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ABSTRACT

In this communication we have used Bickley’s method for the construction of a sixth order spline function and apply it
to solve the linear fifth order differential equations of the form y'(x)+g(x)y(x)=r(x) where g(x) and r(x) are
given functions with the two different problems of different boundary conditions. The method is illustrated by applying

it to solve some problems to demonstrate the application of the methods discussed.
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1. Introduction

In the recent past, several authors have considered the
application of cubic spline functions for the solution of
two point boundary value problems. Bickley [1] has con-
sidered the use of cubic spline for solving second order
two point boundary value problems. The essential feature
of his analysis is that it leads to the solution of a set of
linear equations whose matrix coefficients are of upper
Heisenberg form. Bickley uses a special notation other
than the conventional one for the representation of the
cubic spline, for a detailed discussion one may refer to E.
A. Boquez and J. D. A. Walker [2], M. M. Chawla [3],
and P. S. Ramachandra Rao [4-7]. We used Bickley’s
method for the construction of a sixth degree spline and
apply it to the linear fifth order differential equation with
two different problems with different boundary condi-
tions. The work has been illustrated through examples
with h=0.5 and h=0.25.

2. Cubic Spline-Bickley’s Method

Suppose the interval [X,,X,] is divided in to n subin-
tervals with knots X, X, X,,,X, starting at X,, the
function u(x) in the interval[X,,X,] is represented by
a cubic spline in the form

“Corresponding author.
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S;(x)=a, +b; (x—xj)+cj(x—xj)2 +dj(x—xj)3 ()

Proceeding in to the next interval [X1=X2] , we add a
term d, (X— X )3 ; proceeding in to the next interval
[X,,%], we add another term d, (x—X, )3 and so until
we reach x, . Thus the function S;(x) is represented
in the form for j=0

$;(x)=a,

]
n

+bj(x—xj)+cj(x—xj)2

| (1.1)

d-(x—xi)3

+
i=0

S'-(x)=bj+2cj(x—xj)nz_lﬁdi(x—xi)2 (1.2)

]
i=0

S'.'(x)=2cj+ni6d.(x—xi) (1.3)

i y i
i=0
2.1. The Two-Point Second Order Boundary
Value Problem
First, we consider the linear differential equation
P(x)u"+ag(x)u’+r(x)u=v(x) (1.4)
With the boundary conditions

a+ pu =y, at X=X,
au+pu =y, at X=X,

(1.5)
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The number of coefficients in (1.1) is (n + 3). The sat-
isfaction of the differential equation by the spline func-
tion at the (N + 1) nodes gives (N + 1) equations in the
(n + 3) unknowns. Also the end conditions (1.5) give us
two more equations in the unknowns. Thus we get (n + 3)
equations in (n + 3) unknowns a,,b,,C,,d,.d;,-,d,_,.
after determining these unknowns we substitute them in
(1.1) and thus we get the cubic spline approximation of
u(x). Putting X =X, X, X, X, in the spline function
thus determined, we get the solution at the nodes. The
system of equations to be satisfied by the coefficients
a,,b,,c,,d,.d,,-,d,_, are derived below.

Substituting (1.1), (1.2), (1.3) in (1.4), at X=X, we
get

ar, +b[ 1 (X, =%)+d, |
+C[I’m(Xm —X,)” +20,, (X, —x0)+2pm}

m-1

+, di[rm(xm =) +30 (X =% )" +6py, (X, —xi)]

]
o

w

m?*

m=0,1,2,---,n

(1.6)

where p, = p(X,) and so on. Applying boundary con-
ditions in (1.5), we get

o+ b=y,
ana0+|:an(xn _XO)_ﬂn]bO
+[o¢n(xrI —%,) =28, (%, —xo)Jc0

-3 (6 -%) 30 0450 Jd =7,

If these equations are taken in the order (1.7), (1.6)
with m=n,n—1,..-,0, the matrix of the coefficients of
the unknowns d,_,.d,,,---,d,,d,,C,,b,,8, is of the
Heisenberg form, namely an upper triangle with a single
lower sub-diagonal. The forward elimination is then sim-
ple, with only one multiplier at each step and the back
substitution is correspondingly easy.

(1.7)

2.2. Construction of the Sixth Degree Spline

Suppose the interval [X,,X,] is divided in to “n” subin-
tervals with knots X,,X,X,,-,X,. Starting at X,, the
function y(x) in the interval [x,,X] is represented
by a sixth degree spline

y(x):a+b(x—x0)+<:(x—x0)2+d(x—x0)3
+e(X—X0)4+g(X—XO)5+hO(X—XO)6

Proceeding in to the next interval [X,X,], we add a
term h, (x—x)°, Proceeding in to the next interval
[X,,%,] we add another term h,(x—x,)’ and so until
we reach X, . Thus the function y(X) is represented in
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the form
y(x)=a+b(x—x0)+c(x—x0)2+d(x—x0)3
+e(x—x0)4+g(x—x0)5+nihi(x—xi)6
i=0

It can be seen that y(X) and its first five derivatives
are continuous across nodes.

(1.8)

3. Fifth Order Boundary Value Problem

We consider the linear fifth order differential equation

y(s)(x+f(x)y(x)):r(x) (1.9)
With the boundary conditions
y(%)=a.y(%)=5.Y'(%)=2" (1.10)

Y (%)=8.Y"(x)=a"

We get (n + 6) equations in (n + 6) unknowns a,b,c,
d,e,g,h,,h,h,,---,h , . After determining these un-
knowns we substitute them in (1.8) and thus we get the
sixth degree spline approximation of y(x) . Putting
X=X,%,%;, -, X, in the spline function thus deter-
mined, we get the solution at the nodes. The system of
equations to be satisfied by the coefficients a,b,c,d,e,
g,hy,,h,h,,---,h, _, are derived below. From (1.8) we get

y® (x)=120g +720h, (X=X, )|+ 720h, (x—x,)
+720h, (X —X, )|+720h3(x—x3)|
+oo+ 7200 (x=%,,)

(1.11)

using (1.8) & (1.11) in the differential Equation (1.9) at
the nodes X, takes of the form

af,, +bf, (X =% )+ (X =% )+ (X =% )’

+ef (X, — %)+ g[fm (% =% ) +120J

m-1

+z(;hi[fm(xm ~%,)" +720(x, —xi)Jz r,

(1.12)

m=0,1,2,---,n

To these equations we add those obtained from the
boundary conditions (1.10), we get

a=a (1.13)
a+b(x, =%, )+c(X,—%) +d(x,—x,)’
\ .o . (114
+e(Xn—XO) +g(Xn_XO) + hl(xn_xi) =p
i=0
b=a' (1.15)
b+2c(xn—x0)+3d(xn—x0)2+4e(xn—x0)3
e . (1.16)
+50(X, = %) +6> h(x,=%) =p
i=0
AM
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2x=a" (1.17)

If these equations are taken in the order (1.14), (1.16),
(1.12) with m=n,n-1,---,0, (1.17), (1.15) & (1.13) the
matrix of the coefficients of the unknowns, h,_,h, _,,---,h,
h,,9,e,d,c,b,a is an upper triangular matrix with two
lower sub diagonals. The forward elimination is then
simple with only two multipliers at each step, and the
back substitution is correspondingly easy.

3.1. Example 1

Consider the following fifth order linear boundary value
problem

Y (x)-y(x)=
With the boundary conditions
y(0)=y(1)=0,y'(0)=1y'(1)=-e,y"(0)=0 (2)

by taking equal subintervals with h = 0.5 and h = 0.25
1) Solution with h =0.5
The sixth order spline s(x) which approximates

y(x) is given by
s(x)=a+b(x—x,)+c(x—
+e(x—x%) +g(x-
+h (x=x)°

~(15+10x)e™,0<x <1 (1.18)

where X, =0,X =0.5,x, =1. We have eight unknowns
a,b,c,d,e,g,h,,h, and eight conditions to be satisfied
by these unknowns are s(X,)=0,5(x,)=0,5"(%,) =1,

s'(%,)=—6,5"(%,)=0 4)
s(s)(xi)—s(xi):

Since $(X,)=0,5"(%,)=15"(x%,)=0 it follows that
a=0,b=1,c=0 Equation (3) reduces to the form

S(0)=(x-x,) +d (x-x,)' +e(x- %)
+g(x—x0)5+h0(x—x0)6+h,(x—xl)6

~(15+10x)e" fori=0,1,2  (5)

Q)

also since $(X,)=0,5(x,)=0 and equations of (5) for
i =0 & 2 reduces to

s (%)) =~(15+10x,)e* and

s (x, )=

It follows that we have to determine the five unknowns
d,e,g,h,,h, in Equation (6), subject to the five condi-
tions

~(15+10x, )e*

s(%,)=0,8'(x,)=—&,5 (%) =—(15+10x,)e*
5(5 (x)=s(x)=—(15+10x )e", @)
s (%, ) =—(15+10x, )e*
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from (6)
s'(x)=1+3d (x—
+6h, (x—

xo)2 +4e(x—x0)3 +Sg(x—x0)4 ®
x0)5+6h1(x—x1)5

and
s (x) =120g +720h, (x—%,)+720R (x=x)  (9)
Substituting (6), (8), (9) in (7) we get the system of
equations
d+e+g+h, +(0.015625)h =1,
3d +4e+5g +6h, +(0.1875)h, = -3.718281828,
8g=-1,
(0.125)d +(0.0625)e—(119.96875) g
—(359.984375)h, =32.4744216,
(-120) g —(720)h, —(360)h, =67.95704571

(10)

Solving these we get
d =-0.510480,e =-0.314961, g =—-0.125,
h, =-0.048785, h, =0.049531

Substituting these values in (6) we get
s(x)=(x=%,)—(0.510480)(x~x, )’
~(0.314961)(x—x,)' =(0.125)(x~%,)"  (11)

—~(0.048785)(x— %, )’ +(0.049531)(x~x, )’
y(%)=5(x)=(h)-(0.510480)(h*)-(0.314961) (")
—(0.125)(h*)—-(0.048785)(h* )
where h=0.5

Therefore y(x )=y(0.5)=0.411836421
The analytical solution of the differential equation
(1.18) subject to the conditions is given by

y(Xx)=x(1-x)e"

The exact value of y(O.S) =0.412180317

It follows that the Absolute error of the numerical
value of y(O.S), computed from the spline approxima-
tion is 0.00083433 which is very small.

2) Solution with h =0.25

The interval [0,1] is divided in to 4 equal subintervals
we denote the knots by X,,X,X,,X;,X, where X,=0,
X =0.25,%,=0.5,X, =0.75,%, =1.

The sixth order spline s(x) which approximate
y(x) is given by

s(x)=a+b(x-x,)+c(x=x) +d(x-x,)’
+e(x—x0)4+g(x—x0)5+h0(x—x0)6

+hl(X—Xl)6‘+h2(X—X2)6‘+h3(X—X3)6

(11.1)

(12)
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There are 10 unknowns in s(x) which are to be de-
termined from 10 conditions

(%) =0,5(x,)=0,5"(x,)=15"(x,)=—¢,
$"(%)=0,5" (x)-s(x)=—-(15+10x)e" (13)
fori=0,1,2,3,4

In view of the conditions s(X,)=0,s"(x,)=1and
s"(x,)=0 it follows that a=0,b=1,c=0 hence
The spline s(x) reduces to the form

5(X)=(x=%,)+d (x=%)" +e(x—x%)’
Fgx=x,) hy (x=x, |y (x-x)'
+h2(x—x2)6‘+h3(x—x3)6
From (14)
s'(X)=1+3d (x=x, )" +4e(x—x,)
+6h, (x=%, )’
+6h, (x=x,)’

3

59(x=%,)’
(15)

+6h (x—x )

(
(

+6h,(x-x,)’

s (x) =120g +720h, (x - X, )| + 720h, (x =, )|
+720h2(x—x2)|+720h3(x—x3)
Substituting (14), (15), (16) in (13) taken in the order,
s(x,)=0,5"(x,)=—¢,
s (%)-s(x)=-(15+10x )e™
fori=4,3,2,1,0

(16)

we get the following system of equations
(0.000244140625) h, +(0.015625)h,
+(0.177978515)h +h, + g +e+d =1,
(0.005859375)h, +(0.1875)h, +(1.423828125) h,
+6h, +5g +4e+3d =-3.718281828,
36h, +(72)h, +(108)h +(144)h, +(24) g
=-13.59140914,
(~179.9997559) h, —(359.984375)h,
—(539.8220215)h, —(119.7626953) g
+(0.31640625)e+(0.421875)d =46.88250037,
(~179.9997559) h, —(359.984375)h, —(119.96875) g
+(0.0625)e +(0.125)d =32.47442541,
(~179.9997559)h, —(119.9990234) g +(0.00390625) e
+(0.015625)d = 22.22044479,120g = ~15

(17

From the above system of equations, we notice that the
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coefficient matrix is an upper triangular matrix with two
lower sub diagonals. solving the above equations we get

d =-0.502566, e =—-0.328795, g =-0.125,
h, =—-0.040165, h, =—-0.017381, (18)
h, =-0.023829, h, =—-0.033744

However it may be noticed that from the Equation (17)
g =-15/120 which when substituted in the remaining
equations will give us a 6 x 6 system of equations which
may be solved. Substituting (18) in (14) we get the spline
Approximation s(x) of y(x). The values of s(x),
and The corresponding absolute errors at X, X,,X, tabu-
lated in Table 1.

The analytical solution of the differential equation
(1.18) with the conditions is given by (11.1) is symmetric
about the central value. The same aspect is also satisfied
by the numerical approximations as is evident from the
above table. We found that the approximate values are
remarkably accurate.

3.2. Example 2

Consider the following fifth order linear boundary value
problem

Y& (x)+xy(x)
—19Xcos( )+2x cos(X)+41sin(x)  (19)
—2x*sin(x),1<x<1y(x)

Subject to
y(—l): y(l) :cos(l),
y'(-1)=-y'(1)=—4cos(1)+sin(1), (20)
y"(=1)=3cos(1)—8sin(1).

1) Solution with h=1

The sixth order spline s(x) which approximates

y(x) is given by (3). The equations to be satisfied by
the coefficients of the spline function are

s(%,) = cos(1) = 0.540302305,
s(%,) = cos(1) = 0.540302305,

!

§'(%,) =—4cos(1)+sin (1) =—1.319738239,
s'(x,)=4cos(1)—sin(1)=1.319738239, @l
s"(%,)=3cos(1)—8sin(1) =-5.110860961,
s (% )+ x5(x ) =19% cos (x ) +2x" cos(x; )
+41sin(x)—2x sin (),
Fori=0,1,2
We observe that
a=10.540302305,b =-1.319738239,
€ =-2.555430481
AM
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Table 1. Approximate solutions and absolute errors for
Example 1 with h = 0.25.

X s(x) y ( X) Absolute error
0.25 0.240731164 0.240754765 0.00009800292
0.50 0.412091491 0.41218030 0.00021546156
0.75 0.396858187 0.396937503 0.00019981986

also since
s(xO ) =0.540302305,
S ( X, ) =0.540302305

and X, =0 the equations of (21) for i=0,1,2 reduces
to

s (%, )+ X, (0.540302305) = —44.16371683,
s (x)=0,
s (%, )+ x, (0.540302305) = 44.16371683

It follows that we have to determine the 5 unknowns
d,e. g,h,,h, in Equation (3), subject to the five condi-
tions

s(x,)=0.540302305,
s'(x,)=1.319738239,

s (%, )+ X, (0.540302305) = —44.16371683,  (22)
s¥(x)=0,
s (x,)+x, (0.540302305) = 44.16371683

From (3)

s'(X)=b+2c(x—x%,)+3d (x—x,)" +4e(x-x,)’

(23)
JrSg(x—xO)“+6h0(x—x0)5‘+6h1(x—x,)5

s (x)=120g +720h, (x— X, )|+ 720h, (x=X,)  (24)

Substituting (3), (23), (24) in (22)
We get the system of equations
d +2e+4g+8h, +(0.125)h =1.607649801,
12d +32e+80g +192h, + 6h, =12.8611984,
1209 +1440h, + 720h, = 43.62341453, (25)
720h, +120g =0,
1209 = —43.62341453

Solving these we get
d =2.730596047,e = —0.07676858]1,
g =—0.383528454,h, =0.060588075,
h, =0.00000106

also we have
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a=10.540302305,
b=-1.319738239,
€ =-2.555430481

Substituting all these values in Equation (3) we get the
spline approximation for y(x) which is given by
s(x)=(0.540302305)—(1.319738239)(x—X,)
2.555430481)(x— ) +(2.730596047)(X—X0)3
0.076768581)(x— ) —(0.363528454)(X—XO)5

+(0.060588075) (x—x, )°|+(0.00000106) (x—x,)°

555430481)(h)” +(2.730596047)(h)’
0.076768581)(h)" —(0.363528454)(h)’

~(
~(
(
y(x)=5(x)=(0.540302305) - (1.319738239)(h)
-(2
~(
+(0.060588075)(h)"

(26)

where h=1,y(x )=y(0)=-0.983978288.

The analytical solution of (19) with the conditions (20)
is given by

y(x)=(2x" ~1)cos(x) 27)

The exact value of y(O) =—1 it follows that the ab-
solute error in the numerical approximation S(O) is
found to be (0.016021737) which is very small.

2) Solution with h=0.5

The interval [—1,1] is divided in to 4 equal subinter-
vals we denote the knots by X,,X,X,,X;,X, where
X =—1, X, =-0.5, X, =0, X; =0.5, x, =1

We assume the spline function s(X) which approxi-
mates y(X) in the form is given by (12)

From (12) we have

s'(X)=b+2c(x—x%,)+3d (x=%, )" +4e(x-x%,)’
+5g(x=%,)" + 6h0(x—x0)5‘+6h,(x—xl)5

x2)5‘+6h3(x—x3)5

The conditions to be satisfied by s(x) are

s(x,)=cos(1),
s(x,)=cos(1),
"(%,)=—4cos(1)+sin(1),
s'(x,)=4cos(1)—sin(1), (29)
s"(%, ) =3cos(1)—8sin(1),

)=

X
5)(

+6h, (x—

w

X )+ %5(% ) =19x; cos (X ) +2x cos ()

+4lsm( ) 2X sm(x)

for 1=0,1,2,3,4 from (29) we find that

AM
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Table 2. Approximate solutions and absolute errors for
Example 2 with h = 0.5.

X s(x) y(x) Absolute error
—0.5 —0.437521423 —0.43879128 0.002893987

0 —0.997548415 -1 0.002451585

0.5 —0.437518745 —0.43879128 0.002900090

a=0.540302305,
b=-1.319738239,
€ =-2.555430481
using the remaining conditions of (29) in the order,
s(x,)=cos(1),
s'(x,)=4cos(1)—sin(1)
s (% )+ %5 (% ) = 19% cos (% ) +2x cos(x, )

+41sin(x)—2x sin (%),

fori=4,3,2,1,0

that is taking the Equations (12), (16), (28) in (29) & by
substituting the values of X, X;, X,, X;, X,
We get the following system of equations

d +2e+4g +8h, +(1.423828125)h,
+(0.125)h, +(0.001953125) h, =1.607649801,
e+4g+8h, +(1.423828125)h, +(0.125)h,
+(0.001953125) h, =1.607649801,
12d +32e +80g +192h, +(45.5625)h, + 6h,
+(0.1875)h, =12.8611984,
1209 +1440h, +1080h, +720h, +360h,
=43.62348633, (30)
(1.6875)d +(2.53125)e+(123.796875) g
+(1085.6953137) h, +(720.5)h,
+(360.0078125) h, =31.56767609,
1209 + 720h, +360h, =0,
(0.0625)d +(0.03125)e—(119.984375) g
—(359.9921875)h, =28.35237651,
1209 =—43.62341453
Solving (29) we get

d =2.647519,e=0.010462,

g =-0.363528, h, =0.042865,

h, =0.035446, h, =0,

h, =-0.035445

(€2))
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Also we have
a=10.540302305,
b=-1.319738239,
€ =-2.555430481

Substituting these values in (12) we get the approxi-
mation $(X).

The values of s(X),y(x) and the corresponding ab-
solute errors at X, X,,X; are mentioned in Table 2.

4. Conclusion

Numerical values obtained by the spline approximation
have high accuracy. It has been noticed that the numeri-
cal solutions obtained are remarkably accurate and have
negligible percentage errors even for values of h as large
as 0.5, 1.0.
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