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ABSTRACT 

Cell-PLoc 2.0 is a package of web-servers 
evolved from Cell-PLoc (Chou, K.C. & Shen, 
H.B., Nature Protocols, 2008, 2:153-162) by a 
top-down approach to improve the power for 
predicting subcellular localization of proteins in 
various organisms. It contains six predictors: 
Euk-mPLoc 2.0, Hum-mPLoc 2.0, Plant-mPLoc, 
Gpos-mPLoc, Gneg-mPLoc, and Virus-mPLoc, 
specialized for eukaryotic, human, plant, Gram- 
positive bacterial, Gram-negative bacterial, and 
virus proteins, respectively. Compared with 
Cell-PLoc, the predictors in the Cell-PLoc 2.0 
have the following advantageous features: (1) 
they all have the capacity to deal with the 
multiplex proteins that can simultaneiously exist, 
or move between, two or more subcellular location 
sites; (2) no accession number is needed for the 
input of a query protein even if using the “high- 
level” GO (gene ontology) prediction engine; (3) 
the functional domain information and sequential 
evolution information are fused into the “ab 
initio” sequence-based prediction engine to 
enhance its accuracy. In this protocol, a step- 
to-step guide is provided for how to use the web 
server predictors in the Cell-PLoc 2.0 package, 
which is freely accessible to the public at 
http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/. 

Keywords: Euk-mPLoc 2.0; Hum-mPLoc 2.0; 
Plant-mPLoc; Gpos-mPLoc; Gneg-mPLoc; 
Virus-mPLoc; Higher-level GO approach; Ab-initio 
approach; Functional domain; Sequential evolution; 
Multiplex proteins 

1. INTRODUCTION 

The localization of a protein in a cell is one of its 

most important attributes. It can provide useful insight 
about the function of the protein. It is also fundamental 
to system biology because knowledge of the subcellu-
lar locations of proteins is indispensable for in-depth 
understanding how the biological processes are regu-
lated by the intricate pathways at the cellular level 
[1,2]. Particularly, the information of protein subcel-
lular location is very useful for identifying and priori-
tizing drug targets [3] during the process of drug de-
velopment. 

Given an uncharacterized protein sequence, how can 
we identify which subcellular location site it resides at? 
Does the protein stay in a single subcellular location or 
can it simultaneously exist in, or move between, two and 
more subcellular location sites? Although the answers to 
these questions can be determined by means of various 
biochemical experiments, it is time-consuming and labo-
rious to acquire the desired information with experimen-
tal methods alone. Particularly, in the post-genomic age, 
the number of newly found protein sequences has in-
creased explosively. For instance, in 1986 the Swiss-Prot 
databank contained merely 3,939 protein sequence en-
tries, but the number has since jumped to 519,348 ac-
cording to the data released by the same databank on 10- 
Aug-2010 (www.expasy.org/sprot/relnotes/relstat.html), 
meaning that the number of protein sequence entries 
now is more than 131 times the number from about 24 
years ago. Facing such an avalanche of protein se-
quences, it is highly desired to develop automated 
methods for timely identifying the subcellular locations 
of uncharacterized proteins based on their sequence in-
formation alone. 

Actually, during the past 18 years or so, various com-
putational methods were developed in this regard (see, 
e.g., [4-59]. 

All the aforementioned methods each have their own 
advantages and have indeed played a role in stimulating 
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the development of this area. Meanwhile, they also each 
have their own limitations. For example, TargetP [15] is 
one of the popular methods in this area. Its remarkable 
merit is to make the prediction of the subcellular loca-
tion of a protein related to its signal peptide and hence 
has a clearer biological meaning and basis. But TargetP 
[15] can only cover four subcellular location sites. For a 
query protein located outside its coverage scope, TargetP 
would either fail to predict or the predicted result thus 
obtained would not make any sense. The similar prob-
lem also exists for PSORTb [33], one of the other popu-
lar methods in this area. 

The other problem for the existing methods listed 
above is that none of them can be used to deal with mul-
tiplex proteins that may simultaneously reside at, or 
move between, two or more different subcellular loca-
tions. Proteins with multiple location sites or dynamic 
feature of this kind are particularly interesting because 
they may have some unique biological functions worthy 
of our special notice [2,3]. Particularly, as pointed out by 
Millar et al. [60], recent evidence indicates that an in-
creasing number of proteins have multiple locations in 
the cell. 

About two years ago, a package of web-servers 
called Cell-PLoc was published [61] that can be used 
to predict subcellular localization of proteins in vari-
ous organisms. It contained six web-server predictors: 
Euk-mPLoc [62], Hum-mPLoc [63], Plant-PLoc 
[64], Gpos-PLoc [65], Gneg-PLoc [66], and Vi-
rus-PLoc [67], specialized for eukaryotic, human, 
plant, Gram-positive bacterial, Gram-negative bacte-
rial, and virus proteins, respectively. As elucidated in 
the protocol article [61], each of the six predictors in 
Cell-PLoc was established by hybridizing the 
“higher-level” GO (gene ontology) [68] approach and 
the “ab initio” PseAAC (pseudo amino acid composi-
tion) [16] approach, and hence could yield higher 
success rates as well as cover much wider scope. For 
example, the Euk-mPLoc predictor can cover up to 
22 subcellular location sites. Moreover, of the six 
predictors in the Cell-PLoc package [61], Euk- 
mPLoc and Hum- mPLoc can be also used to deal 
with proteins with multiple-location sites. Therefore, 
ever since it was published, Cell-PLoc has been 
widely and increasingly used. 

However, the existing version of Cell-PLoc [61] has 
the following shortcomings. (1) The accession number 
of a query protein is indispensable as an input in order 
to utilize the advantage of the “higher-level” GO ap-
proach. Many proteins, such as hypothetical and syn-
thetic proteins as well as those newly-discovered pro-
teins that have not been deposited into databanks yet, 
do not have accession numbers, and hence cannot be 

handled with the GO approach. (2) Even with their 
accession numbers available, many proteins cannot be 
meaningfully formulated in a GO space because the 
current GO database is far from complete yet. (3) Al-
though the PseAAC approach was used as a comple-
ment in Cell-PLoc [61] that could take some partial 
sequence order effects into account, the original Pse-
AAC [16,69] did not contain the sequential evolution 
and functional domain information, and hence would 
affect the prediction quality. (4) Except Euk-mPLoc 
(the predictor for eukaryotic proteins) and Hum-mPLoc 
(the predictor for human proteins), all the other pre-
dictors in Cell-PLoc package [61] cannot be used to 
deal with multiplex proteins. 

To address the aforementioned four problems, a 
top-down approach to enhance the power of Cell-PLoc 
has been implemented. The new version thus obtained is 
denoted by Cell-PLoc 2.0. Compared with the old 
Cell-PLoc [61], Cell-PLoc 2.0 has the following advan-
tageous features. 

Input Data. By means of the “homology-based GO 
extraction” strategy as developed recently (see, e.g., 
[70]), the requirement for the accession number of a 
query protein is no longer needed even if using the 
higher-level GO approach to perform the prediction. 
This is especially useful for predicting the subcellular 
location sites of hypothetical proteins or synthetic pro-
teins, as well as those new protein sequences without 
being deposited into data banks and hence having no 
accession numbers assigned yet. 

Sequence Information. For those proteins that have 
no useful GO information to carry out the higher-level 
prediction, a hybridization approach by fusing the func-
tional domain information and sequential evolution in-
formation as illustrated in Figure 1 is developed to re-
place the simple PseAAC approach [16] in the old 
Cell-PLoc [61]. As a consequence, the success rates 
have been remarkably increased for those proteins with-
out useful GO numbers. 

Multiplex Proteins. In the old Cell-PLoc package 
[61], only two predictors, i.e., the one specialized for 
eukaryotic proteins and the one specialized for human 
proteins, can be used to treat proteins with multiple loca-
tion sites. In Cell-PLoc 2.0, all the six predictors, in-
cluding those specialized for plant proteins, Gram- posi-
tive bacterial proteins, Gram-negative bacterial proteins, 
and virus proteins, can be used to deal with the multiplex 
proteins. 

Benchmark Datasets. With more experimental data 
available in Swiss-Prot database (www.ebi.ac.uk/swissprot), 
to update the data for training the predictors, instead of 
version 50.7 released on 9-Sept-2006 as used in the old 
Cell-PLoc [61], the benchmark datasets for training the  
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Figure 1. A flowchart to show the prediction process of the predictors in Cell-PLoc 
2.0, where ensemble classifier 1 is for processing the GO descriptor samples, while 
ensemble classifier 2 is for the FunD (functional domain) and PseEvo (pseudo sequen-
tial evolution) descriptor samples. See [70,71] for further explanation. 

 
predictors in Cell-PLoc 2.0 were constructed based on 
version 55.3 released on 29-April-2008. Moreover, to 
make all the predictors in Cell-PLoc 2.0 have the capac-
ity to deal with the multiplex proteins as well, the se-
quences annotated with two or more subcellular location 
sites were no longer excluded even for plant proteins, 
Gram-positive bacterial proteins, Gram-negative bacte-
rial proteins, and virus proteins as done previously in the 
old Cell-PLoc package [61]. 

Below, let us describe how to use the new Cell-PLoc 
2.0 package to get the desired results. 

2. EQUIPMENT AND MATERIALS 

Hardware. Same as in the old Cell-PLoc [61], i.e., 
you need a computer that is able to access to internet. 

Data. Your input protein sequences should be in 
FASTA format. You can enter the sequence of a query 
protein by either typing or copying-and-pasting it into 
the input box. Spaces and line breaks will be ignored and 
will not affect the prediction result. 

Programs. Cell-PLoc 2.0 contains the following pro-
grams: (1) Euk-mPLoc 2.0 for predicting the subcellular 
localization of eukaryotic proteins; (2) Hum-mPLoc 2.0 
for human proteins; (3) Plant-mPLoc for plant proteins; 
(4) Gpos-mPLoc for Gram-positive bacterial proteins; 
(5) Gneg-mPLoc for Gram-negative bacterial proteins; 
(6) Virus-mPLoc for virus proteins. The six predictors 
were evolved from Euk-mPLoc [62], Hum-mPLoc [63], 
Plant- PLoc [64], Gpos-PLoc [65], Gneg-PLoc [66], and 
Virus- PLoc [67] in the original Cell-PLoc package [61] 

through a top-down approach to enhance their power, as 
elaborated in [70-75], respectively. Note that now all the 
six predictors in Cell-PLoc 2.0 have the capacity to deal 
with multiplex proteins as well, as indicated by the 
character “m” in front of their partial name “PLoc” that 
stands for the first character of “multiple”. 

3. PROCEDURE 

1) Go to the internet at 
http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/ and you 
will see the top page of the Cell-PLoc 2.0 package on 
the screen of your computer, as shown in Figure 2. 

2) You should use the relevant predictor to conduct 
the prediction: (1) if your query protein is an eukaryotic 
one, click the button Euk-mPLoc 2.0; (2) if it is a human 
protein, click Hum-mPLoc 2.0; (3) if it is a plant protein, 
click Plant-mPLoc; (4) if it is a Gram-positive bacterial 
protein, click Gpos-mPLoc; (5) if it is a Gram- negative 
bacterial protein, click Gneg-mPLoc; (6) if it is a viral 
protein, click Virus-mPLoc. 

3) Without loss of generality, let us take Hum-mPLoc 
2.0 as an example. By clicking Hum-mPLoc 2.0, you 
will be prompted with the top page of the Hum-mPLoc 
2.0 web-server predictor (Figure 3). To find the cover-
age scope and caveat in using the predictor, click the 
Read Me button and you will see that the current 
Hum-mPLoc 2.0 version can cover the following 14 
human protein subcellular location sites: (1) centriole, (2) 
cytoplasm, (3) cytoskeleton, (4) endoplasmic reticulum, 
(5) endosome, (6) extracell, (7) Golgi apparatus, (8) ly- 
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Figure 2. Illustration to show the Cell-PLoc 2.0 web-page at7 
http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/. 
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Figure 3. A semi-screenshot to show the top page of the web- 
server predictor Hum-mPLoc 2.0 in the Cell-PLoc 2.0 package. 
 
sosome, (9) microsome, (10) mitochondrion, (11) nu-
cleus, (12) peroxisome, (13) plasma membrane, and (14) 
synapse, as schematically shown in Figure 4. You will 
also see the caveat from the Read Me window how to 
avoid meaningless prediction. To continue the prediction, 
go back to the top page of the Hum-mPLoc 2.0 
web-server predictor by closing the Read Me window. 

4) Enter your query protein sequence into the input 
box as shown at the centre of Figure 3. The input se-
quence should be in FASTA format. A sequence in 
FASTA format consists of a single-line description, fol-
lowed by lines of sequence data. The first character of 
the description line is a greater-than symbol (“>”) in the 
first column. All lines should be shorter than 80 charac-
ters. Example sequences in FASTA format can be seen 
by clicking on the Example button right above the input 
box. For more information about FASTA format, visit 
http://en.wikipedia.org/wiki/Fasta_format. 

5) To get the predicted result, click the Submit button. 

NucleusNucleus

Plasma membrane

Cytoplasm

Mitochondria

Endoplasmic
reticulum

Cytoskeleton

Peroxisome

Lysosome

Golgi
apparatus

Centriole

Extracell
Microsome

Endosomal

Synapse

 

Figure 4. Schematic illustration to show the fourteen subcellu-
lar location sites of human proteins that are covered by the 
Hum-mPLoc 2.0 predictor. 
 
For example, if using the sequence of query protein 1 in 
the Example window as an input, you will see the input 
screen as shown in Figure 5a; after clicking the Submit 
button, you will see “Cell membrane; Cytoplasm; Nu-
cleus” shown on the predicted location(s) window (Fig-
ure 5b), meaning that the query protein is a multiplex 
protein, which can simultaneously occur in “cell mem-
brane”, “cytoplasm” and “nucleus” sites, fully consistent 
with experimental observations. However, if using the 
sequence of query protein 2 in the Example window as 
an input, you will instead see the input screen as shown 
in Figure 6a; after clicking the Submit button, you will 
see “Cytoplasm” shown on the predicted location(s) 
window (Figure 6b), meaning that the query protein is a 
single-location protein residing in “cytoplasm” com-
partment only, also fully consistent with experimental 
observations. 

6) By clicking the Citation button, you will find the 
relevant papers that document the detailed development 
and algorithm of Hum-mPLoc 2.0. 

7) By clicking the Data button, you will find all the 
benchmark datasets used to train and test the Hum- 
mPLoc 2.0 predictor. 

8) If your query protein sequence is from other organ-
ism, click the relevant web-server button (Figure 2) as 
elaborated in Step 2, and repeat Steps 3-6. 

TIMING The computational time for each prediction is 
within 15 seconds for most cases. The longer the query 
protein sequence is, the more time it is usually needed. 

4. TROUBLESHOOTING 

After you click the Submit button, if the server rejects 
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(b) 

Figure 5. A semi-screenshot to show the input in the FASTA 
format for (a) the query protein 1 taken from the Example 
window, and (b) the output predicted by Hum-mPLoc 2.0 for 
the query protein sequence in panel (a). 

your submission for prediction, consider the following 
points for troubleshooting. 

 Check the format of your input data to make sure it 
complies with the FASTA format as elaborated in 
Step 4 of the PROCEDURE. 

 Check the length of your input sequence to make 
sure it is at least 50 amino acids long; otherwise, it 
might not be a real protein but its fragment. 

 Check the amino acid codes of your input sequence 
to make sure it does not contain any invalid char-
acters. 

You might also get meaningless result if the query 
protein is not among the subcellular location sites cov-
ered by the web-server predictor. 

5. ANTICIPATED RESULTS 

In statistical prediction of subcellular localization of 
proteins or their any other attributes, it would be mean-
ingless to simply say the success rate of a predictor 
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Figure 6. A semi-screenshot to show the input in the FASTA 
format for (a) the query protein 2 taken from the Example 
window, and (b) the output predicted by Hum-mPLoc 2.0 for 
the query protein sequence in panel (a). 
 
without specifying what method and benchmark dataset 
were used to test its accuracy. 

The following three cross-validation methods are 
generally used for examining the effectiveness of a sta-
tistical prediction method: (1) the independent dataset 
test, (2) the sub-sampling (K-fold cross-validation) test, 
and (3) the jackknife test [76]. 

For the independent dataset test, although all the pro-
teins to be tested are outside the training dataset used to 
train the predictor and hence can avoid the “memory” 
effect or bias, the way of how to select the independent 
proteins for testing could be quite arbitrary unless the 
number of independent proteins is sufficiently large. 
This kind of arbitrariness might lead to completely dif-
ferent conclusions. For instance, a predictor achieving a 
higher success rate than the other predictor for a given 
independent testing dataset might fail to keep so when 
tested by another independent testing dataset [76]. 

For the subsampling test, the concrete procedure usu-
ally used in literatures is the 5-fold, 7-fold or 10-fold 
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cross-validation. The problem with the K-fold cross- 
validation test as such is that the number of possible 
selections in dividing a benchmark dataset is an astro-
nomical figure even for a very simple dataset. For ex-
ample, let us consider a highly simplified dataset that 
consists of 300 proteins classified into five subsets, in 
which 60 proteins belong to subcellular location #1, 55 
to location #2, 70 to location #3, 65 to location #4, and 
50 to location #5. For such a simple dataset, the number 
of possible combinations of taking one-fifth proteins 
from each of the five subsets will be 

1 2 3 4 5

60

60! 55! 70!
    = 

(60 12)!12! (55 11)!11! (70 14)!14!

65! 50!
 > 5.45 10

(65 13)!13! (50 10)!10!

      

 
  

  
 

   (1) 

where 1  is the number of possible different ways of 
taking 60 5 12  proteins from subset #1, 2  that of 
taking 55 5 11  proteins from subset #2, 3  that of 
taking 70 5 14  proteins from subset #3, 4  that of 
taking 65 5 13  proteins from subset #4, and 5  
that of taking 50 5 10  proteins from site-site-5. As 
we can see from Eq.1, even for such a simple and small 
dataset the number of possible ways in selecting the 
testing dataset for the 5-fold cross-validation would be 
greater than 605.45 10 . It can be easily conceived that 
for a benchmark dataset containing over a thousand pro-
teins that are classified into more than five subcellular 
location sites, the number of the possible selections for 
subsampling test will be even much greater. Accordingly, 
in any actual subsampling cross-validation tests, only an 
extremely small fraction of the possible selections are 
taken into account. Since different selections will always 
lead to different results even for a same benchmark 
dataset and a same predictor, the subsampling test (such 
as 5-fold cross-validation) cannot avoid the arbitrariness 
either. A test method unable to yield a unique outcome 
cannot be deemed as an ideal one. 

In the jackknife test, all the proteins in the benchmark 
dataset will be singled out one-by-one and tested by the 
predictor trained by the remaining protein samples. 
During the process of jackknifing, both the training 
dataset and testing dataset are actually open, and each 
protein sample will be in turn moved between the two. 
The jackknife test can exclude the “memory” effect. 
Also, the arbitrariness problem as mentioned above for 
the independent dataset test and subsampling test can be 
avoided because the outcome obtained by the jackknife 
cross-validation is always unique for a given benchmark 
dataset. As for the possible overestimation in success 
rate by jackknife test because of only one sample being 

singled out at a time for testing, the answer is that as 
long as the jackknife test is performed on a stringent 
benchmark dataset in which none of proteins has 

25%  pairwise sequence identity to any other in a 
same subcellular location such as those benchmark 
datasets specially constructed for the six predictors in 
Cell-PLoc 2.0, it is highly unlikely to yield an overesti-
mated rate compared with the actual success rate in 
practical applications, as demonstrated in [72,74] and 
will be further discussed later. Besides, when the jack-
knife test was used to compare two predictors, even if 
there was some overestimate due to using a less stringent 
benchmark dataset for one predictor, the same overesti-
mate would exist for the other as long as they were both 
tested by a same dataset. 

Accordingly, the jackknife test has been increasingly 
and widely used by investigators to examine the quality of 
various predictors (see, e.g., [47,51,55,58,59,77- 107]). 

However, even if using the jackknife approach for 
cross-validation, a same predictor may still generate ob-
viously different success rates when tested by different 
benchmark datasets. This is because the more stringent 
of a benchmark dataset in excluding homologous and 
high similarity sequences, or the more number of sub-
cellular location sites it covers, the more difficult for a 
predictor to achieve a high overall success rate, as will 
be shown later. 

The predictors in the old Cell-PLoc package [61] 
were established by hybridizing the “higher-level” GO 
approach with the “ab initio” sequence-correlated Pse-
AAC [16] approach. Accordingly, their overall success 
prediction rates are generally higher than those by the 
best of the existing “ab initio” sequence-based ap-
proaches without combining with any higher level ap-
proach, as elucidated in [61] and demonstrated in a se-
ries of previous publications [62-67,108,109], and hence 
there is no need to repeat here. 

Now, in the new version of Cell-PLoc 2.0, the same 
high success rates will still be achieved by the 
“higher-level” GO prediction engine but no require-
ment for the accession number is needed for the input. 
And for those proteins without useful GO numbers, the 
corresponding success prediction rates will be further 
enhanced due to fusing the functional domain infor-
mation and sequential evolution information into the 
“ab initio” prediction engine in the Cell-PLoc 2.0 
package as illustrated in Figure 1. Accordingly, the 
overall success rates by the predictors in Cell-PLoc 
2.0 are not only higher than those by the other predic-
tors but also those by the predictors in the old 
Cell-PLoc package [61], as can be seen from the fol-
lowing comparisons.  
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Table 1. Comparison between each of the six predictors in Cell-PLoc [61] and that in Cell-PLoc 2.0 by jackknife test. 

Cell-PLoc Cell-PLoc 2.0 
Organism 

Number of subcellu-
lar locations covered Predictor 

Overall success 
rateg 

Predictor 
Overall success 

rate 

Eukaryotic 22a Euk-mPLoc 39.3% Euk-mPLoc 2.0 64.2% 

Human 14b Hum-mPLoc 38.1% Hum-mPLoc 2.0 62.7% 

Plant 12c Plant-PLoc 38.0% Plant-mPLoc 63.7% 

Gram-positive 4d Gpos-PLoc 72.5% Gpos-mPLoc 82.2% 

Gram-negative 8e Gneg-PLoc 71.5% Gneg-mPLoc 85.7% 

Virus 6f Virus-PLoc 43.7% Virus-mPLoc 60.3% 

aThe corresponding benchmark dataset was taken from the Supporting Information S1 of [70], in which none of protein included has 25%  pair-
wise sequence identity to any other in a same subcellular location; bThe corresponding benchmark dataset was taken from the Online Supporting 
Information A of [71], in which none of protein included has 25%  pairwise sequence identity to any other in a same subcellular location; cThe 
corresponding benchmark dataset was taken from Table S1 of [72], in which none of protein included has 25%  pairwise sequence identity to any 
other in a same subcellular location; dThe corresponding benchmark dataset was taken from the Online Supporting Information A of [73], in which 
none of protein included has 25%  pairwise sequence identity to any other in a same subcellular location; eThe corresponding benchmark dataset 
was taken from the Online Supporting Information A of [74], in which none of protein included has 25%  pairwise sequence identity to any other 
in a same subcellular location; fThe corresponding benchmark dataset was taken from the Online Supporting Information A of [75], in which none of 
protein included has 25%  pairwise sequence identity to any other in a same subcellular location; gNote that in order to make the comparison under 
exactly the same condition, only the sequences of proteins but not their accession numbers were used as inputs during the prediction. 

 
1) Comparison with the six predictors in Cell-PLoc 

[61]. Listed in Table 1 are the overall success rates by 
Cell-PLoc [61] and Cell-PLoc 2.0 using jackknife tests 
on six stringent benchmark datasets for eukaryotic, hu-
man, plant, Gram-positive bacterial, Gram-negative 
bacterial, and virus proteins, respectively. For the case of 
eukaryotic proteins, the comparison was made between 
the predictor Euk-mPLoc of Cell-PLoc [61] and the 
predictor Euk-mPLoc 2.0 of Cell-PLoc 2.0 using the 
benchmark dataset classified into 22 subcellular loca-
tions as given in the Supporting Information S1 of [70]. 
For human proteins, the comparison was made between 
the predictor Hum-mPLoc of Cell-PLoc [61] and the 
predictor Hum-mPLoc 2.0 of Cell-PLoc 2.0 using the 
benchmark dataset classified into 14 subcellular loca-
tions as given in the Online Supporting Information A of 
[71]. And so forth. To avoid homology bias and redun-
dancy, none of the proteins included in the six datasets 
has 25%  pairwise sequence identity to any other in a 
same subcellular location. Also, to make the comparison 
between the two counterparts under exactly the same 
condition, only the sequences of proteins but not their 
accession numbers were used as inputs during the pre-
diction. Meanwhile, the false positives (over-predictions) 
and false negatives (under-predictions) were also taken 
into account to reduce the scores for calculating the 
overall success rate. It is instructive to point out that it is 
much more complicated to count the over-predictions 
and under-predictions for a system containing both sin-
gle-location and multiple-location proteins. For the de-
tailed calculation formulation, see Eqs.43-48 as well as 

Figure 4 in a comprehensive review [110]. It can be 
seen from Table 1 that the overall success rates obtained 
by the predictors in Cell-PLoc 2.0 are about 10-25% 
higher than those by their counterparts in Cell-PLoc 
[61]. 

2) Comparison with PSORTb v.2.0 [33]. The pre-
dictor is widely used by biologists for predicting the 
subcellular locations of Gram-negative bacterial pro-
teins. It is with a built-in training dataset covering the 
following five subcellular location sites: (1) cytoplasm, 
(2) extracellular, (3) inner membrane, (4) outer mem-
brane, and (5) periplasm. The corresponding predictor 
in Cell-PLoc 2.0 is Gneg-mPLoc that can cover eight 
subcellular locations of Gram-negative proteins; i.e., in 
addition to the above five locations, it also covers 
“fimbrium”, “flagellum”, and “nucleoid”. In order to 
make the two predictors with different coverage scopes 
comparable, a degenerate testing dataset was generated 
by randomly picking testing proteins according to the 
following criteria: (1) the testing samples must be 
Gram-negative bacterial proteins; (2) to avoid the un-
fair “memory” effect, the testing samples must be not 
in the training dataset of PSORTb v.2.0, nor in the 
training dataset of Gneg-mPLoc; (3) the experimen-
tally observed subcellular locations of the testing pro-
teins are known as clearly annotated in Swiss-Prot da-
tabase; (4) their location sites must be within the scope 
covered by PSORTb v.2.0 for properly using it (for the 
proteins with multiple location sites, at least one of 
them should be within the scope covered by PSORTb 
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v.2.0). For the detailed information about the testing 
dataset thus generated, see the Online Supporting In-
formation B of [74] that contains 759 Gram-negative 
proteins, of which 116 are of cytoplasm, 62 of ex-
tracellular, 397 of inner membrane, 89 of outer mem-
brane, and 95 of periplasm. As shown in Table 2, the 
overall success rates by Gneg-mPLoc and PSORTb 
v.2.0 [33] in identifying the subcellular locations of 
proteins in such a testing dataset were 98.0% and 
79.3%, respectively, indicating the success rate by 
Gneg-mPLoc of Cell-PLOc 2.0 was 19% higher than 
that by PSORTb v.2.0 [33]. Furthermore, some exam-
ples are given in Table 3 to show how the results  
mispredicted by PSORTb v.2.0 were successfully 
corrected by Greg-mPLoc. It is interesting to see from 
the table that the first protein with accession number 
P62532 was predicted by Gneg-mPLoc belonging to 
two subcellular location sites, “extracellular” and 
“fimbrium”, fully consistent with experimental obser-
vation as annotated in Swiss-Prot database (version 
55.3 released on 29- April-2008). 

3) Comparison with TargetP [15]. The predictor is 
widely used by biologists for predicting the subcellular 
locations of plant proteins. It has a web-server at 
http://www.cbs.dtu.dk/services/TargetP/, with a built-in 
training dataset covering the following four items: “mi-
tochondria”, “chloroplast”, “secretory pathway”, and 
“other”. Since the “secretory pathway” is not a final des-
tination of subcellular location as annotated in Swiss- 
Prot databank, and should be removed from the com-
parison. Also, the location of “other” is not a clear site 
for comparison, and should be removed too. The corre-
sponding predictor in Cell-PLoc 2.0 is Plant-mPLoc 
that can cover 12 subcellular locations of plant proteins; 
i.e., in addition to “mitochondria” and “chloroplast”, it 
also covers “cell membrane”, “cell wall”, “cytoplasm”, 
“endoplasmic reticulum”, “extracellular”, “Golgi appa-
ratus”, “nucleus”, “peroxisome”, “plastid”, and “vacu-
ole”. Thus, to make the two predictors with different 
coverage scopes comparable, a degenerate testing data-

set was generated according to the similar procedures as 
described in section 5.2. For the detailed information 
about the testing dataset thus generated, see Table S2 of 
[72] that contains 1,775 plant proteins of which 1,500 
are of chloroplast and 275 of mitochondrion. As reported 
in [72], the overall success rates by Plant-mPLoc on 
such a testing dataset was 86%, which is more than 40% 
higher than that by TargetP [15] on the same testing 
dataset. 

4) Comparison with Predotar [111]. This is another 
popular predictor used by biologists for predicting the 
subcellular locations of plant proteins. Its web-server is 
at http://urgi.versailles.inra.fr/predotar/predotar.html, 
with a built-in training dataset covering the following 
four items: “endoplasmic reticulum”, “mitochondrion”, 
“plastid”, and “other”. Since the term “other” is not a 
clear description for subcellular location, and was re-
moved from comparison. The corresponding predictor in 
Cell-PLoc 2.0 is Plant-mPLoc that can cover 12 sub-
cellular locations of plant proteins; i.e., in addition to 
“endoplasmic reticulum”, “mitochondria” and “plas-
tid”, it also covers “cell membrane”, “cell wall”, 
“chloroplast”, “cytoplasm”, “extracellular”, “Golgi 
apparatus”, “nucleus”, “peroxisome”, and “vacuole”. 
Again, to make the two predictors with different cov-
erage scopes comparable, a degenerate testing dataset 
was generated by following the similar procedures as 
described in section 5.2. For the detailed information 
about the testing dataset thus generated, see Table S4 
of [72], where it was also reported that the overall 
success rates by Plant-mPLoc on such a testing data-
set was 70%, which is more than 30% higher than that 
by Predotar [111] on the same testing dataset. 

Moreover, it was also shown in [72,74] that some 
proteins coexisting in two or more subcellular location 
sites were successfully identified by Gneg-mPLoc [74] 
and Plant-mPLoc [72]; cases like that are beyond the 
reach of PSORTb v.2.0 [33], TargetP [15], or Predotar 
[111]. 

 
Table 2. A comparison of the predicted results by Gneg-mPLoc and PSORTb v.2.0 [33] on the testing dataset of Online 
Supporting Information B of [74]. 

Success rate 
Subcellular location 

PSORTb v.2.0 Gneg-mPLoc 

Cytoplasm 99/116=85.3% 115/116=99.1% 

Extracellular 20/62=32.3% 52/62=83.9% 

Inner membrane 329/397=82.9% 397/397=100% 

Outer membrane 75/89=84.3% 87/89=97.8% 

Periplasm 79/95=83.2% 93/95=97.9% 

Total 602/759=79.3% 744/759=98.0% 

http://www.cbs.dtu.dk/services/TargetP/�
http://urgi.versailles.inra.fr/predotar/predotar.html�
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Table 3. Some examples to show how the subcellular location sites mispredicted by PSORTb v.2.0 were corrected by 
Gneg-mPLoc. 

Protein accession numbera
Experimental result anno-
tated in Swiss-Prot data-

base 

Predicted result by 
PSORTb v.2.0 

Predicted result by 
Gneg-mPLoc 

P62532 Extracellular; Fimbrium Unknown Extracellular; Fimbrium 

Q8X9H8 Cytoplasm Unknown Cytoplasm 

P00962 Cytoplasm Unknown Cytoplasm 

Q83LY4 Cytoplasm Unknown Cytoplasm 

Q8DFR1 Cytoplasm Unknown Cytoplasm 

Q84H44 Cytoplasm Unknown Cytoplasm 

P27475 Extracellular Unknown Extracellular 

O50319 Extracellular Unknown Extracellular 

P31518 Extracellular Unknown Extracellular 

Q89AD4 Cytoplasm Unknown Cytoplasm 

Q56027 Extracellular Unknown Extracellular 

O52623 Extracellular Unknown Extracellular 

P26219 Cell inner membrane Unknown Cell inner membrane 

P77293 Cell inner membrane Unknown Cell inner membrane 

P95655 Cell inner membrane Unknown Cell inner membrane. 

P04123 Cell inner membrane Periplasm Cell inner membrane 

Q47879 Cell outer membrane Unknown Cell outer membrane 

P0A935 Cell outer membrane Unknown Cell outer membrane 

P00211 Periplasm Cytoplasm Periplasm 

P0A182 Periplasm Unknown Periplasm 

Q9Z4N3 Periplasm Unknown Periplasm 

P31330 Periplasm Cytoplasm Periplasm 

a Only the sequences but not the accession numbers were used as inputs during the prediction by Gneg-mPLoc. The accession numbers 
here are just for the usage of identification. 

 

From the above four comparisons, we can now make 
the following points very clear. 
 The more stringent a benchmark dataset is in ex-

cluding homologous and high similarity sequences, 
or the more subcellular location sites it covers, the 
more difficult for a predictor to achieve a high 
overall success rate. The impact of the coverage 
scope on the success rate can be easily understood 
by just considering the following cases. For a 
benchmark dataset only covering four subcellular 
locations each containing same number of proteins, 
the overall success rate by random assignments 
would generally be 1/ 4 25% ; while for a 
benchmark dataset covering 22 subcellular loca-
tions, the overall success rate by random assign-
ments would be only  1 / 25  4.5% . This means 
that the former is more than five times the latter. 

 Also, a predictor examined by jackknife test is very 
difficult to yield a high success rate when per-
formed on a stringent benchmark dataset in which 
none of proteins included has 25%  pairwise 
sequence identity to any other in a same subset 
(subcellular location). That is why the overall suc-
cess rate achieved by Gneg-mPLoc was 85.7% 
when examined by the jackknife test on the 
benchmark dataset of the Online Supporting Infor-
mation A of [74] but was 98.0% when examined by 
the independent dataset test for the proteins in the 
Online Supporting Information B of [74]. That is 
also why the overall success rate achieved by 
Plant-mPLoc was only 63.7% when examined by 
the jackknife test on the benchmark dataset of Ta-
ble S1 of [72] but was over 86% and 70% when 
tested by the independent proteins of Table S2 and 

http://www.uniprot.org/locations/SL-0113�
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Table S4 of [72], respectively. However, regardless 
of using what test methods or test datasets, one 
thing is crystal clear, i.e., the overall success rates 
achieved by the six predictors in Cell-PLoc 2.0 are 
significantly higher than those by its counterparts. 

 Meanwhile, it has also become understandable why 
the success rates as originally reported by PSORTb 
v.2.0 [33], TargetP [15] and Predotar [111] were 
over-estimated. This is because none of the success 
rates reported for these predictors was derived by 
the jackknife test. Also, the benchmark datasets 
used to test these predictors covered much less 
subcellular location sites than those used in their 
counterparts in Cell-PLoc 2.0. Particularly, the 
benchmark datasets used by PSORTb v.2.0 , Tar-
getP and Predotar to estimate their success rates 
contained many homologous sequences. For in-
stance, the cutoff threshold to reduce the homology 
bias for the benchmark dataset used in Predotar 
[111] was set at 80%, meaning that only those se-
quences which have 80%  pairwise sequence 
identity to any other in a same subset were ex-
cluded [111]; while for the benchmark dataset used 
in TargetP [15] and PSORTb v.2.0 [33], even no 
cutoff threshold was indicated to remove homolo-
gous sequences. Compared with the benchmark 
datasets used in [70-75] where none of proteins in-
cluded has 25%  pairwise sequence identity to 
any other in a same subset, the benchmark datasets 
adopted by PSORTb v.2.0, TargetP, and Predotar 
are much less stringent and hence cannot avoid 
homology bias and overestimation. 

6. CONCLUDING REMARKS 

Evolved from the old Cell-PLoc package [61], 
Cell-PLoc 2.0 is much more flexible and powerful than 
the former. In addition to yielding higher success rates 
than the existing prediction method, all the predictors in 
Cell-PLoc 2.0 have the capacity to deal with proteins 
with two or more subcellular location sites. Besides, the 
predictors in Cell-PLoc 2.0 cover much wider scopes 
than most of the existing predictors in this area. For in-
stance, Hum-mPLoc 2.0 and Euk-mPLoc 2.0 can cove 
up to 14 sites of human proteins and 22 sites of eu-
karyotic, respectively, which are about two to five times 
the number of subcellular location sites covered by most 
of the existing predictors. 

However, Cell-PLoc 2.0 also has the following limi-
tations and further improvements will be needed with 
more experimental data available in future. (1) Although 
Euk-mPLoc 2.0 in the Cell-PLoc 2.0 package can cover 
22 sites of eukaryotic proteins, if a query protein is out-

side of the 22 location sites, it would still generate mea-
ningless result. Therefore, we shall continuously extend 
the coverage scope for each of the predictors in the 
Cell-PLoc series in a timely manner once more statisti-
cally significant experimental data will be available in 
future. (2) For some subcellular locations with very 
small numbers of proteins, the prediction success rates 
are still quite low. This is because there are not sufficient 
location-known proteins in these sites to effectively train 
the prediction engine. It is anticipated that with more 
experimental data available for these sites in the future, 
this kind of situation will be improved. (3) Since the 
power of Cell-PLoc 2.0 is closely associated with the 
GO database [68,112,113] and functional domain data-
base [114], with the continuous development of the GO 
database and functional domain database, more useful 
GO numbers and functional domain information will be 
incorporated into the prediction engine, further streng-
thening its prediction power. 

Once further improvements are implemented, the fu-
ture version of Cell-PLoc series will be announced via a 
publication or a webpage. 
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