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ABSTRACT 

A set of generalized-BCS equations (GBCSEs) was recently derived from a temperature-dependent Bethe-Salpeter 
equation and shown to deal satisfactorily with the experimental data comprising the Tcs and the multiple gaps of a vari-
ety of high-temperature superconductors (SCs). These equations are formulated in terms of the binding energies 

 of Cooper pairs (CPs) bound via one- and more than one-phonon exchange mechanisms; they con-

tain no direct reference to the gap/s of an SC. Applications of these equations so far were based on the observation that 
for elemental SCs 

   , ,W T 1 2W T

01 0W   0 at T = 0 in the limit of the dimensionless BCS interaction parameter   . Here ∆0 is 

the zero-temperature gap whence it follows that the binding energy of a CP bound via one-phonon exchanges at T = 0 is 

012 W . In this note we carry out a detailed comparison between the GBCSE-based  1W T  and the BCS-based energy 

gap  for all  and realistic, non-vanishingly-small values of λ. Our study is based on the experimental 

values of Tc, Debye temperature Θ, and ∆0 of several selected elements including the “bad actors” such as Pb and Hg. It 
is thus established that the equation for  provides a viable alternative to the BCS equation for . This sug-

gests the use of, when required, the equation for 

 T 0 T T 

 W T  T

c

1

 2W T

 T

 which refers to CPs bound via two-phonon exchanges, for the 

larger of the two T-dependent gaps of a non-elemental SC. These considerations naturally lead one to the concept of 
T-dependent interaction parameters in the theory of superconductivity. It is pointed out that such a concept is needed 
both in the well-known approach of Suhl et al. to multi-gap superconductivity and the approach provided by the 
GBCSEs. Attention is drawn to diverse fields where T-dependent Hamiltonians have been fruitfully employed in the 
past. 
 

Keywords: BCS and Generalized-BCS Equations; T-Dependent Equations for BCS Gap and for Binding Energy of 
Cooper Pairs; Elemental and Composite Superconductors 

1. Introduction  0N V   is the dimensionless BCS interact-  

The BCS equations (BCSEs) [1] for the temperature- 
dependent energy gap  and the critical tempera-
ture Tc of a superconductor (SC) are, respectively: 
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where 

tion parameter corresponding to a net attractive interac-
tion V that brings about the formation of Cooper pairs 
(CPs), N(0) being the density of states at the Fermi sur-
face; Θ the Debye temperature of the SC, and kB the 
Boltzmann constant. 

These equations have recently been generalized [2] to 
cater to composite superconductors (CSs) by following 
an approach based on the Bethe-Salpeter equation (BSE). 
While the BCSEs are based on the one-phonon exchange 
mechanism for the formation of Cooper pairs, general-
ized-BCS equations (GBCSEs) invoke the mechanism of 

tanh
1 d

cT x
x

x



                      (2) 
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multi-phonon exchanges, besides the one-phonon ex-
change mechanism, for the formation of the pairs. Addi-
tionally, while BCSEs characterize an elemental SC by a 
single Debye temperature, GBCSEs characterize a CS by 
multiple Debye temperatures which take into account its 
anisotropy. 

For a binary CS characterized by two gaps such as 
MgB2, GBCSEs are [2]: 
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where (3) is obtained from Equation (34) in Ref. [2] by a 
redefinition of the variable of integration and refers to the 
situation where CPs are bound via one-phonon ex-
changes; (4) is a generalization of (3) to the situation 
where CPs are formed via two-phonon exchanges; (5) is 
obtained from (4) by demanding that 2  at T = Tc; 

i  is the interaction parameter due to the ith species 
of ions in the binary, to be distinguished from λi, which 
denotes the interaction parameter of the same species in 
its free state, a similar distinction applies to i  and Θi. 
Note that we have written 1,2

0W 
 c T

c
c  as  1,2  for the rea-

son that will become apparent via (12) below. 

c T

In the above equations, in our earlier work [2-4], 1  
has been referred to as the binding energy of CPs bound 
via one-phonon exchanges. Indeed, that is how it was 
first introduced in the appropriate BSE in [2]. However, 
it turned out that 

W

1 obtained via (3) very nearly equals 
∆ obtained via (1). Since we know that the energy re-
quired to break up a CP is 2∆ because of “Pauli block-
ing” of states between F  and F  we should 
refer to 

W

,E   E  
12 W  as the binding energy of the pairs bound 

via the one-phonon exchange mechanism. Likewise, the 
binding energy of pairs bound via two-phonon exchanges 
is 22 W . Even though obvious, we note here that since 

1,2  also vanish when 2 W 1,2W 0 , the equations used 
in our earlier work (obtained by putting 1,2 0W  ) are 
correct. 

The motivation for this note is primarily to establish 
that insofar as elemental SCs are concerned, use of (3) is 
equivalent to the use of (1) not only at T = 0 as follows 

from our earlier work, but for all T ≤ Tc. Such a demon-
stration is deemed desirable prior to suggesting the use of 
(4) whenever a detailed variation of the larger of two 
gaps of a CS with T is required. This is so because the 
equivalent of (4) via the variational approach of BCS is 
not yet available. In Section 2, this exercise is interest-
ingly found to shed light on an alleged universal relation 
of BCS theory, viz., 0 c2 3.53.kT   Additionally, it 
brings into focus the rather unfamiliar feature of 
T-dependence of λ in the theory of superconductivity. 
This feature is briefly discussed further in Section 3 in 
the context of multi-gap superconductivity. We recall 
that multi-gap superconductivity is usually qualitatively 
addressed in the BCS theory via the seminal approach of 
Suhl, Matthias and Walker [5]. This approach is juxta-
posed with the approach provided by the framework of 
GBCSEs. Finally, Section 4 sums up our study. 

2. A Comparative Study of BCSE (1) and 
GBCSE (3) 

1) We note that BCSE (2) for Tc follows not only from 
(1) by demanding that ∆ = 0 at T = Tc, but also from (3) 
by demanding that 1 0W  . This already suggests a con-
nection between 1

2) It is readily seen that when T = 0 (tanh = 1), (1) and 
(3) yield, respectively: 

W  and ∆. 

 0 sinh 1
Bk 

                  (6) 


and 

 01

2
.

exp 1 1
Bk

W

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


             (7) 

Hence 

 0 01 2 exp 1 , when 0.BW k            (8) 

Based on this observation, (5) and the equations cor-
responding to (3) and (4) at T = 0 were recently used [3,4] 
to deal with the experimental data related with the Tcs 
and the multiple gaps of a variety of high-temperature 
SCs (HTSCs). Specifically, it has been shown in these 
papers that if one identifies 1  in (3) with the smaller 
gap of an HTSC, and 

W

2  in (4) with the larger gap, 
then given any two parameters from the set  

W

 , ,T 1 2 1c    

0 T T

 one can calculate the remaining pa-
rameter without any arbitrariness. This is similar to what 
the normal BCS equations achieve for a simple SC. 

3) We now propose to go beyond the approximations 
which led to (8). Specifically, we carry out below a de-
tailed comparison of the implications of (1) and (3) for 
all c   and realistic values of λ (i.e., not → 0). 
Our study is based on the experimental values of Tc, Θ, 
and ∆0 of several selected elements including the “bad 
actors” such as Pb and Hg. 
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 T
 cT

4) With the input of Tc and Θ into (2), we first deter-
mine c  for the elements listed in Table 1. With 

 known, we calculate ∆0 for these elements via (6), 
and 01  via (7). The results are given in Table 1, 
along with the experimental values for ∆0 (as well as the 
gap-to-Tc ratio 

eliminate λ from these equations, which leads to R = 3.53. 
We now invert (6) and (7) to obtain 

© 2013 S .    

W

02 B ck T R  ). It is thus seen that: a) 
generally, 01 0 ;W    b) Both 01W

 expt

 and ∆0 fall short of  

0 , the mismatch between them being greater for 
the “bad actors”; c) The values of 012 B cW k T  calcu-  
lated via (3) are closer to the values of  0 B c

than the values of 
expt

2 k T   

 0 cal
2 B ck T  obtained via (1). 

5) Using the values of , ∆0 and  cT 01W
 

, we now 
calculate the dimensionless ratios 0  and T 

 01 01  for all the elements under consideration, 
the former via (1) and the latter via (3), for all 
W T W

 c . These lead to two clusters of curves, 
plotted in Figure 1, which are found to be more or less 
similarly compact. The thick dashed-curve between the 
two clusters in the figure corresponds to a relation ob-
tained via the Gorter-Casimir two-fluid theory of super-
conductivity, see e.g., Ref. [6]: 

0 1t T T  

      40 1sN t s sn t N t ,           (9) 

where Ns is the density of superconducting electrons. 
Inclusion of this curve is suggested by the observation 
that: 

     010 0
0 1sW n 0 01T T

T W T
 

   , 
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     01 1 0.sW n 
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 
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6) Our considerations so far have been based on the 
λ-values that were determined with the input of Tc and Θ 
of each of the elements. An assertion of the BCS theory 
is that it has no disposable parameters, which means that 
the same λ must occur in both (1) and (2). Hence one can  

 0
0

1

arcsinh Bk
  

 
           (10) 
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1
.

ln 1 2 B

W
k W

 
 

         (11) 

The values of λs obtained with the input of  
  expt W 0 01  and Θ into (10) and (11), respectively, 

are also given in Table 1. It is thus seen that for each of 
the listed elements,    W  0 01 , though the for-
mer is always marginally greater than the latter. A sig-
nificant feature of these λ-values is that for all the listed 
elements 

    0 01, .cW T               (12) 

Using these values of   0  and  W 01  in (2) to 
calculate the values of Tc for the elements listed in Table 
1, the results are, in degrees Kelvin: Cd (0.47, 0.47, 0.42), 
Pb (8.7, 8.1, 7.2), Hg (5.41, 5.14, 4.15), Sn (3.9, 3.83, 
3.72), In (3.56, 3.46, 3.41), Tl (2.6, 2.52, 2.38), Nb 
(10.19, 9.88, 9.25), where the first entry in the parenthe-
ses for any element denotes Tc corresponding to   0 , 
the second entry to  W 01 , and the third entry denotes 
the experimental value. It is thus seen that: a) there is a 
mismatch between the calculated and the experimental 
values of Tc; b) the mismatch is more pronounced for the 
“bad actors”, a circumstance which is responsible for 
violation of the universality of R; and c) The Tcs calcu-
lated via  W

  
01  are invariably closer to the experi-

mental values than those calculated via . 0

7) We believe the inequality in (12) to be important, 
and while we will discuss it further in the next section in 
the context of a CS (YBCO) which is characterized by 
two ∆0s but one Tc, let us first delve on its origin. We 

 
Table 1. Experimental values of Tc, Θ and  W0 0  are taken from Poole [6]. The cT


 is calculated with the input of Tc 

and Θ into (2), while 0   and    W0  are calculated with the input of Θ and  W0 0expt  into (10) and (11), re-

spectively. Also, ∆0 and  cT  and Θ into (7) and (8), respectively. W0  are calculated with the input of 

SC  cT K  K   0 0 0p exp
meV ,2 B cW k T  

ex
  cT  0  0W   0 0meV , 2 B ck T   

0 0meV , 2 B cW W k T  

Cd 0.42 210 0.072, 3.98 0.1577 0.1608 0.1607 0.064, 3.52 0.064, 3.53 

Pb 7.2 96 1.33, 4.29 0.3682 0.3957 0.3849 1.099, 3.54 1.17, 3.78 

Hg 4.15 88 0.824, 4.61 0.3145 0.3430 0.3372 0.632, 3.53 0.658, 3.68 

Sn 3.72 195 0.593, 3.7 0.2448 0.2477 0.2466 0.566, 3.53 0.575, 3.59 

In 3.41 108 0.541, 3.68 0.2792 0.2826 0.2804 0.519, 3.53 0.533, 3.63 

Tl 2.38 79 0.395, 3.85 0.2756 0.2824 0.2802 0.362, 3.53 0.372, 3.62 

Nb 9.25 276 1.55, 3.89 0.2840 0.2920 0.2894 1.407, 3.53 1.449, 3.64 
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    Figure 1. Plots of T 0   obtained via (2), and of  obtained via (4). λ in each case is taken to be W T W0 cT as 

given in Table 1. The upper cluster of curves corresponds to  T 0  , and the lower to  W T W0 . The thick dashed 

curve between the two clusters corresponds to   t 41

 

sn , see (9). 

 
recall that it was pointed out by Pines [7] that λ can be 
decoupled into a product of two rather disparate quanti-
ties N(0) and V. The first of these is the density of states 
at the Fermi surface 

2 2

3
0 ,

2π Bk v


  N

where γ is the Sommerfeld parameter, v the gram-atomic 
volume of the element, and V is the algebraic sum of the 
attractive interaction between electrons owing to the lat-
tice and the repulsive Coulomb interaction. We now ask 
as to how V might change for an SC if, starting from T > 
Tc, its temperature is progressively lowered to T = 0. 

We recall that Cooper showed a long time ago 
that—and this is the basis of virtually all theories that 
attempt to explain superconductivity—pair-formation will 
take place however small the net attraction between elec- 
trons may be, causing a lowering of the energy of the 
system and hence superconductivity to arise. This sug- 

gests that for all T > Tc, V is positive, changes sign at T = 
Tc and continues to (negatively) increase so as to attain 
its maximum value at T = 0. Such T-dependence of λ is 
required in addition to the T-variation because of the tanh 
term in (1) in order to cause closure of the two gaps of a 
binary at the higher Tc, as will be seen in the next section. 
There is, however, another interesting possibility: V is 
attractive even for T > Tc (i.e., there is no change of sign 
at T = Tc), but (negatively) keeps increasing down to T = 
0. If this be so, then there must be CPs without there be-
ing superconductivity. This suggests the existence of 
“preformed CPs” before superconductivity sets in [8,9]; 
whether or not this feature has a bearing on the so-called 
pseudogaps in HTSCs seems still to be an open question. 

8) In connection with the T-dependence of λ, we note 
that in a recent study [10] it has been shown that one can 
account for the empirical law that relates the critical 
magnetic field  c H T  of an elemental SC with 0Hc  
by assuming that V varies linearly with temperature. 

Copyright © 2013 SciRes.                                                                                 JMP 
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9) Assuming that λ in (1) varies linearly with t, we have 

       02
,cEq

t T t         0 c cT T   . (13) 

from Figure 2, the cluster of curves corresponding to 
the latter is more compact than the cluster for the for-
mer. This is one of our main results because of its uni-
versality unlike, strictly speaking, the alleged universal-
ity of the constancy of the gap-to-Tc ratio. 

Using the values of λs in Table 1, α is found to have 
the values 7.381 × 10−3, 3.819 × 10−3, 6.867 × 10−3, 7.796 
× 10−4, 9.971 × 10−4, 2.857 × 10−3, and 8.649 × 10−4, for 
Cd, Pb, Hg, Sn, In, Tl, and Nb, respectively. 

 We note in passing that the cluster for 01 01W T W

  2.61sn t t 

 

is reproduced rather well by . 
Assuming a similar variation for the λ in (3) 

   
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W T T
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  

0 1t   

,          (14) 
3. Dealing with Binary SCs via BCSEs 

Compared with GBCSEs 

An important feature of our considerations concerned 
with elemental SCs above is that we have been willy- 
nilly led to the idea of T-dependent coupling constants. 
We now draw attention to the need for such an idea even 
for composite (i.e., non-elemental) SCs that are charac- 
terized by two ∆0s but one Tc. For the sake of concrete- 
ness, let us consider the case of YBCO for which the  

we find that α1, for the same elements in the same order, 
has the following values: 7.143 × 10−3, 2.319 × 10−3, 5.47 
× 10−3, 4.839 × 10−4, 3.519 × 10−4, 1.933 × 10−3, and 
5.388 × 10−3. 

For , we now solve (1) for 0 using 
(13), and (3) for 

T 
 01W T 01W  using (14). As seen 
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 Figure 2. Plots of T 0  obtained via (2) with variable λ given in (11), and of W T W0  obtained via (4) with λ given in 

(12). The upper cluster of curves corresponds to    T 0 , and the lower to   W T W0

. sn t 2 61 .

. The thick dashed curve corre-

sponds to  
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characteristic set of parameters  is given 

by [3]. 

 01 02, , ,cT  

92 K, 410 K5.5 meV,20.0 meV,       (15) 

It was pointed out by Suhl et al. [5] that itinerancy of 
electrons between the s- and the d-bands and the overlap 
between them can cause an SC to have two gaps via (1) 
and, in general, two critical temperatures via (3) within 
the framework of BCS theory. This happens because λ is 
now given by a quadratic equation. Indeed, this is the 
approach that has frequently been invoked, albeit qualita-
tively, to deal with two-gapped SCs. 

Let us therefore first apply this approach to YBCO. 
The λs corresponding to the two gap values in (15) cal-

culated via (10) are found to be 0.391 and 0.75, leading 
to Tc = 36.2 and 123 K, respectively. On the other hand, λ 
calculated with the input of Tc from the set (15) into (2) 
is found to be 0.615, which leads to the value of 14.4 
meV for the larger gap. Note that we are working in the 
“BCS-Suhl” scenario and not in the “Eliashberg-Suhl” 
scenario. Therefore we posit that a value of λ exceeding 
the minimum upper bound of 0.5 via the Bogoliubov 
criterion [11] is unacceptable. Furthermore, even if one 
ignores the difference between 0.75 and 0.615, we need 
to close both the gaps at the higher Tc i.e., 123/92 K. We 
assert that this cannot be brought about without invoking 
T-dependence of the λs. This will be explicitly shown 
elsewhere. 

We note that, as has been shown [3,4], none of the λs 
invoked in the framework of GBCSEs to deal with the 
gap-values and the Tc of any HTSC violates the Bo-
goliubov constraint mentioned above. In the context of 
YBCO, since it has already been shown as to how 
GBCSEs account for its superconducting properties, we 
need to make just one additional remark which is: for 
closure of the two gaps of YBCO one requires, again, the 
λs in the theory to be T-dependent. 

Having willy-nilly been led to the not-so-familiar do-
main of T-dependent approach here, it seems pertinent to 
note that such an approach has factually been employed 
in diverse fields in the past by: 1) Bogoliubov, Zubarev 
and Tserkovnikov, as discussed in [11, p. 250]; Sheahen 
[12], and in Ref. [10] in the context of superconductivity; 
2) by Weinberg [13], Linde [14], and Dolan and Jackiw 
[15] in the context of finite-temperature behavior of a 
class of relativistic field theories (RFTs) to address the 
question of restoration of a symmetry which at zero 
temperature is broken either dynamically or spontane-
ously; 3) in Ref. [16] for a model RFT; 4) for an expla-
nation of the legions of unidentified solar emission lines 
in Ref. [17], and 5) in QCD to explain the masses of dif-
ferent quarkonium families and their de-confinement 
temperatures in Refs. [18,19]. 

4. Conclusions 

1) We believe to have presented in detail a convincing 
case for regarding (3) as a viable alternative to (1). 

2) The above finding suggests the use of both (3) and 
(4) whenever a detailed variation of the two gaps of a CS 
with T is required. 

3) While our main motivation for this note was to 
draw attention to the above feature, we have collaterally 
been led to the somewhat not-so-familiar domain of 
T-dependent Hamiltonians. This led us to draw attention 
to diverse fields where T-dependent Hamiltonians have 
fruitfully been employed in the past. 

4) The well-known approach of Suhl et al. [5] to 
multi-gap superconductivity was recalled. It was pointed 
out that if experiment dictates that the two gaps of an SC 
close at the same (higher) Tc, then both Suhl et al.’s and 
the approach provided by GBCSEs need to invoke 
T-dependence of the interaction parameters. 

5) We conclude by noting that considerations of this 
note find an immediate and important application in the 
study of the thermal conductivity (κ) of high-Tc SCs via 
the Geilikman [20] and Geilikman-Kresin [21] or, equi- 
valently, the Bardeen, Rickayzen and Tewordt theories 
[22]. Specifically, we are now enabled to investigate the 
variation of κ with T both in the scenario where the two 
gaps of say, MgB2, close at the same Tc and in the sce-
nario in which they do not. We recall that thermal con-
ductivity is a non-equilibrium phenomenon and that it is 
measured under conditions of no electric current. Since a 
thermal current tends to drag a small electric current with 
it, this current must be balanced by an equal and opposite 
supercurrent. For these reasons measurement of κ re-
quires a rather elaborate experimental set up. A pertinent 
question therefore is: Could the cumulative effect of the 
stresses caused by such a set up lift the degeneracy of the 
two gaps closing at the same Tc? A preliminary study 
shows that this is indeed so i.e., the experimental data on 
κ(T) of MgB2 is better explained in the scenario in which 
its two gaps close at different temperatures. These find-
ings will be reported elsewhere. 
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