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ABSTRACT 

This article introduces a resampling procedure called the truncated geometric bootstrap method for stationary time se-
ries process. This procedure is based on resampling blocks of random length, where the length of each blocks has a 
truncated geometric distribution and capable of determining the probability p and number of block b. Special attention 
is given to problems with dependent data, and application with real data was carried out. Autoregressive model was 
fitted and the choice of order determined by Akaike Information Criterion (AIC) and Bayesian Information Criterion 
(BIC). The normality test was carried out on the residual variance of the fitted model using Jargue-Bera statistics, and 

the best model was determined based on root mean square error  MSE  of the forecasting values. The bootstrap 

method gives a better and a reliable model for predictive purposes. All the models for the different block sizes are good. 
They preserve and maintain stationary data structure of the process and are reliable for predictive purposes, confirming 
the efficiency of the proposed method. 
 
Keywords: Truncated Geometric Bootstrap Method; Autoregressive Model; Akaike Information Criterion (AIC); 

Bayesian Information Criterion (BIC); Root Mean Square Error  MSE  

1. Introduction 

The heart of the bootstrap is not simply computer simu-
lation, and bootstrapping is not perfectly synonymous 
with Monte Carlo. Bootstrap method relies on using an 
original sample or some part of it, such as residuals as an 
artificial population from which to randomly resampled 
[1]. Bootstrap resampling methods have emerged as 
powerful tools for constructing inferential procedures in 
modern statistical data analysis. The Bootstrap approach, 
as initiated by [2], avoids having to derive formulas via 
different analytical arguments by taking advantage of fast 
computers. The bootstrap methods have and will con-
tinue to have a profound influence throughout science, as 
the availability of fast, inexpensive computing has en-
hanced our abilities to make valid statistical inferences 
about the world without the need for using unrealistic or 
unverifiable assumptions [3]. 

An excellent introduction to the bootstrap maybe 
found in the work of [4-9]. Recently, [10,11] have inde-
pendently introduced non-parametric versions of the 
bootstrap that are applicable to weakly dependent sta-
tionary observations. Their sampling procedure have 
been generalized by [12,13] and by [14] by resampling 
“blocks of blocks” of observations to the stationary time 

series process.  
In this article, we introduce a new resampling method 

as an improvement on the stationary bootstrap of [15] 
and the moving block bootstrap of [16,17].  

The stationary bootstrap is essentially a weighted av- 
erage of the moving blocks bootstrap distributions or 
estimates of standard error, where the weights are deter-
mined by a geometric distribution. The difficult aspect of 
applying these methods is how to choose b in moving 
blocks scheme and how to choose p in the stationary 
scheme.  

On this note we propose a stationary bootstrap method 
generated by resampling blocks of random size, where 
the length of each block has a “truncated geometric dis- 
tribution”. 

In Section 2, the actual construction of a truncated 
geometric bootstrap method is presented. Some theoreti- 
cal properties of the method are investigated in Section 3 
in the case of the mean. In Section 4, it is shown how the 
theory may be extended to stationary time series proc- 
esses.  

2. Material and Method  

To overcome the difficulties of moving blocks and geo-
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metric stationary scheme in determining both b (number 
of blocks) and p (probabilities). We introduced a trun-
cated form for the geometric distribution and then dem-
onstrated that it is a suitable model for a probability 
problem. This truncation is of more than just theoretical 
interest as a number of application has been reported 
[18,19].  

A random length L may be defined to have a truncated 
geometric distribution with parameter P and N terms, 
when it has the probability distribution or probability 
density function 

    1
1 , 1, 2,

r
,P L r K P P r N

         (2.1) 

The constant K is found, using the condition 

  1P L r  , to be  1 1 1
N

P      

Thus, we have 
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These are the probabilities of a truncated geometric 
distribution with parameter P and N terms. Suppose that 
L length, number 1 to N are to be selected randomly with 
replacement. Then, the process continues until it is trun-
cated geometrically at r with an appropriate probability P 
attached to its random selection in form of , 1r r  , 

. We take our N to be 4, that is, the ran-
dom selections could be truncated between 1 to 4 at an 
appropriate probabilities. 

2, 1r r N  

Then, a description of the resampling algorithm when 
r > 1 is as follows: 

1) Let 1, , NX X   be a random variables. 
2) Let 1X   be determined by the r-th truncated ob-

servation Xr in the original time series. 
3) Let 1iX 

  be equal to Xr+1 with probability 1 – P 
and picked at random from the original N observations 
with probability p. 

4) Let 1 , be the block con-
sisting of b observation starting from Xi. 

, 1, , ,i b i i i bB X X X   

5) Let 
1 1 2 2, ,  be a sequence of blocks of ran-

dom length determined by truncated geometric distribu-
tion. 

, ,I L I LB B 

6) The first L1, observations in the pseudo time series 

1 2, , , NX X X    are determined by the first block 
1 1,I L  

of observation 
1 1 1iI I L  the next L2 observations 

in the pseudo time series are the observations in the sec-
ond sampled block  

B ,

, , ;X X

.I LX  2 2 1 .7) The process is resampled with replacement, until 
the process is stopped once N observation in the pseudo 
time series have been generated. 

8) Once 1 , , NX X    has been generated, one can 
compute the quantities of interest for the pseudo time 
series.  

The algorithm has two major components, the con-

struction of a bootstrap sample and the computation of 
statistics on this bootstrap sample, and repeat these op-
eration many times through some kinds of a loop.  

Proposition 1. Conditional on 1 2, , , NX X X ,  

1 2, , , NX X X     is stationary. 
If the original observations 1, , NX X

 
are all distinct, 

then the new series 1 , , NX X   is, conditional on 1 , ,X 

NX  a stationary Markov chain. If, on the other hand, 
two of the original observations are identical and the re-
maining are distinct, then the new series 1 , , NX X    is a 
stationary second order Markov chain. The stationary 
bootstrap resampling scheme proposed here is distinct 
from the proposed by [20] but posses the same properties 
with that proposed by [21]. 

3. Result and Discussion 

In this section, the emphasis is on the construction of 
valid inferential procedures for stationary time series data, 
and some illustrations with real data are given. The real 
data are the geological data from demonstratigraphic data 
from Batan well at 30 m regular interval, [22]. The data 
is the principal oxide of sand or sandstone, which is SiO2 
or silicon oxide. The point is that the bulk of oil reservoir 
rocks in Nigeria sedimentary basins is sandstone and 
shale, a product of sill stone [23]. In other to improve on 
the geological analysis and prediction of the presence of 
these elements, a mathematical tool which can be used to 
examine a wide range of data sets is developed to detect 
and improve new and old oil basins.  

The geological data of 130 observations was subjected 
to our new method described in section two of this article 
at 500 and 1000 bootstrap replicates, for block of (1, 2, 3, 
and 4).  

The replicates with minimum variance was selected in 
each case of number of bootstrap replicates.  

3.1. Model Fitting, Normality Test and  
Forecasting 

The linear models are fitted and consider the choice of 
the order of the linear model on the basis of Akaike In-
formation Criterion (AIC), Bayesian Information Crite-
rion (BIC) and residual variance  2  ,

Fitting of AR Models to Bootstrapped Data 
 [24].  

The linear models were fitted to the bootstrapped ob-
servations when the bootstrap replicates are (B = 500, B 
= 1000) for blocks of (1, 2, 3 and 4). When B = 500 rep-
licates, we have the following models.  

Block 1: 
It is found that AIC and BIC is minzimum at P = 4. 
The fitted model is  

1 2

3 4

0.373717 0.089415

0.284547 0.248579
t t t

t t

X X X

X X
 

 

 

t   
   (3.1) 
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Block 2: 
The fitted model is: 

1 2

4 5

0.38859 0.030660 0.315254

0.023246 0.300233
t t t

t t t

3tX X X

X X
 

 

  

   

X 

3t

 (3.2) 

Block 3: 
The model fitted is: 

1 2

4 5

0.539969 0.070547 0.101612

0.182896 0.101372
t t t

t t t

X X X

X X
 

 

  

   

X 

2

t

 (3.3) 

Block 4: 
The fitted model is:  

1

3 4

0.514047 0.099161

0.16566 0.218808
t t t

t t

X X X

X X
 

 

 

  
    (3.4) 

The table below shows the value of 2  , AIC and BIC 
for blocks (sizes) when B = 500 replicates. 

When B = 1000 replicates  
Block 1: 
The fitted model is: 

1 2

4 5

0.166656 0.136937 0.277032

0.238011 0.177745
t t t

t t t

3tX X X

X X
 

 

  

   

X 

t

t

 (3.5) 

Block 2: 

1 2

3 4

0.175163 0.130792

0.414360 0.276122
t t t

t t

X X X

X X
 

 

 

  
   (3.6) 

Block 3: 
The fitted model is: 

1 2

3

0.607054 0.100892

0.289670
t t

t t

X X X

X




 

  


3t

      (3.7) 

Block 4: 
The fitted model is: 

1 2

4 5

0.480194 0.14219 0.09358

0.08590 0.196596
t t t

t t t

X X X

X X
 

 

  

   

X   (3.8) 

The table below summarizes the value of 2  , AIC 
and BIC for blocks (sizes) when B = 1000 replicates.  

From Tables 1 and 2, it observed that the residual 
variance  2   for each block sizes are moderate, indi-
cating a selection procedure from any of the models re-
tain the time series data structure and any prediction from 
it is reliable.  

3.2. Normality Test for Residual of Fitted  
Models 

An important assumption we have made in fitting the 
linear and non-linear models to data is that the error  t  
of the model are mutually independent and normal. If a 
model is fitted to some data it may be appropriate to see 

Table 1. Measure of goodness fit by block sizes for 500 rep-
licates. 

Block sizes 2


 AIC BIC 

1 28.988 34 6. 4 6.8 50187 592380 

2 27.36994 6.274432 6.387564 

3 27.277997 6.258376 6.372097 

4 26.22478 6.278401 6.369378 

 
able 2. Measures of goodness of fit by block sizes for 1000 T

replicates. 

Block sizes 2


 AIC BIC 

1 28.836 6 6. 8 6.  84 22685 39991

2 35.983489 6.618683 6.708724 

3 23.631109 6.153097 6.220627 

4 23.335846 6.373635 6.487951 

 
ne can consider the model suitable for forecasting.  

car-
rie

o
The normality test for residuals of fitted models is 
d out using Jargue-Bera statistic tests (JB). At 5% 

level of significance with 2 degree of freedom the critical 
values of 2

2  is 5.99, (15) So, if JB > 5.99, one rejects 
the null hy hesis that the test is normal.  

Test for AR models of 500 replicates 
pot

H0: The test is normal  
H1: The test is not normal 

st is normal in all the block 
si

 for AR models of 1000 replicates  

test is normal in all block 
si

fore, the normality test carried out in this article 
re

3.3. Forecasting  

e fitted and then prediction or fore-

 replication of different 
bl

Table 3 reveals that the te
zes. 
Test
H0: The test is normal  
H1: The test is not normal 
Table 4 reveals that the 

zes.  
There
veals that the proposed truncated geometric bootstrap 

method for dependent data at different replications is 
normal in all block sizes and any forecast from this mod-
els are good. That is, the residual of the models satisfied 
the normality test.  

The linear models ar
cast are calculated for the next 10 observations. The fol-
lowing are the forecast values for 500 and 1000 repli-
cates of different block sizes.  

The forecast values for the
ock sizes from the Tables 5 and 6 reveals that while 

the probability forecast increases that of elementary 
forecast are not stable over time. The forecast shows a 
decline values throughout the period, except for block of  whether the assumption is satisfied. Once it is satisfied  
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Table 3. Summary for JB statistics, B = 500. 

Block sizes Skewness Kurtosis Probability
Jargue Bera 

(JB) 

1 − 2. 4 0.596584 3.297491 87579 0.019489

2 −0.287789 3.435616 2.713813 0.257456

3 0.183413 4.017238 3.041558 0.048763

4 0.195776 3.592815 2.607836 0.271466

 
Table 4. Summary for JB statistics, B = 1000. 

Block sizes Skewness Kurtosis Probability
Jargue Bera 

(JB) 

1 − 1. 5 0.191209 3.264664 12651 0.569351

2 −1.856469 3.18611 2.170996 0.00001 

3 −0.106644 3.900867 2.499526 0.105424

4 −0.121545 3.305079 0.779851 0.677107

 
Table 5. Forecast values for B = 500 replicates. 

 Block 1 Block 2 Block 3 Block 4 

1 54.98761 55.11951 53.26209 55.72750

2 55.00491 55.13013 53.28615 55.68843

3 55.02221 55.14074 53.31022 55.64935

4 55.03958 55.15136 53.33428 55.61028

5 55.05680 55.16197 53.35834 55.57120

6 55.07410 55.17259 53.38240 55.53213

7 55.09140 55.18321 53.40647 55.45398

8 55.10870 55.19382 53.43053 55.45398

9 55.12600 55.20444 53.45459 55.41490

10 55.14330 55.21505 53.47865 55.37583

 
Table 6. Forecast values for B = 1000 replicates. 

 Block 1 Block 2 Block 3 Block 4 

1 56.56882 54.29245 57.21384 51.86475

2 56.56907 54.29245 57.34774 51.83133

3 56.56932 54.29245 57.48165 51.79791

4 56.56956 54.29245 57.61556 51.76448

5 56.56981 54.29245 57.74946 51.73106

6 56.57006 54.29245 57.88337 51.69764

7 56.57031 54.29245 58.01727 51.66422

8 56.57056 54.29245 58.15118 51.63079

9 56.57080 54.29245 58.28509 51.59737

10 56.57105 54.29245 58.41899 51.56395

Tabl uare 7. Root mean sq e error  MSE , for t st 

ck sizes 

he foreca

value.  

Blo , 500MSE B   , 1000MSE B   

1 6.27811 5.459141 

2 7.53356 6.702136 

3 7.60897 6.605979 

4 6.40647 5.033949 

 
, that shows upward values throughout the period.  

one 
3

In order to justify the best model for prediction, 
must consider the root mean square error  MSE  of 
the forecast values. Table 7 is some of root mean square 
error of the forecast values.  

To measure and establish the best model, we use the 
root mean square error of the forecast values. The above 
table reveals that the values are moderate for all the 
models in all bootstrap replicates. Therefore models fit-
ted for all block of sample sizes are the best model for 
prediction purposes.  

4. Summary and Conclusions  

hod proposed in 
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