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ABSTRACT

We consider dynamics system with damping, which are obtained by some transformations from the system of incom-
pressible Navier-Stokes equations. These have similar properties to original Navier-Stokes equations the scaling in-
variance. Due to the presence of the damping term, conclusions are different with proving the origin of the incom-
pressible Navier-Stokes equations and get some new conclusions. For one form of dynamics system with damping we
prove the existence of solution, and get the existence of the attractors. Moreover, we discuss with limit-behavior the

deformations of the Navier-Stokes equation.
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1. Introduction
Concerned with the perturbed Navier-Stokes equations:
{ut +(u-V)u-cAu+Vp=f +au,t>0,xeQ,

1.1
Vu=0,in Q, L

where QcR? is a smooth bounded domain with
boundary I'-u=(u,,u,), and p, u is the velocity vector,
p(x,t) is the pressure at x at time t, and o is the ki-
nematic viscosity, and f represents volume forces that are

applied to the fluid, and Ogag%ﬂi, where 4 is the

first eigenvalue of A (see Remark 4). The Equation (1.1)
is Navier-Stokes equations, as « =0, which show the
existence of absorbing sets and the existence of a maxi-
mal attractor, the universal attractor, attractor in un-
bounded domain (see [1-5]). ACTA Mathematical Ap-
plication Sinica. In [6], where they some interesting re-
sults, as S =0. In [7,8] Babin, Vishik and Abergel con-
sider maximal attractors of semigroups corresponding to
evolution differential equations, existence and finite di-
mensionality of global attractor for evolution equations
on unbounded domains. In [9,10] A. Pazy consider Semi-
groups of linear operator and application to partial dif-
ferential equation.

“The research is supported by the Science Foundation of Baoshan Uni-
versity (No.13BY033).
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We need the following preliminaries:

Equations (1.1) are supplemented with a boundary
condition. Two cases will be considered: The nonslip
boundary condition. The boundary T is solid and at
rest; thus

u=0eI™ (1.2)

The space-periodic case. Here Q=(0,L,)x(0,L,)
and

u, p the frist derivatives of u are Q-periodic®®™*?, (1.3)

Remark 1. If T is solid but not rest, then the nonslip
boundary condition is u=¢ on I' where ¢=¢(xt)
is the give velocity of T'.

Remark 2. That is u and p take the same values at
corresponding points of T.

Furthermore, we assume in this case that the average
flow vanishes

fudx =0. (1.4)

When an initial-value problem is considered we sup-
plement these equations with

u(x,0)=uy(x),xeQ. (1.5)
For the mathematical setting of this problem we con-
sider a Hilbert space H (see [8]) which is a close sub-

space of L*(Q)" (n=2 here).
In the nonslip case,

AM



W. Y. ZHAQO, Z. B. ZHENG 653

H={UeLZ(Q)”,divu=0,u-v:Oon1“}. (1.6)
and in the periodic case
H={uel?(Q) uy =ty i=lon) L (7)

We refer the reader to R. Temam [2] for more details
on these spaces and, in particular, a trace theorem show-
ing that the trace of u-v on I' exists and belong to
H™Y? () when uel?(Q)" and divuel?*(T). The
space H is endowed with the scalar product and the norm
of L?(Q)" denotedby (--) and |.

Remark 3. T, and T,,, are the faces x, =0 and

X, =L; of T'. The condition Uy, =y, EXpresses the
i =+n

periodicity of u-v; L*(Q)" is the space of ueL*(Q)"
satisfying (1.4).

Another useful space is V a closed subspace of
H*(Q)

V={ueH (Q) divu=0}, (1.8)
in the nonslip case and , in the space-periodic case,

V={ueHy, (Q) divu=0}, (1.9)

per

where H .. is define in [1]. In both case, v is endowed

with the scalar product
- 5[ 2.2
ij=1 6Xj 6Xj
and the norm |uf| = (u, u)m.

We denoted by A the linear unbounded operator in H
which is associated with V, H and the scalar product
(u,v)=(Au,v), Yu,veV. The domain of A in H is
denoted by D(A); A is self-adjoint positive operator in
H. Also A is an isomorphism from D(A) onto H. The
space D(A) can be fully characterized by using the
regularity theory of linear elliptic systems (see [1,3]).

D(A)=H*(Q)"'nV

and D(A)= Hﬁer(Q)n AV in the nonslip and periodic
cases; furthermore, |Au| is on D(A) a norm equiva-
lent to that induced by H?(T')". Let V' be the dual of
V; then H can be identified to a subspace of V' and we
have

D(A)CVCHCV', (1.10)

where the inclusions are continuous and each space is
dense in the following one.

Remark 4. In the space-periodic case we have Au=
—Au, YueD(A), while in the nonslip case we have
Au=-PAu, YueD(A), where P is the orthogonal
projector in LZ(Q)n on the space H. We can also say
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that Au=f,ueD(A),feH is equivalent to saying
that there exists p e H*'(€Q) such that

—Au+grad p= f in Q,
divu=0 in Q,
u=0 in 0Q.

The operator A™ is continuous from H into D(A)
and since the embedding of H'(Q) in L*(Q) is
compact, the embedding of V in H is compact. Thus A™
is a self-adjoint continuous compact operator in H, and
by the classical spectral theorems there exists a sequence

A, 0< A < Ay Ay > 0,
and a family of elements w;, of D(A) which is or-
thonormal in H, and such that

ij =/1].Wj,

vj. (1.11)

We need the following main Result:

Lemma 1.1. (see [4]) (Uniform Gronwall Lemma) Let
g,h,y be three positive locally integrable function on
[to,+o0] such that y’ is locally integrable on [ty,+x],
and satisfy

dy
—<gy+htfort>t
i ay 0

t+r t+r t+r

J(a(s)ds)<ay, [ (n(s)ds) <a;, [ (y(s)ds)<ay

t t

for t>t, where r,a,a,,a, are positive constant. Then
y(t+r) s(3+ azjexp(ai),Vt >t,.
r
The evolution of the dynamical system is described by

a family of operators S(t),t >0, that map H into itself
and enjoy the usual semigroup properties (see [8]):

S(t+s)=S(t)S-(s)jVS,t20 (1.12)
S(0)=1,(Indentify in H).
S(T)is a continuous (nonlinear ) operator (1.13)

from H into itself vt >0.

The operator S(t) are uniformly compact for t large.
By this we mean that for every bounded set X there exists
t, which may depend on X such that

|JS(t) X is relatively compact in H (see [1]), (1.14)

t>ty

for every bounded set Cc H

r, (t) =suplS, (t)g| > Oast — . (1.15)
¢eC

Of course, if H is Banach space, any family of opera-
tors satisfying (1.14) also satisfies (1.15) with S, =0.
Theorem 1.2. (see [4]) We assume that H is a metric
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space and that the operators S(t) are given and satisfy
(1.12), (1.13) and either (1.14) or (1.15). We also assume
that there exists an open set N and abounded set X of
N such that X is absorbing in & . Then w-limt set of
X,YzW(X ), is a compact attractor which attracts the
bounded set of N . It is the maximal bounded attractor in
N (for the inclusion relation). Furthermore, if H is a
Banach space, if U is convex’, and the mapping
t—S(t)u, is continuous from R, intoH , for every
U, inH;then Y is connected too.

The rest of this paper is organized such that Section 2
contains a sketch of existence and uniqueness of solution
of the equations; in Section 3 we show the existence of
absorbing set and the existence of a maximal attractor; in
Section 4 contain the proof of existence and uniqueness
of solution of the equations, in Section 5 discussed the
perturbation coefficients « .

2. Existence and Unigueness of Solution of
the Equations

The weak from of the Navier-Stokes equations due to J.
Leray [1-3] involves only u, as «=0. It is obtained by
multiply (1.1) by a test function v in V and integrating
over Q. Using the Green formula (1.1) and the bound-
ary condition, we find that the term involving p disap-
pears and there remains

%(u,v)+a(u,v)+b(u,u,v):(f,v)+a(U,V), (2.1)
where

(u,v,w) Z I[u —w, dxj (2.2)

ij=la
whenever the integrals make sense. Actually, the from b
is trilinear continuous on H*(Q)"(n=2) and in par-
ticular on V. We have the following inequalities giving
various continuity properties of b:

1 1
Jullz [Aulz iv], I, -
Yu e D(A),VeV,We H,

— oL
Jull Dl Ivh, wlz fwl

Yu,v,weV.

|b(u,v,w)|£cl>< (2.3)

where ¢, >0 is an appropriate constant[1].

An alternative from of (2.1) can be given using the
operator A and the bilinear operator B from V xV
into V' defined by

(B(u,v),w)=b(u,v,w),vu,v,weV. (2.4)

we also set
uu),VueV’,
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and we easily see that (2.1) is equivalent to the equation
3—?+aAu+B(u): f+au. (2.5)

while (1.5) can be rewritten
u(0)=u,, (2.6)

We assume that f is in dependent of t so that the
dynamical system associated with (2.5) is autonomous

f(t)="feH,vt .7)

Existence and uniqueness results for (2.5) (2.6) are
well know as a =0 (see [2,3]). The following theorem
collects several classical results.

Theorem 1.3. Under the above assumption, for f
and u, given in H,t here exists a unique solution u
of (2.4) (2.5) satisfying ueL”([0,T];H)NL*(0,t;V);
Furthermore, u is analytic in t with values in D(A)
for t>0, and the mapping u, - u(t) is continuous
from H into D A) vt>0; Finally, if u, eV, then
uel”([0,T];v (0T; D( )),¥T >0. Some indi-
cations for the proof of Theorem 1.3 will be given in
Section 4. This theorem allows us to define the operators

S(t):up = u(t)

These operator enjoy the semigroup properties (1.12)
and the are continuous from H into itself and even from
Hinto D(A).

3. Absorbing Sets and Attractor

The part proof about global attractor is similar to the
Temam’s book, but the exists of perturbation term is dif-
ferent from the Temam’s book, so we reprove it for inte-
grality.

Theorem 1.4. The dynamical system associated with
the tow-dimensional modified Navier-Stokes equations,
supplemented by boundary (1.2) or (1.3), (1.4) possesses
an attractor y that is compact, connected,and maximal
in H. y attracts the bounded sets of H and y is also
maximal among the functional invariant set bounded in
H.

Proof. We first prove the existence of an absorbing set
in H. A first energy-type equality is obtained by taking
the scalar product of (2.5) with u . Hence

b(u,v,v)=0,YueV,vweH (Q)", (3.1)

We see that (B(u),u)zo and there remains

2dt ||u||H +o-||u||v =(f,u)+a(uu), (3.2)

1
We know that [|u]|,, <4 2|uf,, where 4 is the first
eigenvalue of A . Hence, we can majorize the right-hand

AM



W. Y. ZHAQO, Z. B. ZHENG 655

side of (3.1) by
1
u) < ], lull, S%”“"ﬁ +E”f"2”
the estimates |a(u,u)|:
(04
o (u,u)| < e Juf], SZ||U||§ S%"Um

Hence we obtain

d 1
arlllh ool < e (33)

d 1
gl ronluly < 2t G4
Using the classical Gronwall Lemma, we obtain

Ju(Of, <luolfs exo(-2)

: (35)
| Sl o),

Thus

. 1
iimsuplu (0)], < o0 =t (36)

We infer (3.5) that the ball B, (0,p) of H with
p=p, are positively invariants for the semigroup
S(t), and these balls are absorbing for any o> p,. We
choose (py)> p, and included a ball B(0,R) of H,
It is easy to deduce from (3.5) that S(t)X < XB, for
t(X, py), where

i|ogR—2

\2 2"
() —(ps)
We the infer from (3.3), after integration in t, that

(3.7)

t, =
e r 2 2
o [l ds< T +u(off vr-0. - @9
With the use of (3.6) we conclude that
. i r 1
imsup [ [ofyds < 21+ 5zl @9)
and if u, e X =B, (0,R) and tztOX,pé)' , then

t+r

J Iul;
v

t

1) Absorbing set in V

An continue and show the existence of an absorbing
set in V. For that purpose we obtain another energy-type
equation by taking the scalar product of (2.5) with Au.
Since

(o), (@10)

(Auw) = () = 8o
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we find

L9 <ol +(8(

we writer

u),Au)=(f,Au)+a(u,Au),

(0, A0) < el aul, < Z Al + <}
(f )< ], |Aul, < ZJaf,+ 2,
and using the second inequality (2.3)
(8(u), Au) <cfull Jul [Aul
< Al +S ol Juff

Hence

d
ol +ofAul
(3.12)

4 a2 2c!
< 2+ L, [ e
and since
1
|4l <4 2|Adlz VéeD(A), (3.13)
We also have
d
Solull + o Aul
(3.14)

{wm-—wd+qu%,

We a priori estimate of uL”(0,T;V),vT >0, follows
easily from (3.14) by the classical Gronwall lemma, us-
ing the previous estimates on u. We are more interested
in an estimate valid for large t. Assuming that u, be-
long to a bounded set X of H and that t>t,(X, p;).t,
as in (3.7), we apply the uniform Gronwall lemma to
(3.14) with g,h,y replaced by

2c/ 4 a?
G—QIIUIIE Jull ,;Ilflli +;I|U|Ii Jull

Thanks to (2.14), (2.18) we estimate the quantities
a,,8,,8, inLemmal.1by

’

2
a="2(pb) 2
2
8, = Tt + %, (315)
O (o2

r 1
=1l +

and we obtain
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||u(t)||\2/ g(a—;Jrazjexp(ai),fortztO +r, (3.16)

t, asin (3.7). Let us fix r>0 and denote by o’ the
right-hand side of (2.24). We the conclude that the ball
B(0,p,) of V, denoted by X, is an absorbing set in V for
the semigroup S(t). Furthermore, if X is any bounded
set of H, then S(t)X < X, for t>t,(X,p;)+r. This
shows the existence of an absorbing set in V, namely X,
and also that the operators S (t) are uniformly compact,
i.e., Theorem 1.1 is satisfied.

2) Maximal attractor

All the assumption of Theorem 1.1 are satisfied and
we deduce from this theorem the existence of a maximal
attractor for modified Navier-Stokes equations. 0]

4. Proof of Theorem 1.3

The existence of a solution of (2.4) (2.5) that belong to
L*(0,T;H)NL*(0,T;V),VT >0, is first obtain by the
Faedo-Gakerkin (see [3]) method. We implement this
approximation procedure with the function w; repre-
senting the eigenvalues of A (see Remark 4). For each m
we look for an approximate solution u,, of the form

0y (1)= 3 01 (1)

satisfying
(d;tm,wjj+aa(um,wj)+b(um,um,wj) “1)
:(f,wj)+a(um,wj),j=1,~--,m,
um = Prnu0' (42)

where P, is projector in H (or V) on the space spanned
by w,---,w, . Since A and P, commute, the relation
(3.1) is also equivalent to

d“t +oAu, +P,B(u,)=P,f +aPu,. (4.3)

We prove (u,,w;) on g,, is Lip continuous,
h(Um)ZZi:gim (t)ww,.
hence
10(90 )18 ) = 2 8 (D95 =2 G (1) e,
there is m, M such that m<|g,, (t)|<M,|w|=1. When

= J,w-w, =|vvi|2 =1 is established, and when
i#j,w-w; =0 isestablished, then

I0(gin) =N (G )| < C|Gin (£) = Tin (1))
On both sides in the integral Q , then
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gj;|h(gim)_h(gim)|dx S££C|gim (t)_gim (t)|dX
< C|gim ()= Tim (t)|
we writer
(0, ) = (@0, ;) < €1 (1) T (1)

Hence (u,,w;) on g,, is Lip continuous. The ex-
istence and uniqueness of u, on some interval [0,T, ]
is elementary and then T_ =-o0, because of the a priori
estimates that we obtain for u,,. An energy equality is
obtained by multiplying (4.1) by g;, and summing
these relations for j=1,---,m. We obtain (3.2) exactly
with u replaced by u,, and we deduce from this relation
that

u,, remains bounded in L (0,T;H)NL*(0,T;V),

vT >0.

Due to (3.1) and the last inequality (2.3)
[B), <lel. lel, . 7oV (45)

Therefor B(u,) and P,u, remain bounded in
L*(0,T;V') and by (4.3)

(4.4)

dstm remains bounded in L (0, T;V"). (4.6)

By weak compactness it follows from (4.3) that there
exists uel”(0;T;H)NL*(0,T;V),vt>0, and a sub-
sequence still denoted m, such that

U, >Uuel?(0,T;V)weaklyandin L”(0,T; H)

4.7
weak-star dstm - (:j—l: in L2(0,T;V") weakly.

Due to (4.6) and a classical compactness theorem (see
[2]), we also have

u, —u,in L*(0,T;H ) strongly. (4.8)

This is sufficient to pass to the limit in (4.1)-(4.3) and
we find (2.4), (2.5) at the limit. For (2.5) we simply
observe that (4.7) implies that u_ (t) > u(t) weakly in
V' orevenin H,vte[0,T].

By (2.4), u':c:j—l: belongto L*[(0,T);V'] and, uis

in Lw([O,T];H%. The uniqueness and continuous de-
pendent of u(t) on u, (in H) follow by standard
using [2].

The fact that ueL”(0,T;V)NL*(0,T;D(A)), VT >0,
is proved by deriving further a priori estimates on u, .
They are obtained by multiplying (4.1) by 4;9;, and
summing these relations for j=1,--,m. Using (1.11)
we find a relation that is exactly (3.11) with u replaced
by u,, . we deduce form this relation that
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u,, remains bounded  L” (0, T;V)NL*(0,T; D(A)),
vT >0.

At the limit we then find that uis in L*(0,T: D(V))
The fact that u in L"([0,T],V) then follows from an
appropriate application of Lemma 3.2 [2].

Finally, the fact that u is analytic in t with values in
D(A) results from totally different methods, for which
the reader is referred to C. Foias and R. Temam [1] or R.
Temam [3]. However, this property was given for the
sake of completness and is never used here in an essen-
tial manner. 0]

(4.9)

5. The Limit-Behavior of Navier-Stokes
Equation with Nonlinear Perturbation

We consider the limit-behavior of Navier-Stokes equation

with nonlinear perturbation on the two dimensional space.

we use the space which is given (1.6), (1.8). The main
advantage we see is that applying the Gronwall lemma to
the solution of problem (1.1) approaches a solution of
Navier-Stokes equationon L* and H?,as a —0.

Theorem 1.6. Under assumption (1.6), then the solu-
tion of u(xt,a) of (1.1) is approximate solution of
Navier-Stokes equations and this solution is stable, as
a—0.

Proof. Let u=(x,t,&q)=u(e,) is asolution of (1.1),

as a=a,:
U +(u-V)u—ocAu+Vp=f +au, t>0,xeQ,
Vu=0, inQ, (5.1)
u(0)=u,
Let u=(xta,)=u(a,) is a solution of (1.1), as
a=a,:
U +(u-V)u-cAu+vp=f+a,u, t>0,xeQ,
Vu=0, inQ, (5.2)
u(0)=u,
Utilizing (5.1)-(5.2) and let v=u(e;)-u(

v+ (u(e)-V)u(er)—(u(e,)-V)ue, |-otv

=oU(ay)—au(a,).

a,), Hence
(5.3)

It is obtained by multiply (5.4) by a function v in V
and integrating over Q.

IR ol
+§,[[ (ar)-V) U(al)—(u(az)-V)u(az)Jvdx (5.4)
=E[[a1u(al)—a2u(a2)}vdx.

Using the second inequality (2.3) and b(u,v,w) is
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trilinear continuous:

|b az) u(a,),v)-b(
|b ).u(a,),v)=b(u al) )|
+|b o, u(al) v) b u(oz1 )|

o1 .
<q ||V||a ||V|L2 ||u (2 )|L ||V||E. Ivlé
1 1 11
e[ Jue ) I, IV I
<o v,
and
j[alu (@) - au(a,) |vdx
Q

=|a (u(ar),v) = (u(ex,) V)

S|al(u(al),v)—a2 (u(al),v)|
+|(x2(u(al),v)—az(u(az),v)|

S|0‘1_0‘2||(u (“1)’V)|+|“2||(u(0‘1)_U(0‘2)’V)|’

ytilizing inequality (**), (3.6), (3.46) we estimate
B .
(Ipu(a)|" u(e).v):

|(u(a1),v)|= E[u(al)vdx sgj;u(al)|u(a1)—u(a2)|dx
< (jl Ju(ey)[ dx+ i Ju(ey)[Ju(e, )|dx
<[l (@, o), =e.
we write

|(u(a1)—u(a2),v)|
=|(v.v)| = ([vzdx

< [V dx <cy v .
Q

hence
***302|a1—0!2|+ca""|k2'

where ¢, >0,c, >0,c, >0 is an appropriate constant.
Hence

1d

M+l <eles =+ (e + )|V, - (55)

d
a||v||2H <26, |y —a,|+ 2(c, + c3)||v||5 : (5.6)

Using the classical Gronwall Lemma, we obtain
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C
||v||i| < |Vl exp(—Czt)+C—1(1—exp(—Czt)), (5.7)

2

where
C, =2¢,|a,—a,|,C, =2(c +¢;).

Notice that v, =0. Thanks to

lim C, =0,
Dtl—)llz
hence
lim v=0,
a1~>zz2

Hence C, =0, C,>0 as ¢, =a, =a, according to
stable condition, thus this solution is stable. OJ
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