 2009, p. 25. doi:10.1145/1467247.1467257

[3] E. Tenner, “Buggy Software: Achilles Heel of Big-Data-
Powered Science?” The Atlantic, 2012.
http://www.theatlantic.com/technology/archive/2012/12/b
uggy-software-achilles-heel-of-big-data-powered-science/
265690/

[4] R. M. Bates, “Logic of Lemmings in Compiler Inno-
vation,” Communications of the ACM, Vol. 52, No. 5,
2009, p. 7. doi:10.1145/1506409.1506412

[5] E. Putrycz and A. W. Kark, “Connecting Legacy Code,
Business Rules and Documentation,” Proceedings of the
International Symposium on Rule Representation, Inter-
change and Reasoning on the Web (RuleML ’08), Vol.
5321, 2008, pp. 17-30.

[6] T. Ziadi, M. A. A. da Silva, L. M. Hillah and M. Ziane,
“A Fully Dynamic Approach to the Reverse Engineering
of UML Sequence Diagrams,” Proceedings of the 2011
16th IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS ’11), Las Vegas, 27-
29 April 2011, pp. 107-116.

[7] J. F. Cui and H. S. Chae, “Applying Agglomerative
Hierarchical Clustering Algorithms to component Identifi-
cation for Legacy Systems,” Information and Software
Technology, Vol. 53, No. 6, 2011, pp. 601-614.
doi:10.1016/j.infsof.2011.01.006

[8] W. Gropp, E. Lusk and A. Skjellum, “Using MPI: Por-
table Parallel Programming with the Message-Passing
Interface,” MIT Press, Cambridge, 1994.

[9] P. J. L. Wallis, “Automatic Language Conversion and Its
Place in the Transition to Ada,” Proceedings of the 1985
annual ACM SIGAda international conference on Ada

(SIGAda ’85), Vol. 5, No. 2, 1985, pp. 275-284.

[10] P. F. Albrecht, P. E. Garrison, S. L. Graham, R. H. Hyerle,
P. Ip and B. Krieg-Brückner, “Source-to-Source Trans-
lation: Ada to Pascal and Pascal to Ada,” Proceedings of
the ACM-SIGPLAN symposium on Ada Programming
language (SIGPLAN ’80), Vol. 15, No. 11, 1980, pp. 183-
193.

[11] R. D. Huijsman, J. van Katwijk, C. Pronk and W. J.
Toetenel, “Translating Algol 60 Programs into Ada,” Ada
Letters, Vol. VII, No. 5, 1987, pp. 42-50.
doi:10.1145/36077.36080

[12] D. Plaisted, “An Abstract Programming System,” In: S.
Shannon, Ed., Leading Edge Computer Science Research,
Nova Science Publishers, New York, 2005, pp. 85-129.

[13] Gupta, et al., “Semantics-Based Filtering: Logic Pro-
gramming’s Killer App?” Lecture Notes in Computer
Science, Vol. 2257, 2002, pp. 82-100.
doi:10.1007/3-540-45587-6_7

[14] J. Brant and D. Roberts, “The Smacc Transformation
Engine: How to Convert Your Entire Code Base into a
Different Programming Language,” Proceedings of the
24th ACM SIGPLAN Conference Companion on Object
Oriented Programming Systems Languages and Appli-
cations (OOPSLA ’09), Orlando, 25-29 October 2009, pp.
809-810.

[15] K. Andrews, P. Del Vigna and M. Molloy, “Macro and
File Structure Preservation in Source-to-Source Trans-
lation,” Software-Practice and Experience, Vol. 26, No. 3,
1996, pp. 281-292.
doi:10.1002/(SICI)1097-024X(199603)26:3%3C281::AI
D-SPE14%3E3.0.CO;2-0

[16] W. Tansey and E. Tilevich, “Annotation Refactoring:
Inferring Upgrade Transformations for Legacy Appli-
cations,” Proceedings of the 23rd ACM SIGPLAN Con-
ference on Object-Oriented Programming Systems Lan-
guages and Applications (OOPSLA ’08), Vol. 43, No. 10,
2008, pp. 295-312.

[17] M. Trudel, C. A. Furia, M. Nordio, B. Meyer and M.
Oriol, “C to O-O Translation: Beyond the Easy Stuff,”
Proceedings of the 2012 19th Working Conference on
Reverse Engineering (WCRE ’12), Kingston, 15-18 Oc-
tober 2012, pp. 19-28. doi:10.1109/WCRE.2012.12

[18] S. Verdoolaege, J. C. Juega, A. Cohen, J. I. Gómez, C.
Tenllado and F. Catthoor, “Polyhedral Parallel Code
Generation for CUDA,” ACM Transactions on Architec-
ture and Code Optimization, Vol. 9, No. 4, 2013, 23
Pages. doi:10.1145/2400682.2400713

[19] M. Song and E. Tilevich, “Reusing Non-Functional Con-
cerns across Languages,” Proceedings of the 11th Annual
International Conference on Aspect-Oriented Software
Development (AOSD ’12), Postdam, 25-30 March 2012,
pp. 227-238. doi:10.1145/2162049.2162076

[20] [LLVM] http://llvm.org/

[21] [CIL] http://www.scriptol.com/programming/cil.php

[22] [ROSE] http://www.rosecompiler.org/

[23] T. A. Standish, D. F. Kibler and J. M. Neighbors, “Im-
proving and Refining Programs by Program Manipula-
tion,” Proceedings of the 1976 Annual Conference (ACM ’76),

Copyright © 2013 SciRes. JSEA

http://dx.doi.org/10.1145/1378727.1378742
http://dx.doi.org/10.1145/1467247.1467257
http://dx.doi.org/10.1145/1506409.1506412
http://dx.doi.org/10.1016/j.infsof.2011.01.006
http://dx.doi.org/10.1145/36077.36080
http://dx.doi.org/10.1007/3-540-45587-6_7
http://dx.doi.org/10.1002/(SICI)1097-024X(199603)26:3%3C281::AID-SPE14%3E3.0.CO;2-0
http://dx.doi.org/10.1002/(SICI)1097-024X(199603)26:3%3C281::AID-SPE14%3E3.0.CO;2-0
http://dx.doi.org/10.1109/WCRE.2012.12
http://doi.acm.org/10.1145/2400682.2400713
http://doi.acm.org/10.1145/2162049.2162076

Source-to-Source Translation and Software Engineering

Copyright © 2013 SciRes. JSEA

40

Houston, 20-22 October 1976, pp. 509-516.

[24] J. J. Arsac, “Syntactic Source to Source Transforms and
Program Manipulation,” Communications of the ACM,
Vol. 22, No. 1, 1979, pp. 43-54.
doi:10.1145/359046.359057

[25] R. D. Cameron and M. R. Ito, “Grammar-Based Defi-
nition of Metaprogramming Systems,” ACM Transactions
on Programming Languages and Systems, Vol. 6, No. 1,
1984, pp. 20-54. doi:10.1145/357233.357235

[26] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure and M.
Wolfe, “Dependence Graphs and Compiler Optimi-
zations,” Proceedings of the 8th ACM SIGPLAN-SIGACT
symposium on Principles of Programming Languages
(POPL ’81), Williamsburg, 26-28 January 1981, pp. 207-
218.

[27] S. Lee, S.-J. Min and R. Eigenmann, “OpenMP to GPGPU:
A Compiler Framework for Automatic Translation and

Optimization,” Proceedings of the 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Pro-
gramming (PpoPP ’09), Vol. 44, No. 4, 2009, pp. 101-
110.

[28] A. Basumallik and R. Eigenmann, “Towards Automatic
Translation of OpenMP to MPI,” Proceedings of the
19th Annual International Conference on Supercomputing
(ICS ’05), 2005, pp. 189-198.

[29] J. Prosise, “Programming Microsoft .NET,” Microsoft
Press, Redmond, 2002.

[30] M. Molloy, K. Andrews, J. Herren, D. Cutler and P. Del
Vigna, “Automatic Interoperability Test Generation for
Source-to-Source Translators,” Proceedings of the 1998
ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA ’98), Vol. 23, No. 2, 1998,
pp. 93-101.

http://dx.doi.org/10.1145/359046.359057
http://dx.doi.org/10.1145/357233.357235

