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ABSTRACT 

This paper surveys the formalism and applications of the postclassical turbulence mechanics (PCTM) grounded on the 
characterization of turbulent flow field in infinitesimal surroundings of the flow field points besides the flow velocity at 
these points also by the curvature of the velocity fluctuation streamlines passing these points. The PCTM applies this 
step to found the turbulence split into the orientated and the non-orientated constituents. The split specifies the compe- 
tence of the classical turbulence mechanics (CTM) to the description of the non-orientated turbulence constituent and 
delegates the description of the orientated turbulence constituent (in the spirit of the theory of micropolar fluids) to the 
equation of moment-of-momentum. The concurrent presence of the orientated (relatively large scale) and the non-ori- 
entated (relatively small scale) turbulence constituents enables to compile the CTM and the conception of L. F. 
Richardson and A. N. Kolmogorov about the cascading turbulence (RK conception) within a conjoint formalism. The 
compilation solves the classical conflict between the CTM and the RK conception, though evinces a conflict of another 
type characterized as paradigmatic. 
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1. Introduction 

According to the classical turbulence mechanics (CTM), 
the flow state in the infinitesimal surrounding of each 
flow-field point is uniquely characterized by the flow 
velocity at this point. The postclassical turbulence me- 
chanics (PCTM) modifies this statement by constituting a 
flow state in the infinitesimal surrounding of each flow 
point characterized in addition to the flow velocity at this 
point also by the curvature of the velocity fluctuation 
streamlines passing this point. The complementation is 
an outcome of the analysis of the relation between the 
CTM, the conception of L. F. Richardson [1] and A. N. 
Kolmogorov [2] (RK conception) about the cascading 
eddy structure of turbulence and the idea about the ap- 
plicability of the theory of micropolar fluid (MF) [3-7] to 
the description of turbulent flows [8-12]. The analysis 
follows the general principles of the statistical physics 
connecting the properties of the statistical ensembles to 
the specific conditions of their formation formulated in 
average terms [13,14]. The adjustment of these principles 
within the context of the turbulence problem has been 
explained in [15-21] and summarized in [22] (together 
with the physical-historical background of the turbulence 
problem) as the physical doctrine of turbulence (PDT).  

The formalism of the PCTM (section 2) utilizes the 
suggested complemented characterization of the flow- 
field states in the infinitesimal surroundings of the flow- 
field points as a precondition for definition of a kinema- 
tical-dynamical pair of the Eulerian flow-field character- 
istics reflecting local average effect of a prevailing ori- 
entation of the large-scale turbulence constituent. The 
turbulence property characterized by the defined quanti- 
ties founds the decomposition of turbulence into its ori- 
entated (relatively large scale) and non-orientated (rela- 
tively small scale) constituents, delegates the description 
of the orientated turbulence constituent (in the spirit of 
the theory of MF) to the equation of moment-of-mo- 
mentum, specifies the competence of the CTM to the 
description of the non-orientated constituent of turbu- 
lence and provides an opportunity to reflect the RK con- 
ception (in two-scale approximation) in formulation of 
turbulence mechanics (TM). Besides, the turbulence 
properties reflected by the defined flow-field characteris- 
tics introduce substantial particularization to the descrip- 
tion of energetic and transport processes in turbulent me- 
dia (A more general setup of the PCTM for the multi- 
scale representation of turbulent flow-field can be found 
in [19-21]).  

Section 3 discusses a complementation of the ex- 
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plained in the Section 2 all-purpose formalism of the 
PCTM by the appropriate closure assumptions summing 
up in the form of the theory of rotationally anisotropic 
turbulence (the RAT theory) [15,16,23] (henceforth, 
[23]). The applied closure constitutes the generalized 
forces driving the motion linearly connected to the re- 
spective generalized velocities, which ascribes the coef- 
ficients introduced by the closure with a plain and unam- 
biguous physical sense. The perspectives of application 
of the RAT theory are exemplified in the Section 4 on 
several examples.  

Section 5 (Conclusion) comments the reception of the 
PCTM (together with the RAT theory and its applica- 
tions) by the scientific society engaged within the CTM. 
The reception is characterized as evidencing a substantial 
paradigmatic conflict between the expressed by the PDT 
physical look to the turbulence problem and the look to 
this problem kept by the CTM. The latter reduces the 
turbulence problem to either a huge number of applied 
tasks or to the problem of integration of equations of cla- 
ssical fluid mechanics. The aim of the current paper is to 
motivate physicists to determine their own position in 
this conflict.  

2. The Formalism of the PCTM 

2.1. The Grounding Steps of Formulation of the 
PCTM 

The formalism of the PCTM begins from claiming the 
momentary states of the turbulent flow-field fixed in in- 
finitesimal surroundings of each flow-field point besides 
the flow velocity v at this point by the curvature of the 
velocity fluctuation streamline passing this point. The 
claim is accompanied with the inclusion of the curvature 
characteristics of the velocity fluctuation streamlines to 
the arguments of the probability distribution of the me- 
dium motion states at the flow-field points. In the fol- 
lowing the PCTM applies this preliminary step as a nec- 
essary precondition to determine the dynamical-kinema- 
tical pair of the Eulerian flow-field characteristics 

2R R e e M v               (1) 

and 

   v k e e ,                (2) 

complementing the average flow field characteristics 
introduced in the CTM. In (1) and (2) (and hereafter): 
angular brackets denote statistical averaging,   v v u  
(in which u v ) denotes the fluctuating constituent of 
the flow velocity; ve v  (in which v  v ); k  

se   (in which s  is the length of the curve of v

v

 
streamline passing a flow field point) is the curvature 
vector of the  streamline passing the flow field point; 

2kR k  (in which k  k ) is the curvature radius 

vector corresponding to k; R  R ; and the overdot de- 
notes the full time derivative t v s     .  

The defined in (1) and (2) quantities characterize the 
average state of motion of Lagrangian particles passing 
the flow field points while M has the sense of the average 
density (per unit mass) of the moment of fluctuating con- 
stituent of momentum at the flow field points (hence- 
forth—the moment-of-momentum) with R standing for the 
arm of the moment and   has the sense of the average 
angular velocity of rotation of the medium particles at the 
flow field points in respect to the random curvature cen- 
ters of the velocity fluctuation streamlines passing these 
points. As the characteristics of a dynamical-kinematical 
state of the flow-field at the flow-field points the defined  

M and   determine the energy 1
2

K  M  specified 

as a part of the total turbulence energy 21
2

K v

0

 rep- 

resented as 

K KK ,                     (3)  

where 0 1
2

K  M    M v R M in which  and  

  v k  . The energy split in (3) shows the me- 
dium turbulence split into the orientated and the non- 
orientated constituents characterized by the pair M,   
and by 0K , respectively. Finally, proceeding from the 
sense of M and  , it is natural to connect them by  

 M J ,                      (4) 

J . defining the tensor of effective moment of inertia 
Let us emphasize the following:  
1) The turbulence properties reflected by M and   

relate the average turbulent continua to the class of MF 
with their MF properties reflecting the local effect of the 
prevailing orientation of eddy rotation;  

2) Constituting M and   identically vanishing, the 
CTM either confines its applicability to the situation with 
the correlations expressed by (1) and (2) absent (which is 
a physical assertion) or excludes axiomatically the cur- 
vature of the velocity fluctuation streamlines from the set 
of characteristics of the flow-field states in infinitesimal 
surroundings of the flow-field points;  

3) The split of turbulence into the orientated and the 
non-orientated constituents reserves to the CTM the com- 
petence of describing the non-orientated constituent of 
turbulence;  

4) The turbulence properties reflected by (1)-(3) pro- 
vide a possibility to introduce the RK conception in an 
explicit form (in the two-scale approximation) to the av- 
erage description of turbulence. 

2.2. The Balance Equations 

The following particularizes the explained in 2.1 setup of 
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turbulence description in terms of differential balance 
equations for the average momentum, for the moment-of- 
momentum, for different energy constituents and for the 
concentration of scalar substance. 

2.2.1. The Balance Equations for the Momentum and 
Moment-of-Momentum 

In the universal form the differential balance equations 
for the momentum and the moment-of-momentum write 
as [24]:  

 ,ij jσ
d

dt
  u F ,                 (5) 

 , j

d

d kjm
t

   M m .             (6) 

In (5) and (6): d dt t  u  ;   is the medium 
density; ij  are the components of the stress tensor; F 
is the density (per unit mass) of the body force (hence- 
forth—the body force); kj  are the components of the 
moment stress tensor describing the diffusive transport of 
M; 

m

  is the dual vector to the antisymmetric constitu- 
ent of the stress tensor coupling the fields of momentum 
and the moment-of-momentum; m is the density (per unit 
mass) of the body moment (henceforth—the body mo- 
ment) acting on the medium; the index after the subscript 
comma denotes differentiation along the respective space 
coordinate while the Einstein summation is assumed and 
the equivalent notation arbitrary tensor or vector quan- 
tity ≡ {components of this quantity} is applied.  

The characterization of the turbulent flow-field ex- 
plained in 2.1 specifies u and M in (5) and (6) as the av- 
erage flow velocity and the moment-of-momentum de- 
fined in (1), respectively, while Equation (5) is the bal- 
ance equation for the average momentum and Equation 
(6) is the equation obtained from the averaged difference 
of the balance equation of instantaneous momentum and 
Equation (5) vector-multiplied by R from the right. The 
derivation procedure provides all terms in (5) and (6) 
with specific expressions via the momentary flow-field 
characteristics [23]. In particular, it specifies the stress 
tensor as m t

ij ij ij    m, where ij  denote the compo- 
nents of the molecular stress tensor and t v v ij j i  

1 2

 
denote the components of the turbulent stress tensor, and 
the body moment m as  

f  m mm m ,                (7) 

where 1 t   m v R  2,   m u M  and 

1


 m f R

f

f



 

in which  denotes the fluctuating constituent of the 
body force acting on the medium.  

Notice, that the asserted by Equations (5) and (6) 
asymmetry of the turbulent stress tensor has the same 

origin as the non-triviality of the turbulent flow-field 
characteristics defined in (1) and (2).  

2.2.2. The Energy Balance Equations 
The full set of the energy balance equations of the PCTM  

comprise the balance equations for 21
2

uK u  (where  

uu  ) (derived as the scalar product of Equation (5) 
and u), for ˆ  (deduced for K J1J = constJ with  , 
where  denotes the unit tensor with the components 1̂

ij  ), for  , as the scalar product of Equation (6) and 
0K  (derived as the difference of equations of balance of 

turbulence energy K and K ) and for internal (thermal) 
energy U, written as:  

d

d
u u u u uK A q

t
       h ,       (8) 

Ω Ω Ω Ω Ωd

d
K A B q

t
       h ,    (9) 

0 0 Ω 0 0d

d
uK B q

t
         h ,   (10) 

d

d
UU

t
    h

0, , ,u Uh h h h

              (11) 

In (8)-(11):  denote diffusive flux vec- 
tors of Ku,  , K0 and U, respectively; K A      

(where 1
2

 u  is the vorticity) denotes the work  

realizing the energy exchange between Ku and K ; 

2B  m   denotes the work realizing the energy ex- 
change between K , 0K ;  (in which     ,

u t
ij i ju 

 ( )
1
2

t t t
ij ij ji      and  , ,,

1
2 i j j ii j u u u ) denotes the  

work realizing the energy Ku scatter into the energy K0; 
 Ω m  , 1ij i j      m   denotes the work 

resulting in the scatter of energy K

 

 into the energy  

K0;  , 0u m
ij i ju   0   0 0 ,  and  reflect  

the molecular dissipation of the energies Ku, K  and 
K0, respectively; 0u     uq  ; F u

q 
,  

f
0qm   and   describe the effect of external 

fields on the energies Ku,   and K0. K
A substantial implication of the energy balance situa- 

tion represented by (8)-(11) is the specification of the 
pairs of “generalized forces” and the respective “gener- 
alized velocities” as     t u  ,m ,ij i j , ,ij i j ,  ,    
and  , m1  . Each of the pairs determines an inde- 
pendent physical process realizing the scatter of the en- 
ergies Ku and/or K  into the energy K0. Notice that, 
unlike the positive u  and , the work A and the 
work B may be either positive or negative. In particular, 
positive A is related to the energy 

Ω

K  feeding on the 
energy Ku while the negative A declares the situation of 
the eddy-to-mean energy conversion accompanied with 
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the up-gradient momentum transfer. For the stationary 
and homogeneous situation the latter possibility assumes 

Ωq  positive, i.e. external fields feeding the energy 
K . The other note relates to the energy K0 feeding on 
the energies Ku and K

c

, from which the RK conception 
excludes the first energy source and the CTM excludes 
the second. The concurrent inclusion of both situations in 
set (8)-(11) suggests the compilation of the RK concep- 
tion (in two-scale approximation) as well as the CTM 
within one unique formalism.  

2.2.3. The Balance Equation for the Scalar Substance 
The turbulence properties reflected by the defined in (1) 
and (2) quantities introduce a change not only into the 
description setup of turbulent motions explained in 2.2.1 
and 2.2.2 but also into the description of turbulent trans- 
port processes. Indeed, denoting by , C c
c c



 and 
 the instantaneous, average and fluctuating 

concentration of an arbitrary scalar substance (concentra- 
tion of ingredients, temperature, etc.), respectively, and 
using the identity 

C 

 2Rv R  v R , the turbulent 
flux vector of the substance, C c  h v , in the balance 
equation for C,   

CC Q   h

Ω 0
C C C h h h

d

dt
,               (12) 

where Q denotes the body-source of C, becomes repre- 
sented as  

,                 (13) 

In (13) 0
C c   h R  and C  describe 

the turbulent transport of C by the non-orientated and by 
the orientated turbulence constituents, respectively.   

c  h R

ˆ

3. The RAT Theory 

3.1. The Closure Assumptions 

The RAT theory [23] realizes the all-purpose formalism 
of the PCTM explained above within a specific solution 
of the closure problem of the balance Equations (5), (6) 
and (12), formulated in three steps. The first step (already 
applied while deriving Equation (9)) constitutes   

J1J =

0

,                     (14) 

where . Notice that J  J  determines the charac- 
teristic length scale of eddies contributing to M and  . 
Unlike , the length scale R J  is an average quantity. 

In the second step the “generalized forces”, revealed in 
the analysis of energy balance in 2.2.2, are set to linearly 
depend on the respective “generalized velocities”, written 
as 

 
t
ij    ,2ij i jp u   ,             (15) 

0 , 1 , 2ij k k ij i jm ,j i        ,         (16) 

 4   ,       

and 

1 4

          (17) 

  m  . 

 (15)-(18): p is the pressur

                 (18) 

In e; 0   is the coeffi- 
y; , , 0cient of turbulence shear viscosit 0 1 2    , are the 

diffusion coefficients of M; 0   e coefficient of 
turbulence rotational viscosity char he shear 
stresses in the relative rotatio e. for 

is th
acterizing t

n, i.  ; 0   
interprets as the coefficient of decay of M due to the 
cascading process. Relations (15)-(17) are ar  
respective relations within the MF theory whereas the 
relation (18) reflects a fundamental difference in the pro- 
perties of turbulent media and micropolar fluids—when 
the turbulence structure requires incessant restoration 
then the MF theory considers the media having a fixed 
structure.  

The third step constitutes 0
Ch  and 

 simil to the

cR , determin- 
ing Ch  in (13), expressed as 0

C 0k C h  and  

1 2k C k Cc     R  (with the latter derived as the 
depe ence of nd cR  on   linear in res

nd vanishing for 0C  ) re- 
sulting in  

C C

and C  pect 
to the both arguments a

 h K .            (19) 

In (19) 

       

K  is the turbulent tra
as  

nsport tensor represented 

s as K K K ,                  (20) 

   specifies the sym-  2
0 1
ˆ ˆs k k   1 1K

 2
as k

in which 

metric and   K E  (wher
or)—the antisymmetric 

e E  is the Levi- 
Civita tens constituent of K . 
Equations (19 ain k0 and 1 as the positive 
coefficients characterizing normal (down-gradient) t - 
bulent diffusion of C and k2—as the coefficient charac- 
terizing the cross-gradient turbulent diffusion of C. For C 
not contributing to the density field the sign of k2 speci- 
fies as negative. Otherwise the sign of k2 becomes de- 
pending on whether the C

) and (20) expl  k
ur

  constituent perpendicular to 
the gravity acceleration amplifies of depresses  . 

3.2. The Equations of the RAT Theory 

The closure relations (14)-(19), turn the bal
tions (5), (6) and (12) (henceforth , , , ,

ance Equa- 
, , ,0 1 2 0J k      , 

  and C 
k1 and k2 are constituted to be constants) into the follow- 
ing set of equations to determine u, 

 d
2

d
p

t
           

u
u F ,      (21) 

  

 
0 2 1

d
4

d
4 ,f

J
t

J

    

  

      

    u m


  

 


  (22) 
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 C C Q K ,           (23) 

where 

d

dt
  

K  is specified in (20). 
Let us accompany Equations (21)-(23

lowing comments.  
 clos resulting in (21) and (22) 

) with the fol- 

1) The ure assumptions 
specify also all terms in the energy balance Equations 
(8)-(10) providing any solution of (21) and (22) with a 
rigid physical sense expressed in energetic terms. In par- 
ticular, the closure relation (17) specifies the work A in 
(9) and (10) as  4A      which sets the prob- 
lem of eddy-to-mean energy conversion into the dy- 
namical context expressed by (21) and (22) avoiding the 
application of negative viscosity [25] or the idealization 
of the 2D turbulence. 

2) Delegating the description of the orientated (rela- 
tively large scale) turbulence constituent to the equation 
of the moment-of-momentum, the formalism of the RAT 
theory proves closer to the theory of MF than to the 
CTM, which ignores this equation in its setup. 

3) The constituted in the CTM statement of symmetry 
of the turbulent stress tensor reads in terms of Equations 
(21) and (22) as the condition  4 0    holding 
either for 0   or for   which enlightens the 
ambivalence of physical interpretation of the CTM. In 
the first case, if 0f  m F  and if   is identically 
zero at an initial time instant, then it appears vanishing 
also for all following time instants. In the second case 
Equation (22) should reduce to the equation for vorticity 
following from Equation (21) which takes place if 0   
and 1 J  .  

4) Insofar as  as C C     sK , in which 

2k s  , Equation (23) can be rewritten also as  

 s C Q    s K

explaining lent 
transport similar to the advection by the velocity field 
incom d  0  s .  

urbulen s under the  
Influence of External Fields 

unted 

d
C C

dt
  ,      (24) 

the effect of the cross-gradient turbu
of 

pressible flui

3.3. Turbulent Flows in Specific Conditions 

3.3.1. Description of T t Flow

The effect of external fields on turbulence is acco
for in (21) and (22) through the terms F  and fm . In 

ses.  the following the situation is particularized for two ca
The first case is related to the flows of electrically 

conductive media under the influence of external mag- 
netic field for small magnetic Reynolds number values, 
where [26]  

 2
0 0 0 0

ˆ
E B        F E B B B u1       (25) 

   2 ˆ1f

J
B   0 0 02

    m B B 1       (26) E

in which B0 denotes the induction of the ext
netic field, 

ernal mag- 
 E  is the coefficient of electrical

ity and 0 1
 conductiv- 

    denotes certain phenomenological 
characteristic of the medium electric properti

n o

es. Expres- 
sion (26) evinces the effect of external magnetic field 
resulting for small magnetic Reynolds number values in 
a suppressio f  . The situation changes for the me- 
dium and/or large magnetic number values when the 
magnetic field may prove acting as a source of energy of 
the orientated constituent of turbulence or the medium 
turbulence may prove acting as a course of generation of 
magnetic field.  

The second case is related to the flows under the influ- 
ence of gravity force, where within the Boussinesq ap- 
proximation [27] we have [26] 

 F g                       (27) 

an

2 ,k 

d 

   1
ˆ

f k          
  g

      (28) 

hich 

1 m g g 

in w   is the characteristic constant density of 
medium and   is the medium actual average density, 
while   . Here, the integration of Equ
and (22) requires a specification of the equation 

ations (21) 
of state 

expressing   through the characteristics of medium 
ingredients contributing to   and Equations (21) and 
(22) should be integrated together with the equations 
formulated for all medium ingredients contributing to 
 . Notice, that expression (28) compiles in one single 
formula the depression of the component of   perpen- 
dicular to the gravity acceleration caused by the stable 
stratification as well as its generation by the unstable 
stratification, which substantially simplifies the descrip- 
tion of gravitation-related processes involving the both 
situations.  

3.3.2. Description of Turbulent Flows in Rotating 
Frames 

For the description of motion in a frame rotating with a 
constant angular velocity 0 , the flow velocity u is re- 

0placed by   or 
t of 

u r , where r denotes a radius-vect
from the arbitrary point on the rotation axes to a poin

low-field, 0  and   are replaced by the f   
and 0 , and d dtu , d dtM  are replaced by  

0d dt  u u , 0d dt  M M . The changes result in 
the complementation of the right sides of (21) and (22), 
respectively, by the Coriolis force term  

0 



2C  F u  ,            29) 

tio t term  

    (

and by the addi nal body momen
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 0 0 0 04 J J         m u      (30) 

sK  by and in the replacement of the expression for 

 0 0
0 1
ˆ ˆs k k     

   1 1K 2 0  
 .  (31) 

The expressions (29)-(31) evidence about a sub
in tat- 
 ter the 

right side of (30) evinces the frame rotation pre
the anticyclonic (directed opposite ection of 

stantial 
difference between the turbulence properties the ro
ing and the non-rotating frames. So, the first m on 

ferring 
0to the dir  ) 

orientation of   (gyration effect). The work done by 
the moment 0m  may serve also as an additional cause 
of eddy-to-mean energy conversion etc.  

4. Examples of Application of the RAT  
Theory 

4.1. One-Dimensional Flows in Plain Channels, 
Round Tubes, between Rotating Concentric 

Fo nsional flows in plain channels, round tubes, 
- 

Cylinders and Boundary Layers 

r one-dime
between rotating concentric cylinders [23], and in boun
dary layers [28] the Equations (21) and (22) simplify to  

  2p
t

   
       

u
u  F ,    (32) 



 1 4 4 fJ
t

    
     


m

      (33) 

where   and u are orientated perpendicularly
pend on the coordinate per ndicular to   and

0f F m  the p icted by (32) and (33) ve- 
locity profiles were compared in [23] (for steady 

hannels, in round tubes and between rotating con- 
cy

 in r os- 
 boundary

 and de- 
 u. pe

redFor 

plain c

cil

flows in 

centric linders) with data in [29-31] and (in case of 
oscillating flow in round tube) with data  [32]. Fo

lating  layer generated by undulating free 
flow the predicted by (32) and (33) velocity profiles were 
compared in [28] with data in [33]. The predicted by (32) 
and (33) velocity profiles for F and fm  specified in (25) 
and (26) were compared with data in [34]. In all cases the 
predicted velocity profiles prove excellently matching 
the actual velocity data. Notice, that for 0   Equa- 
tions (32) and (33) coincide in written form with the re- 
spective equations of the MF theory. However, the situa- 
tions with 0   and 0   prove reflecting physi- 
cally different situations. In particular, for steady flows 
in round tubes and plain channels the solutio 32) and 
(33) predicts the flow velocity determined in the central 
part of the flow region by the effective viscosity 

ef

n of (

 
       whi nts to a substantial role of 

the turbulence properties characterized by 
  h c hi

  and   in 
this region with the property characterized by   play- 

ing (in harmony with the RK conception) a marginal role. 
In the central part of the flow, for 0  , the turbulence 

epresented by the turbulence shear 
viscosity only.  

 

properties appear r

of concentration of the suspended 

4.2. Vertical Distribution of Concentration of 
Suspended Sediments in a River Estuary  

In [35] Equations (21)-(23) were applied to describe the 
vertical distribution 
matter  C  in a river estuary modeled as an open ch
nel with the fixed bottom slope angle  

an- 
  and the tim

ing free surface angle   t  . Restricting t
e- 

vary he 
consideration with , 1   , the quasi-stationary flow 
regime and with the concentrations small enough to not 
influenc e density field, Equations (21)-(23) read as  

 

e th

 
2

2
2 0

u
t

zz
     g    


,    (34) 

 
2

1 2
4 2 0

u

zz
     

    


,       (35) 

 2
0 1 0

C
k k Q

z z

        
,      

where 

 (36) 

Q w C z   , in which w is the settl
and z is the vertical coordinate directed upward. The term 

ing velocity 

 g    in (34) expresses the summary effect of the
along-flow pressure gradient and of the gr
The determined from (34)-(36) vertical distributions of C 

ompared wit

for differen

 
avity force. 

were c h concentration of the resuspended 
sediments observed in the Jiaojiang Estuary (China) [36] 

t time instants of a spring tide cycle. The 
comparison showed that the derived analytical formula 
for C embraces two observed basic types of vertical dis- 
tribution of concentration, one with a monotonic de- 
crease of concentration gradient with distance from the 
bottom and the other with a gradient maximum (luto- 
cline) located at some distance from the bottom. (The 
both types of vertical distribution of suspended sediments 
were detected also in the bottom layer of natural water 
body, studied in [37]). 

4.3. Vertical Structure of the Upper Ocean  

Consider now the situation in the upper ocean in Boussi- 
nesq approximation specified by     , ,0u z u zu , x y

    , ,0z z   0
x y and    (the right-hand 

Cartesian coordinate system  , ,x y z  with 0z 
rected downward is assumed; hereafter 0

 di- 
  is the angu- 

lar velocity of the Earth rotation). From Equations (21)- 
(23), where F  is determined acco 9) rding to (27) and (2
as 02  g u  , fm determined is  according to (28) 
as  1 zf k g    m    and 0  w e   with Q e hav

Copyright © 2013 SciRes.                                                                                 JMP 



J. HEINLOO 511

 
2

0
2

2 2p
t z

     
       

 
u

u u   (37) 

 
2

1 14J k g
t z2

4
z

   
 

 



  , (38)  

  


 

p g    

 2
0 1k k

zt z

          

 
.          

Equations (37)-(39) explain the stable stratificat
supressing the   constituent perpendicular to the grav- 
ity acceleration together with an crease of vertical gra- 
dient of density, and the unstable stratification in ampli- 
fying the constituent perpendicular to t
eration together with a decrease of vertica
de

 (39) 

ion in 

 in

he gravity accel- 
l gradient of 

nsity. 
For the constant   the solution of (37) and (38) [38, 

39] for the velocity sums up from two addends reflecting 
the Stokes drift effect [40] and the classical Ekman ver- 
tical velocity profile [27] with the turbulence viscosity 
replaced by the effective viscosity ef . The solution 
explains the Stokes drift effect in good agreement with 
data in [41], in dim ishing the angle between the flow 
velocity and the shear stress. To demonstrate the stratifi- 
cation effect Equations (37) and (38) were solved in [39] 
for 

in

  constant everywhere instead of a density jump at 
a certain depth modeling the assumed location of ther- 
mocline in summer and winter. The calculated vertical 
distribution of velocity was compared in both cases with 
the velocity data in [42] showing a good agreement in the 
dominating quality.  

In [43,44], Equations (37)-(39) were applied to model 
the reaction of the upper ocean to periodical cooling and 
heating. Here z T z S z           , where T is 
temperature, S is salinity,   is the coefficient of ther- 
mal expansion and   characterizes the salinity contrac- 
tion variance. It is shown that Equations (37)-(39) predict 
the formation of a typical for the upper ocean vertical 
density profile with the relatively uniform density distri- 
bution in the layer next to the ocean surface separated 
from lower layers by a stra m of relatively abrupt den- 
sity jump in a reasonable agreement with the observed 
data.  

4.4. Conjoint Effect of the Baroclinic Instability 
and the Rotational Viscosity of Turbulence 

In [45,46], Equations (21), together with 

tu

F  replaced 
by CF  in (29), and (22), with fm  specified in (28), 
were applied to  ag phic correction agu  to 
geostrophically predicted net the Antarctic 

- 
tribu

 calculate eostro
transport of 

Circumpolar Current [47] from the observed spatial dis
tion of  . The idea lies in the determination of a 

correction from vertical con- 

he f  

the balance condition of 

stituent of the Coriolis force with the vertical constituent 
of t orce described by the term 2  in (21), 
giving  

 ag
0 2

cos
cos

u
r 

 
  


 


,        (40) 

where   is determined from the zonal projection of 
(22) as  

 
1

2 1g
r z
1

4k g k
 


 
         



Equations (40) and (41) explain agu  for
joint effect of the rotational viscosity of medium turbu- 


.    (41) 

med as a con- 

lence    and the baroclinic instability (characterized 
by 2 0k  ). The both mentioned effects are excluded 
within the CTM. A similar setup was applied in [48] to 
explain the formation of zonal winds in plan
mosphere with the main interest to the formation of east- 
er

etary at- 

lies in the equatorial zone showing a reasonable agree- 
ment with the observed velocity data in [49].  

4.5. Gyration Effect  

In sub-subsection 3.3.2 it was pointed out that the frame 
rotation prefers the anticyclonic orientation of  . The 
represented in [50,51] zonally averaged  0,0,   
and  0,0, MM  estimated from the global surface 
drifter data sets [52] (the right-hand coordinate system  

 , , z  , where π
2

 π
2

    is latitude,   is longitude  

,5
tical aspects

e gyration effe

4.5.1. Th  

and axis z of the coordinate system is directed upward is 
applied) confirm this conclusion, called in [50 1] the 
gyration effect. In the following some theore  
of th ct from the position of the RAT the- 
ory are commented. 

eoretical Evidence of the Gyration Effect  
First consider how the gyration effect agrees with Equa- 
tions (22) and (30). Restricting the consideration with the 
effects of diffusion of moment-of-momentum neglected 
we have from (22) and (30)  

 0sinh  

   
 0sinzu

J
z

04 4 sin

J

               (4

  
 



where h

u 

2) 

  denotes horizontal gradient operator. Insofar 
as from the continuity equation 0  u  follows that 

h zu z   u  Equation (42) rewrites also as  

 
   

0

0

sin

4 4 sin

hJ  

    

  

    

u
     (43) 

For 0u  Equation (43) gives  
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0sin
  

 
  


.              (44) 

Expression (44) explains the gyration effect
by the rotation of frame in balance of the shear
rotation and of the decrease of a prevailing orientation of 
ed tation

4.5.2. Anomalous Turbulent Diffusi
Paper [53] exploits (44) within a model explaining the 
ob

ulent diffusion. This 
explanation follows from Equation (24) for C specified 

 generated 
 in relative 

dy ro  in cascading process. 

ve Transport  

served tongue-like structure of the salinity distribution 
in the region of the Gibraltar Salinity Anomaly (GSA) 
[54]. The tongue-like structure of the anomaly is explain- 
ed as a result of cross-gradient turb

as salinity  S  depending on   (longitude) and   
(latitude) only, written as  

 2
0 sinS k b S       s ,          (45) 

where cosa s e  (in which e  is the unit vector 
directed to the east,  0

2a k     ) and  
  20

1b k     . According to Equation (45) the 
gyration effect stretches the salin ty distribution out in 
the east-west direction  2k

i
0  and shifts the maxima 

e latitu istribution of salinity
the south with distance from the Gibraltar 

ive agreeme se

of th dinal d  increasingly to 
Strait in good 

qualitat nt with the ob rved situation repre- 
sented in [54].  

4.5.3. Eddy-to-Mean Energy Transfer in Geophysical 
Jet Flows  

For 0u  and for 0sin    conserved in a flow  
  0sin 0h      u  from (42) we have  

0 sin
   

    
    .         (46) 

Using (46), the work A      performing the en-
exchange betw

 
ergy  the average flow and the orien- 

 turbu tituent, exp
een

tated lence cons resses as  

 04 sinA
    
 

 


.          (47) 

Paper [55] employs (46) and (47) explaining the up- 
gr sfer and e

ception of 2D 
ce [56,57]. The situation was particularized for 

-sections of Gulf Stream at 
nd at 35˚N (Onslow Bay) where, in harmony 

y conver

 additional result, the discussion evidences about 

m.  

adient momentum tran ddy-to-mean energy 
conversion  0A   avoiding the negative viscosity 
problem [25] or the application of the con
turbulen
the cross
Straits) a
wi

As an

26˚N (Florida 

th (47) and the observational data in [58], the regions 
with the up-gradient momentum transfer and eddy-to- 
mean energ sion were observed at the anticyc- 
lonic sides  0   of the stream.  

the insufficiency of the velocity covariance data for un- 
ambiguous solution of the problem of turbulent stress 
tensor properties. In particular, for antisymmetric stresses 
the velocity covariance determines the stress tensor 
components with the accuracy up to the sign, specified 
from consideration of balance of internal moments acting 
in the mediu

4.5.4. Topographically Generated Flows  
Using the continuity equation in a shallow water region, 
written as 1

zu z H H   u  [27], from Equation (42) 
it follows, that 

0 0sin sin
4 4J

H H H

           
   u . (48) 

 0 HFor sin    conserved in a shallow water 

tant, and  

region we have  
0sin CH     ,               (49) 

where C is cons

0sin CH
   



   .          

essing C through

  (50) 

Expr  the depth crH , where the en- 
ergy K  scatter ergy 0 into en K  obtains its minimum, 
gives [59] 

0

cr

1
sin

H


C    

and from (49) and (50) we have  

 




0

cr

in1 s
H

H

  
 

 
     

         (51) 

and  

0

cr

1 sin
H

H
  

 
   

 
         (52) 

ith (44) for cr

.   

H HEquations (51) and (52) agree w   
suggesting identification of the actual depth H with crH  

alongshore re- in the open part of the water-body. In the 
gion (52) declares that 0   evidencing about a non- 

ng velocity of flow in this region. In particular, in 
the alongshore region of a closed water
ated flow velocity is directed anticyclon
islands cyclonically. For 0

vanishi
-body the gener- 
ically and around 

   Equations (51) and (52) 
re potentia

ped

. Unl

h the 

duce to the condition of conservation of the l 
vorticity predicting the motion in regions with slo  
bottom, though leaving open the question about the 
source of motion energy ike the discussions in [60- 
62] suggesting to overcome this shortcoming within 
rather sophisticated theoretical constructions, the mecha- 
nism suggested above explains the energy supply from 
the energy associated wit gyration effect converted 
to the flow energy in shallow water regions.  
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4.6. Summary to the Commented Applications of 
the RAT Theory  

According to the described above applications, the RAT 
theory unites a broadened physical background of its 
setup with a noteworthy simplification of discussion of 
turbulence-related problems. The simplification follows 
from the split of turbulence into the orientated (relatively 
large scale) and the nonorientated (relatively small scale) 

flow T theory, the CTM unites a 

flows with 
ex

M.  

ts besides the 
flow velocity at these points also by the curvature of the 

 streamlines passing these points. The 

constituents with the orientated constituent of turbulence 
dominating in the formation of properties of average 

. Contrary to the RA
simplification of its setup by neglecting the orientated 
turbulence constituent with complications in its applica- 
tions following from the inconsistency between the ab- 
sence of the orientated constituent of turbulence in the 
CTM setup and its presence in actual flows.  

Despite focusing on the orientated turbulence con- 
stituent, the commented applications demonstrate con- 
siderable perspectives of the RAT theory. So, the exam- 
ples show the ability of the RAT theory to describe the 
eddy-to-mean energy conversion avoiding the negative 
viscosity or evading the actual 3D structure of turbu- 
lence. The examples demonstrate also substantial per- 
spectives of the RAT theory proceeding from the par- 
ticularization of the interaction of turbulent 

ternal fields and from the distinguishing the turbulence 
properties in rotating and non-rotating frames. The latter 
actualizes within the available ocean surface drifter data 
providing a plain observational evidence to the prevailing 
anticyclonic orientation of eddy rotation (gyration effect) 
which has been excluded within the CTM. Due to the 
inclusion of the gyration effect in its setup, the RAT the- 
ory sets this effect into the dynamic context required to 
explain the physical causes of the effect and its impact to 
the dynamical, energetic and to some other (like trans- 
port) processes in the upper ocean. 

Despite the transparency of the applications formu- 
lated as a direct inference from the same set of equations, 
the focus of the applications on the orientated turbulence 
constituent turns the formulated results incompatible 
with the respective results formulated on the bases of the 
CTM. The indicated discrepancy increases due to the 
following from the RAT theory deficiency of contempo- 
rary methods of experimental research of turbulence ad- 
justed to the requirements of the CT

5. Conclusions 

The PCTM is an implication of the physical-historical 
point of view to the turbulence problem summarized as 
the PDT [22]. It advances the TM realizing a small but 
effective in its outcome modification at the very origin of 
the setup of the TM. The modification stands in com- 
plementation of characterization of the flow states in 

infinitesimal surroundings of flow poin

velocity fluctuation
introduced modification was aimed to clarify the classi- 
cal conflict between the CTM and the RK conception 
actualized by the idea about applicability of the theory of 
MF to the description of turbulent flows. The PCTM 
accomplishes the task by compiling the CTM and the RK 
conception in a single theoretical construction. The RAT 
theory (complementing the universal formalism of the 
PCTM by the appropriate closure assumptions) justifies 
the applied modification from the pragmatic point of 
view. It compiles a substantial enlargement of the com- 
petence of the TM with a considerable simplification of 
the discussion without losing the physical rigidity. Be- 
sides grounding the RAT theory, the PCTM (especially if 
complemented in its setup with the method of decompo- 
sition of turbulent flow fields discussed and applied in 
[19-21]) makes the turbulence problem an interesting 
subject for theoretical discussions. As a mechanical out- 
come of the PDT the PCTM esteems also the PDT as a 
whole.  

Unlike the PDT, the dominating up-to-date look on the 
turbulence problem reduces it to a huge number of par- 
ticular problems stressing rather on their particularities 
than on their commonness, relates the RK conception to 
the ideas of the past not worthy to be revived in modern 
time and believes the fundamental aspects of the turbu- 
lence problem belonging rather to mathematics than to 
physics. The conflict emerged between the CTM and the 
PCTM is enforced by the criticism of the PCTM in ad- 
dress of the CTM. The conflict has all aspects archetypal 
to the paradigmatic conflicts in science, always accom- 
panied with the critics of the old paradigm from the point 
of view of the novel paradigm and avoiding the discus- 
sions which may insinuate doubts about the grounding 
statements of the old paradigm.  

In the end, any paradigmatic change in the science is 
always preceded by the superfluous aplomb of the former 
paradigm in its consummation, loss of adeptness for 
self-criticism and relating the unresolved problems to the 
solution nuances which cannot attaint the existing para- 
digm as a whole. Though, the unresolved nuances may 
incidentally actualize. Not finding answers within the 
dominating paradigm they start looking for answers on a 
wider scientific background embracing also neighboring 
science fields. If succeeding, the new expanded point of 
view may develop into an independent paradigm clarify- 
ing its relation with the former paradigm through a para- 
digmatic conflict. This is just the situation with the for- 
mulation of the RAT theory, the PCTM and the PDT. 
Started with formulation of the RAT theory initiated by 
the discussed in 70-es idea about applicability of the the- 
ory of MF to the description of turbulent flows, the for-  
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mulation of this theory actualizes the RK conception as 
well as evinces the incompatibility of the RK conception 
with the CTM. The incompatibility raises several ques- 
tions and the need to look for answers to these questions 
within the frames of the general principles of statistical 
physics collected together as the PDT. It motivates also 
the formulation of the PCTM within the classical formal- 
ism with an axiomatic change in the setup. This kind of 
the setup turns the physical background of the PCTM 
absolutely transparent and mandates the opponents either 
to agree with the suggested change or to reject the 
change by applying physical arguments. The fact that 
neither of the possibilities has realized characterizes the 
emerged paradigmatic conflict so deep that usually char- 
acterizes breaking points in the respective science fields. 
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