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ABSTRACT 

Sediment load estimation is generally required for study and development of water resources system. In this regard, 
artificial neural network (ANN) is the most widely used modeling tool especially in data-constraint regions. This re- 
search attempts to combine SSA (singular spectrum analysis) with ANN, hereafter called SSA-ANN model, with ex- 
pectation to improve the accuracy of sediment load predicted by the existing ANN approach. Two different catchments 
located in the Lower Mekong Basin (LMB) were selected for the study and the model performance was measured by 
several statistical indices. In comparing with ANN, the proposed SSA-ANN model shows its better performance re- 
peatedly in both catchments. In validation stage, SSA-ANN is superior for larger Nash-Sutcliffe Efficiency about 24% 
in Ban Nong Kiang catchment and 7% in Nam Mae Pun Luang catchment. Other statistical measures of SSA-ANN are 
better than those of ANN as well. This improvement reveals the importance of SSA which filters noise containing in the 
raw time series and transforms the original input data to be near normal distribution which is favorable to model simu- 
lation. This coupled model is also recommended for the prediction of other water resources variables because extra in- 
put data are not required. Only additional computation, time series decomposition, is needed. The proposed technique 
could be potentially used to minimize the costly operation of sediment measurement in the LMB which is relatively rich 
in hydrometeorological records. 
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1. Introduction 

Quantification of sediment load is necessary for study 
and development of water resources system such as res- 
ervoir storage, dam, irrigation/navigation channel, soil 
and water conservation measure, environmental impact 
assessment, etc. [1-5]. Sediments are the end products of 
land surface erosion governed mainly by hydrometeo- 
rology, topography, geology and land use/cover [1,2]. 
Sediment data are lacking for rivers in many areas of the 
world, especially in developing and remote regions [6]. 
However, it can be estimated with the aid of modeling 
approaches. The hydrologic and terrain conditions of a 
river basin change spatio-temporally and this causes dif- 
ficulties in determining their effects on sediment erosion 
and transport. This drawback has encouraged the appli- 
cation of black box models, e.g. artificial neural network 
(ANN). ANN forecasts outputs using experiences learned  

from historical data. Its application can be found in many 
sectors including finance, medicine, water resources, and 
so forth. There are many types of ANN and the recog- 
nized ones are feedforward, kohonen and hopfield net- 
works [7]. In predicting and forecasting water resources 
variables, feedforward networks are almost exclusively 
applied [8]. The term “ANN” used in this paper is re- 
ferred to feedforward artificial neural network. 

The ANN model is commonly used in river basins 
with data scarcity because it does not require detailed 
physical information of the system. By just providing 
hydrometeorogical information as inputs, ANN can pre- 
dict sediment load at the watershed outlets with high ac- 
curacy. Kisi and Shiri [5] applied ANNs to predict sus- 
pended sediment concentration (SSC) in Eel River (USA) 
with rainfall and discharge as inputs and obtained very 
satisfactory results with Nash-Sutcliffe Efficiency (NSE) 
between 0.80 and 0.84 in validation stage. Sediment  
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yield of various sub-watersheds in Kapgari River Basin 
(India) is modeled well by ANN (input: rainfall and tem- 
perature) with NSE ranging from 0.76 to 0.83 in vali- 
dation stage [9]. In Pari River (Malaysia), ANNs (input: 
discharge) perform very well in simulating suspended 
sediment load (SSL) with NSE equal to 0.99 and 1.00 in 
validation stage [10]. ANN can be employed also to ana- 
lyze the hysteretic phenomenon of sediment transport 
[11]. It is a very practical and promising modeling tool in 
the context of sediment load prediction [12] and its out- 
puts can be potentially used for design and management 
purposes in water-related development projects [7]. 

Although ANN has been proved to perform well in 
modeling sediment load and other hydrological variables, 
many researches have been carried out further in order to 
improve its accuracy by coupling with other methods. 
Sediment load is generally predicted by using hydrome- 
teorological variables and the most common of which are 
rainfall and discharge. Naturally, the time series of such 
variables are very noisy due to the effects of climate 
variation and other human activities. Thus, one common 
way to improve the prediction accuracy of ANN is to 
perform some pre-processing of the inputs and this re- 
quires another method. This kind of technique is known 
as a coupled approach which has been getting more in- 
terest recently. Kisi [13] developed a range-dependent 
neural network (RDNN) for predicting sediment load at 
two stations operated by the US Geological Survey. 
RDNN splits the original data series into three ranges 
which are afterward used as ANN inputs. In term of 
model efficiency measured by determination coefficient 
(R2), RDNN is slightly better than ANN for larger R2 
about 0.5% at Santa Clara Station, and both models per- 
form comparably at Calleguas Station. If considering 
root mean square error (RMSE) and mean absolute error 
(MAE), RDNN is much better than ANN at both stations. 

Selection of a method for input pre-processing should 
match ideally the specific learning problems. In this 
study, singular spectrum analysis (SSA) was proposed 
because it is generally seen as an adaptive noise-reduc- 
tion algorithm [14]. SSA is a tool decomposing a time 
series into a number of components with simple struc- 
tures, which can be often identified as trends, seasonality 
and other oscillatory series, or noise components, and it 
does not require any statistical assumptions while per- 
forming the analysis [15,16]. The application of SSA in 
analyzing hydrometeorological time series (e.g. rainfall, 
discharge, temperature) can be found in Hanson et al. [17] 
and Marques et al. [18]. This method can be used par- 
ticularly to extract the main components of rainfall and 
discharge series and to provide good forecast for them 
[18]. Sivapragasam et al. [14] combined SSA with the 
support vector machine method (the latter called SSA- 
SVM approach) to predict rainfall at Station 23 (Singa-  

pore) and runoff from Tryggevælde catchment (Den- 
mark), and the results were compared with those of the 
non-linear prediction (NLP) method. For rainfall predic- 
tion, SSA-SVM performs much better than NLP for less 
RMSE 36% in calibration stage and 28% in validation 
stage. For runoff prediction, SSA-SVM is also superior 
to NLP for less RMSE 64% in calibration phase and 59% 
in validation phase. To our knowledge, there are no any 
studies associating SSA with ANN for predicting sedi- 
ment load yet. 

The present study attempts to combine SSA with ANN, 
hereafter called SSA-ANN model, for sediment load pre- 
diction with expectation to obtain more accurate results 
than using ANN alone. The specific objectives are to 
examine the application of the SSA-ANN model in pre- 
dicting monthly average m  and compare its 
performance with that of the existing ANN approach. 
The case study was firstly tried in Ban Nong Kiang 
(BNK) catchment. In order to show consistency, another 
case study was conducted in Nam Mae Pun Luang 
(NMPL) catchment. Both catchments are located in the 
Lower Mekong Basin (LMB). 

 SSL SSL

2. Materials and Methods 

2.1. Study Catchments 

The LMB is a trans-boundary river basin which partially 
covers four Southeast Asian countries: Lao PDR, Thai- 
land, Cambodia and Vietnam. This basin is relatively 
rich in hydrometeorological records except sediment [19]. 
As illustrated in Figure 1, BNK catchment is located in 
the western part of the basin and drains approximately 
1405 km2. The elevation in this catchment decreases 
from north to south and varies from just over 1300 m to 
about 200 m. The average catchment slope is around 
22.5%. Rainfall in this area is influenced by the south- 
west monsoon (May-October) blowing from Bay of Ben- 
gal bringing humid and hot weather. From November to 
April, this period is known as dry season. Natural to- 
pography and mountain ranges make this catchment ori- 
ented in a leeward direction creating a rain shadow and 
therefore little rainfall amount, about 1080 mm/year. The 
annual discharge is 17.10 m3/s. Sediment yield in BNK 
catchment is around 44 t/year/km2. The dominant land 
use is tree cover or forest and the dominant soil type is 
Orthic Acrisols. 

Situated in the northwest of the LMB (Figure 1), 
NMPL catchment has a drainage area of about 260 km2. 
The feature of catchment topography is west-east gradi- 
ent with elevation varying between 510 and 1670 m. The 
average catchment slope is approximately 32.5%. This 
catchment receives rainfall around 1950 mm annually 
and produces an average discharge of 2.22 m3/s. Rainfall 
pattern in this area is influenced by the southwest mon-  
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Figure 1. Map of the study catchments. 
 
soon as well but the amount is much higher than that in 
BNK catchment because NMPL catchment is oriented in 
windward direction. Sediment yield of this catchment is 
about 58 t/year/km2. The larger sediment yield can be 
explained by topographic feature of each catchment. Mo- 
saics and shrub cover dominates the land use in the 
catchment and the dominant soil type is Orthic Acrisols. 

Poor gauging stations in term of data availability and 
completeness are commonly found in developing and re- 
mote regions as located the LMB. These two catchments 
were selected based on data availability: 20 years (1982- 
2003, no data in 1986 and 1987) in BNK catchment and 
22 years (1980-2001) in NMPL catchment. 

2.2. Data 

The main data used in this study are rainfall (R), dis- 
charge (Q) and suspended sediment load (SSL). SSL is 
the product of Q and SSC. The daily time series of R, Q 
and SSC were obtained from Mekong River Commission. 
R and Q series are continuous but SSC series are discon- 
tinuous with few samples per month. The average sam- 
pling frequency in BNK and NMPL catchment is about 2 
and 4 samples per month, respectively. This provokes the 
study in monthly basis. The monthly average SSL(SSLm)  

is the product of monthly average Q(Qm) and monthly 
average  SSC SSC Qm m  and Rm (monthly average 
rainfall) were employed as inputs for model calculation 
and SSLm was used for comparison with the model out- 
puts. Due to data limitation, the model inputs consist of 
only Rm and Qm. Rainfall and discharge are the main ero- 
sion and transport agents [1,2] and both variables are 
generally used in many existing researches. Some case 
studies (e.g. Mustafa et al. [10], Memarian and Balasun- 
dram [20]) employ only discharge or rainfall as the input. 
There are no other reasons besides data unavailability. 
However, the model accuracy must pass the minimum 
satisfactory level. In this study, the entire dataset in each 
catchment was divided into two parts, the first 75% for 
calibration and the remaining 25% for validation. This 
combination  75 25  is very common in the study of 
sediment modeling [21]. 

The effect of land use changes and other human activi- 
ties might cause great variation of sediment load over the 
simulation period (about 20 years) and this could lead to 
low accuracy of the model results. Based on the Mann- 
Kendall and the Pettit test (0.01 significance level) on the 
SSL annual series, there are no significant trends and 
change points detected at any of the two catchments. 
Therefore, it can be concluded that the SSLm data series 
used in this study have no significant influence from the 
said effects. 

At the catchment outlets, it is very likely that there is 
lag-time between R and SSL as well as Q and SSL due to 
clockwise hysteretic effect [22-24]. Hence, consideration 
of R and Q from previous time step could improve the 
model accuracy. The present study was conducted in 
monthly time scale. Therefore, the consideration of ante- 
cedent R and Q would have no much effect on the model 
results because the lag-time is just few days. Melesse et 
al. [3] applied ANN model to simulate daily and weekly 
SSL in Mississippi and Missouri River (USA) by consid- 
ering two different input combinations (I1 and I2). I1 
includes one-day antecedent Q and I2 does not. As a re- 
sult in daily basis, the model prediction using I1 is just 
slightly better than the one using I2. NSE (I1) is larger 
than NSE (I2) about 6% in Mississippi River and 3% in 
Missouri River. In weekly basis, the model efficiency 
decreases dramatically in comparing with the daily simu- 
lation and NSE (I1) becomes less than NSE (I2) in Mis- 
souri River. Similar situation is also observed in the case 
study of four rivers in Turkey conducted by Kisi et al. 
[25]. In consequence, the model performance will not be 
much different for monthly time scale simulation and the 
reason that this research does not take into account the 
antecedent R and Q. 

2.3. ANN and SSA-ANN Model 

ANN is a flexible and potential tool in determining non- 
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linear processes such as sediment transport. The main 
differences of ANN structures are network architectures, 
training algorithms and transfer/activation functions. In 
this study, the multi-layer perceptron with the back-pro- 
pagation algorithm and sigmoid transfer function was 
selected. This kind of structure is commonly used in wa- 
ter resources modeling and provides better results than 
others [7,8,26]. As presented in Figure 2, the designed 
model structure composes of 1 input, 1 hidden and 1 out- 
put layer. The input layer has two nodes, one for Rm and 
another for Qm. The number of nodes in the hidden layer 
was determined by trial and error method because so far, 
there is no guideline for this purpose. The single node in 
the output layer is SSLm. 

Firstly, each input node receives a set of input data (x) 
and in this case Rm and Qm. The connections between the 
input and hidden layer contain weights (w) which are de- 
termined through the system training. Then, in the hidden 
layer, the weighted average of input (z) is computed by 
using summation functions [21]: 

1

n

i i
i

z w x 


 

 1,2, ,i n Λ

               (1) 

where wi is the weight vector, xi is the input vector 
 and β is the bias term. Afterward, z is 

transferred to y (output) and in this case SSLm, through 
the sigmoid transfer function [21]: 

1

1 e z
y 


                 (2) 

In the output layer, y (the predicted SSLm) is compared 
with the target value (the observed SSLm) in order to de- 
tect the error or difference between the predicted and 
observed SSLm. Subsequently, the error is corrected by 
adjusting w. After assigning the new w, the same calcula- 
tion steps are performed. This procedure is repeated until 
obtaining a desirable y or acceptable level of error. To 
sum up, the ANN model training is a process of weight 
adjustment attempting to produce a desirable outcome 
with minimum residuals. 

For the SSA-ANN model, the methodologies are simi- 
lar to those of ANN but a new form of Rm and Qm was 
accounted as inputs instead of their original one. SSA 
was applied to decompose the original dataset of Rm and 
Qm into a number of components which are then input to 
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Figure 2. ANN model structure. 

the ANN model for predicting SSLm. The SSA algorithm 
for one-dimensional time series analysis consists of 1) 
transformation of the original time series 

 1, ,F Nf f Λ

 T

1, ,i i i LX f f   Λ 1, , 1i K N L   Λ

 to multi-dimensional series 

 where , by  

means of one-parameter (window length L) delay proce- 
dure; 2) singular value decomposition of the trajectory 
matrix  1X : : NX X Λ  into a sum of rank-one bior- 
thogonal elementary matrices i LX X X  Λ ; 3) split 
of the elementary matrices into m groups and within each 
group, determination of the summed matrices  

1 mX Y Y  Λ ; and 4) transfer of each summed matrix 
into a new dimensional series of the same length N. The 
first two steps make up the decomposition stage and the 
remaining two do the reconstruction stage. In short, the 
initial time series F is decomposed into the sum of m 
time series: 1 mF F F  Λ . The basic concept and de- 
tailed methodology of SSA can be found in Golyandina 
et al. [15]. 

In this paper, the original time series of Rm and Qm 
were decomposed into two components. Since this is the 
first trial study, a number of components other than two 
were not examined because many components would 
provoke difficulty (time consuming) in training the mo- 
del. Optimizing the number of components is subjected 
to future study. In addition, interpreting physical mean- 
ing of each extracted component is beyond the scope of 
this research. The main purpose here is to examine the 
potential of SSA in combination with ANN for SSLm pre- 
diction. The model structure of SSA-ANN designed for 
this particular study is illustrated in Figure 3. 

2.4. Model Evaluation and Comparison 

The efficiency of each model was measured by NSE 
which is the most widely used goodness-of-fit indicator 
in predictive hydrological models. Basically, NSE com- 
pares the residual variance with the observed data vari- 
ance and at the same time, it also reflects the prediction 
accuracy of the modeling approach in comparing with 
the observed mean value [27]. Negative NSE indicates 
that the observed mean value is a better predictor than 
the model being used. With NSE greater than 0.50, the 
model performance is judged as satisfactory [28]. NSE, 
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Figure 3. SSA-ANN model structure. 
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RMSE and MAE were applied to optimize the model ar- 
chitecture (number of hidden nodes) of ANN and SSA- 
ANN. The optimum architecture should contain the high- 
est value of NSE and the lowest value of RMSE and MAE. 
RMSE punishes severely the high values while MAE is 
more sensitive to the moderate values. These three indi- 
cators were also employed for model comparison. Since 
total SSL(SSLt) is important for dam-reservoir manage- 
ment [13,26], the model performance for this purpose 
was also investigated and absolute percentage bias (AP- 
BIAS) was used as an indicator. SSLt is the integral of 
SSLm series within a particular period (calibration or va- 
lidation period). The model result of SSLt prediction is 
considered as acceptable if APBIAS is less than 55% [28]. 
NSE, RMSE, MAE and APBIAS were calculated respec- 
tively using Equations (3)-(6) [21,28]: 
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where O is the observed SSLm with the mean value Oavg, 
P is the predicted SSLm, n is the sample size, Ot is the 
observed SSLt, and Pt is the predicted SSLt. 

3. Results and Discussion 

3.1. Statistical Analysis of Datasets 

Figure 4 shows the results of SSA in decomposing Rm 
and Qm in BNK catchment. For the case of Rm (Figure 
4(a)), the first component (C1) behaves lower frequency 
then the second one (C2) and it is also apparent that SSA 
removes the discontinuity characterized by many zeros 
(dry periods) existing in the original time series. For the 
case of Qm (Figure 4(b)), time series of C1 contains 
lower frequency than that of C2 as well. From Figure 4, 
it is clearly seen that C1 is the main component. This 
situation is also found in NMPL catchment. The statisti- 
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cal difference between the original time series and its ex- 
tracted components is presented as below. 

The results of statistical analysis for both calibration 
and validation datasets are summarized in Table 1 (ANN 
datasets) and Table 2 (SSA-ANN datasets), and the sta- 
tistical parameters are the maximum (Max), minimum 
(Min), average (Mean), correlation coefficient (CC) be- 
tween the inputs and the observed outputs, standard de- 
viation (SD) and skewness coefficient (SKEW). SD is a 
measure of how widely the data are dispersed from the 
average value (Mean) while SKEW indicates the degree 

of asymmetry of a data distribution [29]. A data normal 
distribution is corresponding to SKEW value about zero. 
In BNK catchment, the extent of validation datasets (both 
ANN and SSA-ANN datasets) overall is within the range 
of calibration datasets. Although there are some over-ex- 
trapolations, e.g. the upper bound of Rm dataset of ANN 
(14.07 mm day  in validation stage and 13.93 mm/day in 
calibration stage), it is not significant. Discharge gener- 
ally exhibits higher CC than rainfall and this suggests 
that SSLm is more dependent on discharge. Since C1 is 
the main component (both rainfall and discharge), it 

 
Table 1. Statistical characteristics of ANN datasets. 

Calibration Validation 

Rm Qm SSLm Rm Qm SSLm Catchment Parameter 

(mm/day) (m3/s) (t/day) (mm/day) (m3/s) (t/day) 

Max 13.93 122.20 2449.54 14.07 119.34 1718.50 

Min 0.00 1.00 0.18 0.00 1.14 0.11 

Mean 2.70 16.57 173.50 3.66 18.69 154.53 

CC 0.59 0.85 - 0.55 0.91 - 

SD 2.99 24.18 371.91 3.56 25.48 350.67 

Ban Nong 
Kiang (BNK) 

SKEW 1.26 2.23 3.54 0.86 2.08 3.37 

Max 24.82 9.18 273.60 17.82 8.16 435.42 

Min 0.00 0.35 0.40 0.00 0.36 0.30 

Mean 5.53 2.23 35.48 4.74 2.22 55.74 

CC 0.58 0.89 - 0.49 0.81 - 

SD 5.32 1.77 50.99 4.60 1.70 80.40 

Nam Mae Pun 
Luang (NMPL) 

SKEW 0.91 1.65 2.45 0.91 1.64 2.34 

Max: Maximum; Min: Minimum; Mean: Average; CC: Correlation coefficient; SD: Standard deviation; SKEW: Skewness coefficient. 

 
Table 2. Statistical characteristics of SSA-ANN datasets. 

Calibration Validation 

Rm (mm/day) Qm (m3/s) SSLm Rm (mm/day) Qm (m3/s) SSLm Catchment Parameter 

C1 C2 C1 C2 (t/day) C1 C2 C1 C2 (t/day)

Max 6.33 5.66 71.08 43.31 2449.54 7.15 3.90 57.07 43.29 1718.50

Min −2.72 −3.31 −15.45 −18.90 0.18 −3.72 −3.01 −17.67 −17.56 0.11 

Mean −0.01 0.00 −0.08 0.00 173.50 −0.06 0.00 −0.28 −0.01 154.53

CC 0.59 0.32 0.78 0.65 - 0.52 0.36 0.79 0.69 - 

SD 2.25 1.37 19.79 7.89 371.91 2.76 1.47 20.65 9.75 350.67

Ban Nong 
Kiang 
(BNK) 

SKEW 0.56 0.76 1.70 1.66 3.54 0.40 0.38 1.21 2.09 3.37 

Max 11.75 7.51 5.63 2.77 273.60 9.30 4.39 3.94 2.32 435.42

Min −5.56 −4.72 −1.81 −1.59 0.40 −4.80 −4.61 −1.58 −1.37 0.30 

Mean −0.02 0.00 0.00 0.00 35.48 −0.06 −0.01 0.00 0.00 55.74 

CC 0.59 0.24 0.85 0.52 - 0.48 0.23 0.74 0.58 - 

SD 4.43 1.98 1.51 0.55 50.99 3.85 1.62 1.46 0.54 80.40 

Nam Mae 
Pun Luang 
(NMPL) 

SKEW 0.47 0.74 1.14 1.38 2.45 0.63 0.28 1.14 1.39 2.34 

Max: Maximum; Min: Minimum; Mean: Average; CC: Correlation coefficient; SD: Standard deviation; SKEW: Skewness coefficient; C1: Component 1 (main 
component); C2: Component 2. 
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therefore has higher CC value than C2. The value of SD 
and SKEW is generally low. It should be noted that high 
value of SD and SKEW will cause negative effect on the 
model performance [3,30]. The SD and SKEW value of 
the calibration datasets are rather comparable with the 
corresponding ones of the validation datasets. This is ap- 
propriate for modeling because the great difference will 
lead to poor model performance in validation stage [30]. 
Remarkably, the SSA-ANN inputs are characterized by 
lower SD and SKEW value than the ANN inputs and this 
condition is favorable to the model simulation. This re- 
veals the potential of SSA in statistical point of view. 

In NMPL catchment, the inputs of both ANN and 
SSA-ANN in validation period do not extend beyond the 
range of the corresponding ones in calibration period. It 
is contradictory for SSLm in which over-extrapolation is 
significant for the upper bound (435.42 t/day in valida- 
tion period and 273.60 t/day in calibration period). If ex- 
cluding this particular event (435.42 t/day), both data 
ranges become similar. Therefore, this sole unfavorable 
data point would have no much effect on the model re- 
sults. This event occurred in August (2001) which is the 
rainy season. Moreover, NMPL catchment is character- 
ized by steep slope terrain. In consequence, this particu- 
lar event might associate with local extreme phenomenon 
(e.g. slope failure, debris flow) occurring episodically 
and bringing huge amount of sediment in a short time. 
For the case of lower bound, the difference is not sig- 
nificant. Similar situation is observed for CC. Both cali- 
bration and validation datasets also contain low SD and 
SKEW value and behave similar characteristics. The ef- 
fect of SSA is the same as observed in BNK catchment. 

3.2. Model Performance in BNK Catchment 

The performance of each model is summarized in Table 
3. It can be seen that not only ANN but also SSA-ANN 
model yields satisfactory results for both SSLm and SSLt 
prediction because NSE and APBIAS values are respec- 
tively greater than 0.50 and less than 55%. NSE and AP- 
BIAS of ANN are correspondingly equal to 0.81 and 
5.06% in calibration stage, and 0.52 and 48.04% in vali- 

dation stage. SSA-ANN contains respectively NSE and 
APBIAS value about 0.84 and 0.09% in calibration period, 
and 0.64 and 38.25% in validation period. The predicted 
SSLm resulted from each model is graphically compared 
with the observed data as depicted in Figure 5(a). Visu- 
ally, the predicted time series of both models show simi- 
lar trend with the observed one. Figure 5(b) (ANN) and 
Figure 5(c) (SSA-ANN) depict the scatter plots of the 
predicted versus observed SSLm which were used to dis- 
tinguish the model performance in estimating low, me- 
dium and high value. In order to clearly investigate the 
whole extent, from low to high value, both figures were 
plotted in log-log scale. These two scatter plots obviously 
demonstrate that both models overestimate the low val- 
ues. In case of medium and high values, the scattering 
points are distributed uniformly around the ideal fit line. 
SSA-ANN predicts better not only the low but also the 
medium and high SSLm through reduction of the overes- 
timates at low value and the underestimates at medium 
and high value. The better prediction of SSA-ANN at 
medium and high value can be confirmed respectively by 
the less MAE and RMSE value (Table 3). 

For SSLm prediction, SSA-ANN is superior to ANN 
for more NSE 4%, less RMSE 9% and less MAE 22% in 
calibration stage. In validation stage, SSA-ANN is better 
for more NSE 24%, less RMSE 14% and less MAE 18%. 
In case of SSLt prediction, SSA-ANN is more powerful 
for less APBIAS 98% in calibration phase and 20% in va- 
lidation phase. 

3.3. Model Performance in NMPL Catchment 

From Table 3 and Figure 6, similar situation is observed. 
Both models also perform well in this catchment and the 
advantage of SSA-ANN over ANN also exists. For SSLm 
prediction, SSA-ANN is superior to ANN for more NSE 
1%, less RMSE 4% and less MAE 3% in calibration stage. 
In validation stage, SSA-ANN is better for more NSE 7%, 
less RMSE 4% and less MAE 2%. In case of SSLt predic- 
tion, SSA-ANN is more powerful for less APBIAS 65% 
in calibration phase and 6% in validation phase. The ad- 
vantage of SSA-ANN in this catchment is rather less in 

 
Table 3. Model performance indicated by NSE, RMSE, MAE and APBIAS. 

Calibration Validation 

NSE RMSE MAE APBIAS NSE RMSE MAE APBIASCatchment Model Architecture 

 (t/day) (t/day) (%)  (t/day) (t/day) (%) 

ANN 2-2-1 0.81 160.44 92.43 5.06 0.52 242.11 128.04 48.04 Ban Nong 
Kiang SSA-ANN 4-2-1 0.84 146.34 72.04 0.09 0.64 209.39 105.50 38.25 

ANN 2-3-1 0.88 17.71 10.55 1.88 0.50 56.48 32.10 36.33 Nam Mae 
Pun Luang SSA-ANN 4-3-1 0.89 17.03 10.26 0.66 0.54 54.41 31.44 33.99 

NSE, RMSE and MAE for evaluating SSLm prediction; APBIAS for evaluating SSLt prediction; Architecture (optimum): Number of nodes in the input-hidden- 
output layer. 
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Figure 5. Comparison of the predicted versus observed SSLm in BNK catchment (no data 1986 and 1987), (a) Time series 
comparison; (b) Scatter plot of ANN results and (c) Scatter plot of SSA-ANN results. 
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Figure 6. Comparison of the predicted versus observed SSLm in NMPL catchment, (a) Time series comparison; (b) Scatter 
plot of ANN results; and (c) Scatter plot of SSA-ANN results. 
 
comparing with that in BNK catchment. This is because 
the ANN inputs (original datasets) in NMPL catchment 
are characterized by lower SD and SKEW value. There- 
fore, when transformed to become SSA-ANN inputs us- 
ing SSA, they (SD and SKEW) are not decreased as much 

as in BNK catchment, especially C1 which is the main 
component. For instance, in calibration stage, the de- 
creasing rate of SKEW from Qm to Qm-C1 is 56% in BNK 
catchment and it is just 49% in NMPL catchment. Simi- 
larly in validation stage, it is 54% and 30% in BNK and 
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NMPL catchment, respectively. 
In calibration period, the efficiency  of both 

models in NMPL catchment is slightly better than that in 
BNK catchment. The difference in model performance 
between these two catchments may be attributed to dif- 
ferent variation of sediment load spatially. This can be 
explained by the difference in SD and SKEW value. The 
SSLm dataset in NMPL catchment is characterized by 
lower value of SD (50.99) and SKEW (2.45) and there- 
fore easier to be calibrated. Looking into validation pe- 
riod, NSE value of both methods becomes less in com- 
paring with that in BNK catchment. This could be due to 
different temporal variation of the SSLm data which can 
be explained statistically by the difference between the 
calibration and validation dataset in each individual catch- 
ment. The more similar these two datasets is correspond- 
ing to the better model performance in validation period. 
The difference in SKEW value is likely comparable in 
both catchments but the difference in SD value is more 
significant in NMPL catchment. 

 NSE

4. Conclusions 

This research proposed a coupled model (SSA-ANN) to 
predict sediment load in two catchments, located in the 
LMB, having different hydrological and terrain charac- 
teristics. The performance of this model was compared 
with that of the existing ANN approach. Satisfactory re- 
sults were obtained from both methods but SSA-ANN 
exhibits its better performance repeatedly in both catch- 
ments. This improvement reflects the importance of SSA. 
SSA filters the noise containing in the raw time series. It 
reduces the value of SD and SKEW, and transforms the 
original input data to be near normal distribution which is 
favorable to modeling. Instead of ANN, the proposed 
SSA-ANN model is also recommended for the prediction 
of other water resources variables because extra input 
data are not required. Only additional computation, time 
series decomposition, is needed. This new technique could 
be potentially used to minimize the costly operation of 
sediment sampling in the LMB which is relatively rich in 
hydrometeorological records. 

In this study, the model simulation was conducted in 
monthly basis. Therefore, other time scales should be 
tested. The present research employed SSA to decom- 
pose the raw inputs into two components only. Larger 
amount of components should be examined in order to 
extensively investigate the potential of SSA-ANN. The 
present authors expect that the model accuracy will be 
more improved with more number of components. 
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