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ABSTRACT 

Using classical density functional theory (DFT) in a modified mean-field approximation we investigate the fluid phase 
behavior of quasi-two dimensional dipolar fluids confined to a plane. The particles carry three-dimensional dipole mo- 
ments and interact via a combination of hard-sphere, van-der-Waals, and dipolar interactions. The DFT predicts com- 
plex phase behavior involving first- and second-order isotropic-to-ferroelectric transitions, where the ferroelectric or- 
dering is characterized by global polarization within the plane. We compare this phase behavior, particularly the onset 
of ferroelectric ordering and the related tri-critical points, with corresponding three-dimensional systems, slab-like sys- 
tems (with finite extension into the third direction), and true two-dimensional systems with two-dimensional dipole 
moments. 
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1. Introduction 

Two-dimensional (2D) fluids consisting of particles with 
classical dipole-dipole interactions such as (para)mag- 
netic nanoparticles at interfaces [1-3], cobalt nanocrystals 
on solid surfaces [4], and suspensions of polarizable col- 
loids in 2D dielectrophoretic set-ups [5,6], currently at- 
tract much attention. Indeed, as a result of the direction- 
ality of the interactions whose details can be tuned by ex- 
ternal (in-plane, out-of-plane, or tilted) fields, 2D dipo- 
lar systems display a variety of interesting structures such 
as chains and bundles at low densities [1,2] but also va- 
rious solid phases [3]. Especially the self-assembled low- 
density structures suggest that such systems are promis- 
ing candidates as tunable advanced materials [7] with 
applications in electrical engineering, sensors [8] and mo- 
lecular miniature devices. 

For theory and computer simulations, exploring the 
full structural and phase behavior of 2D dipolar systems 
remains challenging. Apart from the above-mentioned 
aggregation phenomena, one topic investigated particu- 
larly by computer simulations concerns the appearance 
and characteristics of vapor-liquid transitions [9-14]. 
Another question touches the structure at high densities 
close to the range where crystallization is expected to 
occur. Various Monte Carlo (MC) simulation studies  

[9,15] revealed the appearance of ferroelectric (or ferro- 
magnetic, respectively) domains, but overall frustrated 
(vortex) structures without true long-range orientational 
ordering. This is consistent with integral equation results 
[15,16], where predictions on the low-temperature be- 
havior are extracted by analyzing correlation functions. 
On the other hand, recent Molecular Dynamics (MD) 
simulations [17] revealed long-range ferroelectric order- 
ing in dense, 2D Stockmayer fluids, where the dipole- 
dipole interactions are supplemented by isotropic Len- 
nard-Jones (LJ) interactions. 

Similar to the dense fluid state, the nature of the 2D 
crystalline structures formed at finite temperatures re- 
mains so far unclear [18,19], although ground state cal- 
culations indicate ferromagnetism for certain 2D lattice 
types such as hexagonal lattices [20]. In three-dimen- 
sional (3D) systems the existence of long-range ferro- 
electric (magnetic) ordering under appropriate boundary 
conditions is well established [21-23]. Moreover, com- 
puter simulations of slab-like systems [24], where the 
particles are confined between two plane-parallel walls, 
have indicated that this type of confinement can actually 
promote long-range ordering of the dipole moments, if 
the wall separation z  is sufficiently large. However, 
decreasing  to values where less than three mono-  
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   1 11 ,    2 22 ,layers can form, the ordering seems to disappear [25]. 
The diversity of simulation results shows that spatial 

dimension has a profound influence of the ordering be- 
havior of dipolar fluids. The purpose of the present study 
is to collect and compare theoretical results on that issue 
based on a relatively simple, mean-field like approach. 
Specifically, we employ classical density functional the- 
ory (DFT) in the modified mean field approximation 
[26-28], where the pair correlations are replaced by their 
low-density limit, i.e., the Boltzmann factor. The appli- 
cation of this approach for three-dimensional (3D) dipo- 
lar systems and their mixtures [29] was put forward by 
Groh and Dietrich [30-33], who considered Stockmayer 
fluids. Later the modified mean-field DFT approach has 
been used to study confined, slab-like Stockmayer fluids 
[34,35], with different degrees of sophistication regard- 
ing the hard-sphere part of the density functional. 

Here we apply the approach to a quasi-2D dipolar 
(Stockmayer) fluid, where the particles are confined to a 
plane, but carry 3D dipole moments. Evaluating the 
phase diagram and comparing with corresponding DFT 
results for 3D systems, slab-like systems, and true 2D 
systems with 2D dipole moments we can identify, on a 
mean-field level, the influence of spatial dimension and 
of the dimension of the order parameter on global order- 
ing in fluid-like dipolar systems. Based on previous ex- 
periences one would expect that the mean-field approach 
for the quasi-2D system will (as it generally does) over- 
estimate the stability of orientationally ordered phases. 
However, given the importance of meanfield-like ap- 
proaches in the general context of spin and dipolar sys- 
tems, and realizing that the mean-field DFT approach is, 
so far, still the only theory targeting the whole (homoge- 
neous) phase diagram of dipolar systems, we think our 
results are important for a complete understanding of 
such systems. 

The remainder of the paper is organized as follows. In 
Section 2 we formulate the quasi-2D model and briefly 
detail the derivation of the corresponding grand-canoni- 
cal functional. Numerical results for the phase diagram at 
a typical dipole moment are presented in Section 3. There 
we also use Landau expansions to compare the onset of 
ordering in the quasi-2D system with the cases of 3D, 
slab-like and true 2D systems. Finally, in Section 4 we 
summarize our results. 

2. Theory 

The quasi-2D Stockmayer fluid consists of disk-like par- 
ticles of diameter T  at positions i i i ,x y

ˆ
r  in the x-y 

plane. The orientation of their 3D dipole moments iμ  is 
represented by the Euler angles i i i ,   . The mi- 
croscopic interactions between the particles stem from 
anisotropic dipole-dipole and isotropic LJ forces. The 
resulting pair potential between two particles with coor- 

dinates  r  and  r

     
12

dip 12 1 2 12 12

,
1, 2

, , , ,
T

 is given as  

LJ T

r
u

u u r r


  

     r
  (1) 

where 12 1 2 r r r  is the connecting vector between the 
two particles, and 12 12r  r . Further,  
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is the 3D dipole-dipole interaction potential, and  

   12 6

12 12 124LJu r r r    
12r

 is the LJ potential.  

To mimic the fact that the effective range of the   
repulsion varies with the thermodynamical parameters, 
we choose in our DFT calculations a temperature- 
dependent hard core defined via the Barker-Henderson  

formula [36], that is, ,    
0

d 1 expT LJr u r


     
where 1 k TB  (with B k  and T being the Boltzmann 
constant and the temperature, respectively). 

To analyze the phase behavior we employ classical 
DFT, where the key quantity is the grand canonical po- 
tential   as a functional of the singlet density  

     
=1

,
N

i i
i

       r r r , with N being the  

total number of particles [37]. We restrict the analysis to 
fluid-like but possibly polarized ordered phases of the 
quasi-2D Stockmayer fluid (in the following we assume, 
without loss of generality, the dipoles to be of electric 
nature). In principle, investigation of this situation re- 
quires to perform a free minimization for the profile 
 , r , thereby allowing the system to form domains 

(or other patterns with spatially varying polarization). 
Practically, however, minimization including pattern for- 
mation is a quite challenging task as demonstrated in [32, 
33]. In the present study, where we are interested in the 
general tendency for ordering, we neglect that problem. 
That is, we focus on the polarization within a (macro- 
scopically large) fluid domain, which may be part of a 
globally unpolarized system. We thus consider the sing- 
let density    ,  r , with    being the cons- 
tant number density of particles and     the orien- 
tational distribution function of their dipole moments. This 
function is normalized to 1 (i.e.,  

  d 1   ) and equals 1 4  for isotropic states   π

   
0

l

lm lm
l m l

Y

[34]. To describe an orientational ordering along a spe- 
cific direction, we expand the orientational distribution 
function in terms of spherical harmonics, that is,  

  


 

   lm, with the coefficients   re-  

presenting orientational order parameters [34]. Nonzero 
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order parameters with l  correspond to a macro- 
scopic polarization 

1
P p

   ˆ d

, with  

   μ

 , ,

 p . Indeed, transforming the Cartesian  

components of x y zp p pp  in terms of spherical 
harmonics one obtains  

 11   4π 3 2Re ,2Im ,11 10   p  [34]. Similarly, 
nonzero order parameters lm  with l  indicate that 
there is a preferred orientation of the dipole axes. 

2


Within the grand canonical formalism, the system is 

characterized by its size , the chemical potential 

chem  and the inverse temperature  . In the present 
study, the dipolar contribution to the excess (interaction) 
free energy is treated in the modified mean-field appro- 
ximation, where the pair correlations are approximated 
by the Boltzmann factor [26-28]. In addition, following 
our previous study on slab-like systems [34], we perform 
a perturbation expansion of the Mayer function and trun- 
cate the latter after the quadratic term. Such a truncation 
has been first employed in a DFT study of the surface 
tension of polar fluids [26]. Later, results for the phase 
diagrams of bulk polar fluids [31] have indicated that the 
second-order theory yields data very close to those from 
the full modified meanfield approximation (without any 
truncation). As a consequence of the truncation, the re- 
sulting excess free energy contains only terms up to 

. For a detailed calculation for the quasi-2D case 
(which proceeds analogous to the slab case) we refer the 
reader to Ref. [38]. The resulting expression for the grand 
canonical functional is given by 

2l 

   

 

  
 

   2

0 11

4π 



  



   

2
chem

2 2
1

2
2 2 1 1 2

2 1

4 2 2 4
3

ln 1 d ln

ln 1 π
1

4π

3

.

T
T

T

T

g T

g T

g T G

     


    



     

     

 




   

   


 

   



 

(2) 
On the right side of Equation (2), the first line contains 

ideal gas contributions (involving the thermal wave- 
length 2πh m  ) and the orientational entropy 
(last term). The second line contains the excess free 
energy of our reference system, the hard disk fluid [39], 
involving the 2D packing fraction 2π 4 

  6 1 ,x    

  12 6 1 ,x    

    
 

5 12 6
3 d exp 4

a T

g T xx x x


     

T T . The 
three last terms account for the dipolar interactions, 
where the functions 

  
 

12
1 d exp 4

a T

g T xx x


    

  
 

2
2 d exp 4

a T

g T xx x


     

and    , 

  Ta Twith  

 

. Finally, in the last term on the right 
side of Equation (2), 

2 22 2
1 00 2 00 20 3 20 4 21 5 22G t t t t t              , 

where 

   
   

2 2
1 2

2 2
3 4

10π 15 2 , 2 5π 15 2 ,

3π 15 2 , 2π 15 2

t t

t t

  

  
 

 and 2
5 π 15 2t  . 

Minimization of the functional (2) with respect to   
and     yields the Euler-Lagrange equations for this 
problem [38]. They consist of a set of nonlinear, coupled 
equations for the density ρ and the OPs lm  appearing 
in Equation (2). The equations are solved numerically 
using a Newton-Raphson algorithm [40]. 

In the following we characterize the state of the quasi- 
2D Stockmayer fluid by the dimensionless density 

2   , temperature BT k T   , chemical potential  

  1
chem chem 2 lnBk T      , and dipole moment  

3m     2m

m 

1.5m 

. The quantity  measures the strength  

of the dipolar interactions in an antiparallel side-by-side 
configuration relative to the LJ interactions. We note that 
the coupling parameters  and T  are equivalently 
defined in 3D (or slit-pore) dipolar systems [34], so that 
the results can be conveniently compared. 

3. Results 

Following earlier DFT studies on confined Stockmayer 
fluids [34] we consider a system characterized by 

, a typical value for moderately polar molecular 
fluids such as chloroform [41]. The calculated fluid phase 
diagram in the density-temperature and chemical poten- 
tial-temperature plane is shown in Figures 1(a) and (b), 
respectively. The latter representation better relates to ty- 
pical sorption experiments [42]. 

For small and intermediate densities (or chemical 
potentials) we find a state where all order parameters 

1m  are equal to zero, and those with  are either 
zero 

2l 
 1, 2m     0m  or negative . Thus, there is 

no global polarization and neither a global ordering of 
the dipole axes; we therefore refer to this state as “iso- 
tropic fluid” (IF). The negative values of 20  merely 
indicate that the dipoles tend to avoid to be oriented 
parallel or antiparallel to the -axis; rather they prefer 
to lie (with random orientations) in the 

z
-x y -plane. This 

is an expected effect in a dilute, quasi-2D dipolar system 
(consistent with simulations and other theoretical studies,  
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Figure 1. (Color online) (a) Phase diagram of the quasi-2D 
Stockmayer fluid (m* = 1.5) in the density-temperature 
plane. The regime under the black stars indicates the IF-FF 
coexistence region. The blue dashed line is the line of cri- 
tical points (see Equation (4)), which starts at a tricritical 
point (TCP). Included are results (from [34]) for the TCPs 
of the corresponding 3D Stockmayer fluid (red diamonds), 
and two slit-pore systems with wall separations Lz = 10σ 
(black triangle) and Lz = 4σ (black circle). The red squares 
indicate the IG-IL coexistence curve of the quasi-2D system 
resulting from a separat calculation where the system is 
forced to be unpolarized; (b) Corresponding phase diagram 
in the chemical potential-temperature plane. 
 
see e.g. [16]). At higher densities, the system then de- 
velops a non-zero polarization, to which we refer to as 
“ferroelectric fluid” (FF). Within this state, the vector  
points along an (arbitrary) direction in the 

P
-x y

0,
-plane (as 

reflected by 1, 1 10 0   ). Notice that the prefe- 
rence of in-plane polarization (rather than out-of-plane 
polarization) can already be seen from the prefactor of 
the corresponding terms 

2

1m

lm

 in Equation (2). 
The transition between the IF and the FF phase is 

discontinuous in   and ρ (yet not in chem ) for tem- 

peratures below a tricritical temperature  (see tcp 1.57T  

Figure 1(a)). Above the tricritical point (TCP) the tran- 
sition becomes continuous, which results in a line of cri- 
tical points. The appearance of a TCP is a typical feature 

of DFT predictions of the phase diagrams of dipolar flu- 
ids [30,31,34] and also Heisenberg fluids [43]. Recent 
MC studies for 3D dipolar fluids confirm that the transi- 
tion between isotropic and ferroelectric fluid is of second- 
order in a broad range of temperatures [23]. Within the 
DFT, the line of critical points can be determined from a 
Landau expansion of the free energy, assuming that the 
OPs characterizing the FF state are small (i.e.,  

1 00 1 4πm   ). To this end we expand the inte- 

gral      d ln 4πI             in Equation (2),  
that is, the orientational entropy, in a Taylor serios around 
the isotropic state (where  
   00 00 ). Collecting those terms in the 

resulting approximate functional,  , that are propor- 
tional to 

1 4πY    


1, 1 , we obtain [38] 

  
2

2 2 2 1 1
11 2

4π
4π ,

3 T g T
         

   
 




(3) 

where the first term stems from the orientational entropy, 
whereas the second term results from the interaction free 
energy in Equation (2). The second order phase transition 
is characterized by a change of sign of the factor of 

2

11  in Equation (3). We thus obtain  

  quasi-2 2 1 1
2

π
.

3
D

B c T ck T g T     

L

L

    (4) 

This is approximatively the equation of a straight line 
in the density-temperature plane, consistent with what 
one sees in Figure 1(a). 

In Figures 1(a) and (b) we have included DFT data 
for tricritical points of Stockmayer fluids in 3D and in 
slit-pore geometries. Within the latter situation, the par- 
ticles are confined between two planar, attractive walls 
separated by a distance z  [34]. We note that, both for 
the 3D and the slab case, our data somewhat differ nume- 
rically from those presented in another recent DFT study 
of confined Stockmayer fluids [35]. This is since we used 
(contrary to [35]) a temperature-dependent particle dia- 
meter and a homogeneous ansatz for the number den- 
sity in the slit-pore. However, from a qualitative point of 
view, the observed trends regarding the impact of con- 
finement on the TCP are the same in both studies [34,35]. 
In particular, both predict that decreasing z  (that is, 
increasing the degree of confinement) shifts the TCP 
towards lower temperatures and somewhat lower den- 
sities For example, according to [34], the tricritical para-  

 tcp tcp, T   are  0.62, 1.92 zL   at , i.e., in  meters 

the 3D (bulk) limit,  0.60,1.80 10L at z   and 
 0.58,1.68 4L at z   [34]. Consistent with this ten- 
dency, the TCP of the quasi-2D Stockmayer fluid (which 
corresponds to the limit z ) is found at even lower 
density and temperature, specifically at  and  

0L 
tcp 0.52 
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tcp . A somewhat different behavior emerges in 
the chemical potential-temperature representation de- 
picted in Figure 1(b). From the location of the TCPs, we 
see that the tricritical chemical potential, chem , of the 
quasi-2D fluid  z  is only slightly smaller than 
that of its 3D counterpart . On the other hand, 
the corresponding values for  of confined Stock- 
mayer fluids 

1.57T  

tcp
0L 



, 4

 0zL 
tcp
chem

 10zL  

L



tcp
chem

 are significantly smaller 
(consistent with [35]). We attribute this non-monotonic 
behavior of  upon lowering of z  [see Figure 
1(b)] to the fact that, for the confined Stockmayer fluids, 
the walls were considered to be attractive [34]. This 
feature is known to support capillary condensation (or, 
more generally, the formation of denser phases), accom- 
panied by lowering of the critical value of chem . The 
particles in the quasi-2D system do not interact with any 
walls; thus, there is no capillary condensation pheno- 
menon. As a result,  for the quasi-2D system 
nearly agrees with the 3D value. 

tcp
chem

 1.5m 

The reduction of spatial dimension not only shifts the 
TCP, it also has a profound influence on the topology of 
the phase diagram. Indeed, while the 3D Stockmayer 
fluid with the same dipole moment  exhibits, 
in addition to the IF-FF transition, a condensation transi- 
tion within the isotropic liquid (IL) phase, such a transi- 
tion is absent in the quasi-2D system (see Figure 1). We 
can artificially stabilize a condensation transition in the 
2D system by setting all order parameters (except from 

20 ) to zero. The result of this calculation is indicated in 
Figure 1(a) by the red squares. It turns out that the IG-IL  

critical point  is located within the IF-FF   0.98cT  

T T

phase coexistence region; therefore it is thermodynami- 
cally unstable. However, such IL configurations may still 
be relevant in the context of the phase separation kinetics 
(i.e., in non-equilibrium situations), where they can occur 
as transient states during the change from the IF to the FF 
state at a temperature c



1.5m 
4

. We also note that the 
suppression of the IG-IL critical point is consistent with 
previous DFT results (at ) in very narrow slit- 
pores, such as zL   [34]. On the other hand, MC 
simulations for quasi-2D Stockmayer fluids predict 
stable isotropic liquid phases for dipole moments up to  

(at least) 6m 

m

 ,T 

m

 [13,14,17]. Therefore, the DFT seems  

to overestimate the stability of the ferroelectric phase, 
similar as it does in 3D [34]. Within the DFT, one would 
expect a recovery of the isotropic liquid state when the 
LJ attraction finally dominates then dipolar coupling, i.e., 
when  decreases towards even smaller values. 

We now discuss in more detail the influence of spatial 
dimension and its interplay with the dipolar coupling 
strength on the tricritical point tcp tcp , above of 
which the low-temperature discontinuous transition be- 
tween the IF and FF states changes into a (line of) 

second-order transition(s). Specifically, we are interested 
in the position of the TCPs, in the quasi-2D system and 
its 3D counterpart, as functions of the parameter  . In 
previous DFT studies [30,31,34] it was already shown 
that the coupling strength influences the quantity Ttcp

  
much more than tcp , at least as long as . 
Therefore, to estimate the dependence of tcpT

1.0m 
  on m  

in the quasi-2D system, we set the density equal to tri- 
critical density at , that is, to  1.5m 

 tcpT m   can  tcp quasi-2
0.52

D
  . The resulting function 

then be easily determined from Equation (4). The same 
procedure is used for the 3D case, where the analog of 
Equation (3) reads [44] 

3 2
2 2 2

11

16π
4π

9

D

b b

    
 

  
 





 3

    (5) 

with  being the volume and b    being the 
density of the bulk system. Equation (5) yields  

 3 24π 9D
B c bk T  

1.5m 
. Fixing the density to that of the  

tricritical point at  [34], tcp 3
0.61

D
 

 tcp m 

m

, we can  

again estimate the function T  for a range of  

dipole moments. Numerical results for the quasi-2D 
system and its 3D analog are plotted in Figure 2. 

For both systems, the tricritical temperature increases 
with  , as one may expect when the dipolar interac- 
tions (which stabilize the FF state) become more and 
more important as compared to the spherical attractive 
ones. More interestingly, Figure 2 reveals that reduction 
of spatial dimension shifts the tricritical temperatures 
towards lower values at fixed . This shift can be 
reasoned from Equations (3) and (5): in both the quasi- 
2D and the 3D system, ordering competes with the same 
amount of (orientational) entropy, but the associated  

m

2 2decrease of interaction energy    is less pro-  

nounced in the quasi-2D system. From a physical point 
of view, this diminishment is a consequence of the re- 
duction of the number of neighbors in a 2D system rela- 
tive to the bulk case. We also note another interesting 
point: whereas in the 3D system, only the long-range 
dipolar interactions contribute to the onset of ordering 
(see Equation (5)), the corresponding onset in the quasi- 
2D system is also affected by the short-range interactions, 
as reflected by the appearance of the function  2g T

2

 in 
Equation (3). Since the g  function increases upon coo- 
ling down, the curves tcpT  m 

1m

 in Figure 2 for the 
quasi-2D and the 3D system, respectively, cross each 
other near  . However, since we assumed a con- 
stant tricritical density, the precise position of this 
crossing in Figure 2 should be considered with some 
caution. 

Finally, we briefly discuss the influence of the dimen-  
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Figure 2. (Color online) Tricriti erature cal temp Ttcp  as func- 

tion of the dipole moment m  in the quasi-2D, 3D, and 
true 2D geometry. In all cas  the density has been set to 
that obtained at . m 1 5 . 
 

es,

on of the dipole vector (rather than that of the space si
accessible for the particles) on the appearance of ferro- 
electric order. Specifically, we consider a “true” 2D 
system where, in addition to the spatial confinement of 
the particles within the x-y-plane, the orientations of the 
dipole vectors are restricted to that plane as well. Indeed, 
as shown in previous simulations and theoretical studies 
(see, e.g., [15]) of 2D systems with freely rotating (i.e., 
three-dimensional) dipoles, these have a strong tendency 
to tilt into the confining plane especially at large coup- 
ling strengths. The “true” 2D system is therefore not 
completely unphysical. In the true 2D case, the orien- 
tational distribution function     depends only on 
one angle,  , which describe  orientation of ˆ is the μ  
relative to, say, the x-axis. To obtain the grand canonical 
functional we expand     in a basis of exponential 
functions [16], i.e.,  

 

 expm im
m

    . Performing  

then the same Landau expansion as for the quasi-2D sys- 
tem, and isolating the terms proportional to the polariza- 
tion, i.e. to 1m  , the analog of Equation (3) reads  

  2

1 22π π .T g T        


 (6) 

A direct comparison of Equation (6) with its quasi-2D 
an

3D case

4. Summary and Conclusions 

uid phase diagram 


2

2 2 2 1 1
D

 

alog in Equation (3) shows that, at fixed density, the 
ferroelectric ordering in the true 2D system occurs at a 
higher temperature. This is a consequence of the decrease 
of the dipolar fluctuations (and thus, the orientational 
entropy) due to their restriction to the plane. Moreover, 
as revealed in Figure 2 by the corresponding curve 

 tcpT m  , the ordering is even promoted relative to the 
. This is consistent with tendencies found in a 

recent integral equation study [16], although the latter 
predicts, for the low-temperature behavior, large ferro-  

electric domains rather than true long-range ferroelectric 
order. 

In this work we have calculated the fl
of a quasi-2D Stockmayer fluid by means of density 
functional theory in the modified mean-field approxi- 
mation. At the dipole moment considered  1.5m   
the system exhibits an isotropic fluid phase  
dipole moments are randomly oriented, yet with a pre- 
ference for in-plane directions, and a ferroelectric fluid 
phase characterized by global, in-plane polarization. 
Apart from exploring the quasi-2D phase behavior, ano- 
ther focus of our study was to identify the role of the 
dimension of accessible space, as well as that of the 
dimension of the dipole vector. To quantify these effects 
on a mean-field level, we have considered the location of 
the tricritical point. Regarding the impact of space di- 
mension, we have found that decreasing the system’s 
dimension in z-direction from the bulk limit 

where the

 zL   
over slab systems  10 ,4zL    towards th  e 2D limit
 zL   shifts t  lower temperatures 

ies. Furthermore, the disappearance of the iso- 
tropic liquid phase in the quasi-2D system also shows 
that the confinement enhances the stability of dense or- 
dered phases relative to disordered ones. Clearly, care 
has to be taken with respect to the predictions of our 
mean-field-like DFT approach on a quantitative level. In- 
deed, from computer simulations [13,14,17] it is known 
that a quasi-2D Stockmayer fluid at 1.5m   does have 
a stable isotropic liquid phase at d beyond the 
isotropic vapor-liquid critical point, which is absent in 
our study. This discrepancy reflects the well-known ten- 
dency of the DFT to overestimate the stability of ordered 
phases. However, based on previous DFT studies for bulk 
and confined systems one would expect a recovery of the 
isotropic liquid state in the quasi-2D case upon further 
decrease of m

he TCP towards
and densit

ensities 

 . A further interesting result of our study 
concerns the le of the spin dimension. Here we have 
found that complete restriction of the dipole moments on 
in-plane directions yields ferroelectric ordering at tempe- 
ratures not only higher than those in the quasi-2D system, 
but even higher than those in 3D. 

There remains the question wh

 ro

ether fluid states with 
long-range ferroelectric order, as predicted by DFT, exist 
at all in quasi-2D and true 2D systems. As mentioned in 
the introduction, computer simulations give conflicting 
answers, which may also depend on the number of par- 
ticles considered in the simulation (indeed, the MD study 
on quasi-2D systems by Ouyang et al. [17], which does 
predict long-range ferroelectric ordering, involves a 
rather small system size). We should therefore interpret  
the present DFT results, which rely on the assumption of 
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a spatially homogeneous orientational structure, such that 
the 2D geometry definitely promotes the existence of 
large ferroelectric domains, but not necessarily true long- 
range order. 

Despite these pitfalls, the DFT approach provides a 
ge
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