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ABSTRACT 

In this paper, a new optimization system based genetic algorithm is presented. Our approach integrates the merits of 
both ant colony optimization and genetic algorithm and it has two characteristic features. Firstly, since there is insta- 
bilities in the global market, implications of global financial crisis and the rapid fluctuations of prices, a fuzzy represen- 
tation of the optimal power flow problem has been defined, where the input data involve many parameters whose possi- 
ble values may be assigned by the expert. Secondly, by enhancing ant colony optimization through genetic algorithm, a 
strong robustness and more effectively algorithm was created. Also, stable Pareto set of solutions has been detected, 
where in a practical sense only Pareto optimal solutions that are stable are of interest since there are always uncertain- 
ties associated with efficiency data. The results on the standard IEEE systems demonstrate the capabilities of the pro- 
posed approach to generate true and well-distributed Pareto optimal nondominated solutions of the multiobjective OPF.  
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1. Introduction 

The OPF optimizes a power system operating objective 
function (such as the operating cost of thermal resources) 
while satisfying a set of system operating constraints, 
including constraints dictated by the electric network. 
OPF has been widely used in power system operation 
and planning. In its most general formulation, the OPF is 
a non-linear, non-convex, large-scale, static optimization 
problem with both continuous and discrete control vari- 
ables. Even in the absence of non-convex unit operating 
cost functions, unit prohibited operating zones, and dis- 
crete control variables, the OPF problem is nonconvex 
due to the existence of the nonlinear (AC) power flow 
equality constraints. The presence of discrete control 
variables, such as switchable shunt devices, transformer 
tap positions, and phase shifters, further complicates the 
problem solution [1-3]. Since there is instabilities in the 
global market, implications of global financial crisis and 
the rapid fluctuations of prices, for this reasons a fuzzy 
representation of the multiobjective optimal power flow 
has been defined, where the input data involve many  

parameters whose possible values may be assigned by 
the experts. In practice, it is natural to consider that the 
possible values of these parameters as fuzzy numerical 
data which can be represented by means of fuzzy subsets 
of the real line known as fuzzy numbers. Mathematical 
programming approaches, such as nonlinear program- 
ming, quadratic programming and linear programming, 
have been used for the solution of the OPF problem [4,5]. 
Unfortunately, the OPF problem is a highly nonlinear 
and a multimodal optimization problem. Therefore, con- 
ventional optimization methods that makes use of deriva- 
tives and gradients, in general, not able to locate or iden- 
tify the global optimum. On the other hand, many 
mathematical assumptions such as analytic and differen- 
tial objective functions have to be given to simplify the 
problem. Furthermore, this approach does not give any 
information regarding the trade-offs involved. 

The development of meta-heuristic optimization the- 
ory has been flourishing. Many meta-heuristic paradigms 
such as genetic algorithm, simulated annealing, and tabu 
search have shown their efficacy in solving computation- 
ally intensive problems [6-9]. The studies on heuristic 
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algorithms over the past few years have shown that these 
methods can be efficiently used to eliminate most of dif- 
ficulties of classical methods. Since they are population- 
based techniques, multiple Pareto-optimal solutions can, 
in principle, be found in one single run. 

Recently, to meet the ever increasing demands in the 
design problems, a new evolutionary algorithm called ant 
colony optimization algorithm have all been used suc- 
cessfully to mimic the corresponding natural, or physical, 
or social phenomena [10-12]. Ant colony optimization 
(ACO) is a metaheuristic inspired by the shortest path 
searching behavior of various ant species. Since the ini- 
tial work of Dorigo, Maniezzo, and Colorni on the first 
ACO algorithm, the ant system [13], several researchers 
have designed ACO algorithms to deal with multiobjec- 
tive problems. The set of solutions achieved by a mul- 
tiobjective evolutionary algorithm is required to satisfy 
both convergence and diversity criteria [14]. 

This paper intends to present a new hybrid algorithm 
for solving optimal power flow under fuzziness. The pro- 
posed approach integrates the merits of both ACO and 
GA and it has two characteristic features. Firstly, a fuzzy 
representation of the optimal power flow problem has 
been defined. Secondly, by enhancing ACO through GA, 
a strong robustness and more effectively algorithm was 
created. Several optimization runs of the proposed ap- 
proach will be carry out on the standard IEEE systems to 
verify the validity of the proposed approach. 

This paper is organized as follows. In Section 2, MOO 
is described. Section 3, provides a multiobjective for- 
mulation of EELD Problem. In Section 5, the proposed 
algorithm is presented. Implementation of the proposed 
approach is presented in Section 6. Results are given in 
Section 6. Finally, Sections 7 and 8 gives a brief discus-
sion and conclusion about this study. 

2. Defination of Multiobjective Optimization 

A multiobjective Optimization Problem (MOP) can be 
defined as determining a vector of design variables within 
a feasible region to minimize a vector of objective func- 
tions that usually conflict with each other. Such a prob- 
lem takes the form: 

    
 
1 2Minimize , , ,

subject to 0,

m f X f X f X

g X 

Λ
 

where X is vector of decision variables;  if X  is the 
ith objective function; and  g X  is constraint vector. 
A decision vector X is said to dominate a decision vector 
Y (also written as X Yφ ) iff: 

   i if X f Y

   i i

 for all  and  1,2, ,i m Λ

f X f Y  for at least one   ,i mΛ1, 2,

All decision vectors that are not dominated by any 

other decision vector are called nondominated or Pareto- 
optimal. These are solutions for which no objective can 
be improved without detracting from at least one other 
objective. 

3. Multiobjective Formulation of EELD  
Problem 

The economic emission load dispatch involves the si- 
multaneous optimization of fuel cost and emission objec- 
tives which are conflicting ones. The deterministic prob- 
lem is formulated as described below. 

Fuel Cost Objective. The classical economic dispatch 
problem of finding the optimal combination of power 
generation, which minimizes the total fuel cost while 
satisfying the total required demand can be mathemati- 
cally stated as follows:  
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where 
C: total fuel cost  $ hr ; 
Ci: is fuel cost of generator i; 

, ,i i ia b c
P

: fuel cost coefficients of generator i; 

Gi

n: number of generator. 
: power generated (p.u) by generator i; 

Emission Objective. The emission function can be 
presented as the sum of all types of emission considered, 
such as NOx, SO2, thermal emission, etc., with suitable 
pricing or weighting on each pollutant emitted. In the 
present study, only one type of emission NOx is taken 
into account without loss of generality. The amount of 
NOx emission is given as a function of generator output, 
that is, the sum of a quadratic and exponential function:  
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where, , , , ,i i i i i     : coefficients of the ith generator’s 
NOx emission characteristic. 

Constraints: The optimization problem is bounded by 
the following constraints: 

Power balance constraint. The total power generated 
must supply the total load demand and the transmission 
losses. 

loss
1

0
n

Gi D
i

P P P


    

where DP : total load demand (p.u.), and : transmis- 
sion losses (p.u.). 

lossP

The transmission losses are given by [15]: 
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  loss
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n : number of buses; 

ijR
V

: series resistance connecting buses i and j; 

i : voltage magnitude at bus i; 

i : voltage angle at bus i; 

i

Q
P : real power injection at bus i; 

i : reactive power injection at bus i. 
 Maximum and Minimum Limits of Power Gen- 

eration. The power generated GiP  by each generator 
is constrained between its minimum and maximum 
limits, i.e., 

min max

min max

min max
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where minGi : minimum power generated, and : 
maximum power generated. 

P maxGiP

 Security Constraints. A mathematical formulation of 
the security constrained EELD problem would require 
a very large number of constraints to be considered. 
However, for typical systems the large proportion of 
lines has a rather small possibility of becoming over- 
loaded. The EELD problem should consider only the 
small proportion of lines in violation, or near violation 
of their respective security limits which are identified 
as the critical lines. We consider only the critical lines 
that are binding in the optimal solution. The detection 
of the critical lines is assumed done by the experiences 
of the decision maker DM. An improvement in the 
security can be obtained by minimizing the following 
objective function. 

    max

1

k

Gi j G j
j

S f P T P T


    

where,  j GT P

P

 is the real power flow is the 
maximum limit of the real power flow of the jth line 
and k is the number of monitored lines. The line flow 
of the jth line is expressed in terms of the control 
variables Gs , by utilizing the generalized generation 
distribution factors (GGDF) [1] and is given below. 

max
jT

   
1

n

J G ji
i

T P D P


  Gi  

where, ji  is the generalized GGDF for line j, due to 
generator i. 

D

For secure operation, the transmission line loading 

 is restricted by its upper limit as lS

max , 1, ,S S n λ λ λλ Λ  

where nλ is the number of transmission line. 
 Multiobjective Formulation of EELD Problem. 

The multiobjective EELD optimization problem is 
therefore formulated as: 
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4. The Proposed Approach 

This section presents a new hybrid algorithm for solving 
optimal power flow under fuzziness. The proposed 
approach integrates the merits of both ACO and GA and 
by enhancing ACO through GA, a strong robustness and 
more effectively algorithm was created. The main steps 
of the MACO are summarized as follows. 

Step 1: Construct Q Colonies. In a multiobjective op- 
timization problem, multiobjective functions  

 1, 2 , , QF f f f Λ  need to be optimized simultaneously, 
there does not necessarily existence a solution that is best 
with respect to all objectives because of incommensura- 
bility and confliction among objectives. For this step, the 
number of colonies is set to Q with its own pheromone 
structure, where Q F  is the number of objectives to 
optimize. 

Step 2: Initialization. First, pheromones trails are ini- 
tialized to a given value  where 00 , 1,2, ,q q  Λ Q q  is 
the pheromone information in the current iteration and 
Pareto set are initialized to an empty set. 

Implementing the multipheromone ant colony optimi- 
zation for a certain problem requires a representation of n 
variables for each ant, with each variable i has a set of  
options (nodes) with their values ij  which we generate 
(a fully connected graph 

ni
l

 , in n , and their associated 
pheromone oncentrations  ij  (see Figure 1); where 

1, 2, ,i n Λ , and 1,2,j , in Λ . The process starts by 
generating m ants’ position (solutions) from the popula- 
tion which is generated randomly, thus each ant k, 

 1, 2, ,k  Λ m  has a position with a selected value for 
each variable  2, ,ij ni Λ1,2,l i ,n j Λ 1,  according  
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Figure 1. Ant representation. 
 
to the associated pheromone with this value. This process 
continues for each objective. Consequently, path of each 
ant was consisted of  nodes with a value  for each 
node. 

n ijl

Step 3: Evaluation. The MACO parameterized by the 
number of ant colonies  and the number of associated 
pheromone structures. All the colonies have the same 
number of ants. Each colony  tries to 
optimize an objective considering the pheromone infor- 
mation associated for each colony, where each colony is 
determined knowing only the relevant part of a solution. 
This methodology enforces both colonies to search in 
different regions of the nondominated front. 

Q

, 1, 2, ,k k Q Λ 



Step 4: Trail Update and Reward Solutions. When up- 
dating pheromone trails, one has to decide on which of the 
constructed solutions laying pheromone. The quantity of 
pheromone laying on a component represents the past 
experience of the colony with respect to choosing this 
component. Then, at each cycle every ant constructs a 
solution, and pheromone trails are updated. Once all ants 
have constructed their solutions, pheromone trails are 
updated as usually in Equation (2): first, pheromone trails 
are reduced by a constant factor to simulate evaporation to 
prevent premature convergence; then, some pheromone is 
laid on components of the best solution. Accordingly, 
pheromone concentration  

 asso- 
ciated with each possible route (variable value) is changed 
in a way to reinforce good solutions, as in Equation (2) 
and the change in pheromone concentration 

   , 1, 2, , , 1, 2, , & 1,2, ,q
ijp t q Q i n j ni  Λ Λ Λ

q
ij  is ex- 

pressed in equation 

, for Min

, for Max , if is chpsen by ant

0, otherwise

q q

q
ij q q ij

C f f

C f f l K



  



 

A possibility is to reward every nondominated solution 
of the current cycle as follows 

     1 1

1,2, , &

q q
ib ib ibt t

b B B ni

where  q
ib t  the revised concentration of pheromone is 

associated with option b ni  at iteration , t  1q
ib t   

is the concentration of pheromone at the previous iteration 
 1t  ; q

ib  is change in pheromone concentration that 
can be determined according to Equation (6); and B is the 
size of reward solutions 

Step 5: Solution Construction. Once the pheromone is 
updated after an iteration, the next iteration starts by 
changing the ants’ paths (i.e. associated variable values) 
in a manner that respects pheromone concentration and 
also some heuristic preference. For each ant and for each 
dimension construct a new candidate group to replace the 
old one. As such, an ant  will change the value for each 
variable according to the transition probability. The tran- 
sition probability is done for each colony  

k

  , 1, 2, ,q
ijp t q Q Λ  as expressed in the following equa- 

tion. 

 
 
 

, ,

0, otherwise

q
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q q
ij ij
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t
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where  q
ijp t  is Probability that option  is chosen by 

ant k for variable i at iteration t. 
ijl

Step 6: Nondominated Solutions. The set of nondomi- 
nated solutions is stored in an archive. During the opti- 
mization search, this set, which represents the Pareto front, 
is updated. At each iteration, the current solutions ob- 
tained are compared to those stored in the Pareto archive; 
the dominated ones are removed and the nondominated 
ones are added to the set. 

Step 7: Steady State Genetic Algorithm. Steady state 
genetic algorithm was implemented in such way that, two 
offspring are produced in each generation. Parents are 
selected to produce offspring and then a decision is made 
as to which individuals in the population to select for 
deletion to make room for the new offspring (Figure 2). A 
replacement/deletion strategy defines which member of 
the population will be replaced by the new offspring. 
Steady state genetic algorithms overlapping systems, 
since parents and offspring compete for survival.  
 

 ,q        

 Λ
 

Figure 2. The model for steady state for genetic algorithms. 
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1) Selections: Selection determines which individuals 
of the population will have all or some of their genetic 
material passed on to the next generation of individuals. 
The mechanism for selecting the parents is based on a 
tournament selection. Tournament selection operates by 
choosing some individuals randomly from a population 
and selecting the best from this group to survive into the 
next generation. For example, pairs of parents  , x y  are 
randomly chosen from the initial population. Their fitness 
values are compared and a copy of the better performing 
individual becomes part of the mating pool. The tourna- 
ment will be performed repeatedly until the mating pool is 
filled. That way, the worst performing patent in the 
population will never be selected for inclusion in the 
mating pool. Tournaments are held between pairs of in- 
dividuals are the most common. In this way all parents 
necessary for a reproduction operator are selected. 

2) Recombination through Crossover and Mutation: 
After selection has been carried out, then the mechanisms 
of crossover and mutation are applied to produce an off- 
spring, the following subsection outlines these genetic 
operators. 

Crossover: Once the parents are created, the crossover 
step is carried out by replacing the current value with a 
new one which produced stochastically with a probability 
proportional to the crossover probability. Suppose the 
crossover probability set by the system is c . Generating 
a random number 

p
 0,1r

r 
, the crossover operation could 

be carried out only if c . Suppose p x  and y  are 
two parents and   is a random number (i.e.  0,1  ). 
The result of crossover operation x  and y  can be 
obtained by the following linear combination of x  and 
y : 

 
 

1

1

x x y

y x

 

y 

   

   
 

Mutation: Once the, the crossover is performed, the 
mutation step is carried out by replacing the current value 
with a new one which produced stochastically with a 
probability proportional to the mutation probability m . 
Generating a random number 

p
 0,1r

r p
, the mutation 

operation is implemented only if m . Suppose  x j  
will be transformed into  x j  after mutation as follows:  

         ,
1,2, ,

x j L j U j L j

j n

   

 Λ
 

where   is a random number (i.e.  0,1  ). Here L 
and U are the lower and upper bounds respectively. 

3) Replacement/deletion strategy: A widely used com- 
bination is to replace the worst individual only if the new 
individual is better. In the paper, this strategy will be 
suggested that the individual will be deleted if it was 
dominated by the new offspring as in Algorithm 1. 

Algorithm 1. The strategy of deletion. 

1. INPUT:  ,POP x

2. if , thenx POP x x   φ  

3. POP POP   

4. else if , thenx POP x x   φ  

5.    @POP POP x x Υ  

6. end if 

7. Output: POP  

5. Implementation of the Proposed  
Approach 

The described methodology has been described for M- 
objective function, but it is applied to the standard IEEE 
30-bus 6-generator test system with two objectives. The 
single-line diagram of this system is shown in Figure 3 
and the detailed data are given in [1,2]. The values of fuel 
cost and emission coefficients are given in Table 1. For 
comparison purposes with the reported results, the system 
is considered as losses and the security constraint is re-
leased. The techniques used in this study were developed 
and implemented on 1.7-MHz PC using MATLAB envi-
ronment. Table 2 lists the parameter setting used in the 
algorithm for all runs. 

Naturally, these data (cost and emission) involve many 
controlled parameters whose possible values are vague 
and uncertain. Consequently each numerical value in the 
domain can be assigned a specific “grade of membership” 
where 0 represents the smallest possible grade of mem- 
bership, and 1 is the largest possible grade of membership. 
Thus fuzzy parameters can be represented by its mem- 
bership grade ranging between 0 and 1. 

The fuzzy numbers shown in Figure 4 have been ob- 
tained from interviewing DMs or from observing the 
instabilities in the global market and rate of prices fluc- 
tuations. The idea is to transform a problem with these 
fuzzy parameters to a crisp version using  -cut level. 
This membership function can be rewritten as follows: 

 

1,

20
19, 0.95

20
21 , 1.05

0, 0.95 or 1.05

ij

jk ij
ij
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ij ij
ij

ij ij

a a

a
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a
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a
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a
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  a

 

So, every fuzzy parameter ij can be represented using 
the membership function. By using 

a
 -cut level, these 

fuzzy parameters can be transformed to a crisp one having 
upper and lower bounds ,a aL U

ij ij   , which declared in   
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Table 1. Generator cost and emission coefficients. 

  G1 G2 G3 G4 G5 G6 

a 10 10 20 10 20 10 

b 200 150 180 100 180 150 Cost 

c 100 120 40 60 40 100 

  4.091 2.543 4.258 5.426 4.258 6.131 

  −5.554 −6.047 −5.094 −3.550 −5.094 −5.555 

  6.490 4.638 4.586 3.380 4.586 5.151 

  2.0E−4 5.0E−4 1.0E−6 2.0E−3 1.0E−6 1.0E−5 

Emission 

  2.857 3.333 8.000 2.000 8.000 6.667 

 
Table 2. Parameters for the proposed approach. 

Parameters  

Number of objective function (Q) 2 

Number of colonies 2 

m  100 

  0.5 

  1 

  0 

C  100 

0  10 

cp  0.85 

mp  0.02 

 

 
Figure 4. Consequently, each  -cut level can be repre- 
sented by the two end points of the alpha level. 

6. Results and Discussion 

Here, the problem is how to determine the optimal power 
flow for considering the minimum cost and the minimum 
emission objectives simultaneously. In order to effi- 
ciently and effectively obtain the solution, the search for 
the optimal solution is carried out in two steps. Firstly, a 
set of nondominated solutions is obtained by exploring 
the optimal Pareto frontier using different   cut level. 
To study the influence of fuzzy parameters on the ob- 
tained Pareto optimal solutions, all the range of the pa- 
rameter fluctuation were scanned, two bounds of Alpha 
value have been considered 0  , 1  , and also we 
take some values between these bounds 0.2  ,    
0.4, 0.6  , 0.8  . Based on the definition of Pareto 
stability, the Pareto frontier may be reduced to a man- 
ageable size (i.e., Stable Pareto optimal solutions). MM- 
ACO is employed to deal with this problem. Graphical  

Figure 3. Single line diagram of IEEE 30-bus 6-generator 
test system. 
 

 (Parameter values)a1.05 ijaijaija

Level 

L
ija U

ija



 

 

Figure 4. Fuzzy numbers of the effectiveness of resource. 
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presentations of the experimental results on the six in- 
stances problem and are presented in Figures 5-10. It is 
obvious from Figures 5-10 that the results maintain the 
diversity and convergence for all   cut level. 

Further we need to determine stable Pareto set solution, 
which is a Pareto optimal for all runs (different   cut 
level), there was 7 Pareto solution was detected as a stable 
Pareto solution. Table 3 lists the set of the stable set of 
optimal solution. On the basis of the application, we can 
conclude that the proposed method can provide a sound 
optimal power flow by simultaneously considering mul- 
tiobjective problem. 

In this section, a comparative study has been carried out 
to assess the proposed approach concerning Pareto solu- 
tions, DM preference, and computational time. On the one 
hand, evolutionary techniques suffer from the large-size 
of the Pareto set. Therefore the proposed approach has 
been used to reduce the Pareto front by detecting the sta- 
ble Pareto solutions under uncertainty which enable the 
proposed approach to help the DM to take correct decision 
by visualizing the Pareto front, also it maintains the di-  
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Figure 5. Pareto optimal set for α cut level = 0. 
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Figure 6. Pareto optimal set for α cut level = 0.2. 
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Figure 7. Pareto optimal set for α cut level = 0.4. 
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Figure 8. Pareto optimal set for α cut level = 0.6. 
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Figure 9. Pareto optimal set for α cut level = 0.8. 
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Figure 10. Pareto optimal set for α cut level = 1.0. 
 
versity of the solutions and good distribution over the 
nondominated front and take the DM preference into 
consideration by choosing appreciate   cut level. On the 
other hand, classical techniques aim to give a single point 
at each iterations of problem solving. On the contrary, the 
proposed approach generates a set of solutions at each 
iteration according to DM preference. Finally, the feasi- 
bility of using the proposed approach to handle multiob- 
jective optimization problems has been empirically ap- 
proved. 

7. Conclusions 

Ant colony optimization has been and continues to be a 
fruitful paradigm for designing effective combinatorial    
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Table 3. The stable optimal pareto solutions by MM-ACO. 

Pareto index PG1 PG2 PG3 PG4 PG5 PG6 

1 0.2556 0.4041 0.5315 0.6798 0.5350 0.4271 

2 0.2510 0.4035 0.5291 0.6827 0.5394 0.4274 

3 0.2523 0.4023 0.5307 0.6848 0.5359 0.4272 

4 0.2563 0.4055 0.5285 0.6743 0.5374 0.4312 

5 0.2616 0.4079 0.5293 0.6632 0.5355 0.4355 

6 0.2642 0.4080 0.5299 0.6594 0.5355 0.4360 

7 0.2990 0.4336 0.5298 0.5914 0.5319 0.4476 
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