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ABSTRACT 

Two-Dimensional Irregular Strip Packing Problem is a classical cutting/packing problem. The problem is to assign, a 
set of 2-D irregular-shaped items to a rectangular sheet. The width of the sheet is fixed, while its length is extendable 
and has to be minimized. A sequence-based approach is developed and tested. The approach involves two phases; opti- 
mization phase and placement phase. The optimization phase searches for the packing sequence that would lead to an 
optimal (or best) solution when translated to an actual pattern through the placement phase. A Particle Swarm Optimi- 
zation algorithm is applied in this optimization phase. Regarding the placement phase, a combined algorithm based on 
traditional placement methods is developed. Competitive results are obtained, where the best solutions are found to be 
better than, or at least equal to, the best known solutions for 10 out of 31 benchmark data sets. A Statistical Design of 
Experiments and a random generator of test problems are also used to characterize the performance of the entire algo-
rithm.  
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1. Introduction 

The problem of packing or cutting out shapes with 
minimal waste is a classical problem that exists in many 
industrial fields. Common applications are found in sheet 
metal, leather, furniture, shipbuilding, and textile Indus- 
tries. Cutting stock, trim loss, bin packing, strip packing, 
pallet loading, nesting, and knapsack problems, are all 
related names for cutting and packing problems. The first 
general classification for cutting and packing problems is 
introduced in Dychkoff [1]. Dychkoff developed a spe- 
cial classification for cutting and packing problems in 
which he called it a typology. Recently, an improved 
typology was developed by Wäscher [2], which is par- 
tially based on Dyckhoff’s original one, but it adopts new 
categorization criteria. 

The scope of this research is the two-dimensional Ir- 
regular Strip Packing Problem which is classified as an 
Open Dimension Problem (ODP), according to Wäscher’s 
improved typology. The problem is to assign (cut or 
pack), a set of two-dimensional irregular-shaped items to 
a rectangular object (sheet for cutting or container for 
packing). The width of the object is fixed, while its 
length is extendable and has to be minimized. A typical 
application for this problem is found in the textile Indus- 
try under the name “Marker-Making”. Another popular 
name is “Nesting” which has been, and still, used by 

many authors for the Irregular Strip Packing Problems, 
and even for other irregular cutting and packing prob- 
lems in general. The problem is schematically demon- 
strated in Figure 1, where the best arrangement for the 
given items into the strip to minimize the pattern length 
is sought. 

The 2-D rectangular packing problem has been shown 
by Fowler et al. [3] to be NP-complete. As the irregular 
case is more complex, hence it could also be considered 
as NP-complete, and as a result they are practically tack- 
led through heuristic approaches. Two main heuristic 
approaches are applied; sequence-based approach and 
direct approach. The first approach utilizes an optimiza- 
tion technique to find the packing sequence of items that 
would lead to the best possible pattern when employed 
under a certain placement method (Babu and Babu [4], 
Fischer and Dagli [5], Takahara et al. [6], and Burke et al. 
[7]). While the second approach heuristically builds an 
initial pattern that may not be a feasible one, and an op- 
timization technique is directly applied to the items posi- 
tions seeking the best possible feasible pattern (Bennell 
and Dowsland [8], Gomes and Oliveira [9], Immamichi 
et al. [10], and Umetani et al. [11]).  

Other solution approaches are found in the literature 
that could not be categorized under any of the two main 
approaches mentioned above. These approaches involve; 
mathematical programming approach followed by Grinde  
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Figure 1. A schematic illustration for the 2-D irregular strip 
packing problem. 
 
and Daniels [12] and Fischetti and Luzzi [13], Constraint 
Logic Programming (CLP) approach followed by Carra- 
villa et al. [14], and dynamic sequence-based approach 
followed by Oliveira et al. [15], and Bennell and Song 
[16]. 

Developing a geometrical technique for handling the 
graphical aspects of irregular shapes is used to be the 
main obstacle among extending the research in this 
problem, compared to the regular cutting and packing 
one. Three geometry handling techniques are widely 
used in the literature. Pixel or Raster Method is an ap- 
proximate method that is employed by Jain and Gea [17], 
Babu and Babu [4], and Fischer and Dagli [5]. Direct 
trigonometry techniques are used by Hifi and M’Hallah 
[18], Takahara et al. [6], and Burke et al. [7]. A more 
sophisticated technique is the no-fit polygon which is 
applied by Oliveira et al. [15], Bennell and Song [16], 
and Imamichi et al. [10]. 

Many authors used to incorporate meta-heuristic 
search techniques in their solution algorithms. Three 
main meta-heuristics are commonly used with irregular 
cutting and packing problems, they are; Genetic Algo- 
rithm (Jakobs [19], Hifi and M’Hallah [18], and Hu-yao 
and Yuan-jun [20]), Simulated Annealing (Oliveira and 
Ferreira [21], Han and Na [22], Heckmann and Lengauer 
[23], and Gomes and Oliveira [9]), and Tabu Search 
(Blazewicz et al. [24], Bennell and Dowsland [8], and 
Burke et al. [7]).  

From the above review, much interest could be noticed 
in the Irregular Strip Packing Problem for the last few 
years. This could be attributed to two main reasons; 
firstly, until now, no optimal solution could be found for 
a real-sized problem, a very small improvement in a 
given arrangement in a cutting or packing operation 
could save a considerably large amount of money. Sec- 
ondly, is the significant increase in the capabilities of 
modern computational engines, which made it available 
to apply techniques that would be impractical to apply 15 

years ago. Several heuristic and meta-heuristic optimiza- 
tion techniques have been applied and investigated with 
the problem. Particle Swarm Optimization (PSO) algo- 
rithm, originally introduced by Kennedy and Eberhart 
[25], is a lately developed stochastic optimization tech- 
nique that has proved good performance in various opti- 
mization fields, but has not been applied to a Strip Pack- 
ing Problem or any cutting or packing problem. This 
research investigates the performance of PSO to find a 
competitive (or even better) performance to the existing 
approaches.  

2. Proposed Solution Approach 

The solution approach proposed in this paper, which is 
given the name “SwarmNest”, is a sequence-based ap- 
proach that consists of two phases; optimization phase 
and placement phase. SwarmNest assumes only hole-free 
polygons that are allowed to rotate by increments of 90˚. 

For the optimization phase, a Particle Swarm Optimi- 
zation (PSO) algorithm is employed to search for the 
optimal packing sequence. Up to our knowledge, this is 
the first time Particle Swarm is utilized in tackling an 
irregular packing problem. A proposed Local Search 
routine is also used to enhance the algorithm perform- 
ance. As to the placement phase, a combined placement 
algorithm is developed and employs two different ge- 
ometry handling techniques; pixel method and direct 
trigonometry. The algorithm involves two stages; the 
first is an initial placement stage that applies a pixel- 
based placement procedure, which alternatively could be 
a D-function-based one. The second is a refinement 
placement stage that incorporates a heuristic compaction 
routine. A general flowchart for the entire approach 
(SwarmNest) is shown in Figure 2. 

The remaining of this paper is organized as follows. In 
the next Section, the combined placement algorithm 
along with the employed geometry handling techniques 
is explained. The proposed Particle Swarm Optimization 
algorithm is described in Section 4. Then, the experi- 
mental results of the entire approach (SwarmNest) are 
presented in Section 5. SwarmNest performance is then 
characterized in Section 5. Finally, the summary and 
main conclusions are presented in Section 6. 

3. Combined Placement Algorithm 

As mentioned in the previous section, the proposed solu- 
tion approach is a sequence-based approach that employs 
a placement method for allocating items into an open 
ended sheet to translate a given sequence of items into a 
feasible pattern. A combined placement algorithm is de- 
veloped that involves two stages; initial placement and 
refinement placement. The algorithm makes use of two 
common geometry handling techniques; the pixel (or  
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Figure 2. A general flowchart for the entire approach 
(SwarmNest). 
 
raster) method, and direct trigonometry. Pixel method is 
employed under a pixel-based placement procedure dur- 
ing the initial placement stage; while direct trigonometry 
is applied through a heuristic compaction routine during 
the refinement placement stage. 

3.1. Stage I: Initial Placement 

3.1.1. Pixel Method 
Pixel method is an approximate geometry handling tech- 
nique. The geometry of an item through this method is 
first approximated by a set of square cells that form a 
rectilinear enclosure. Such an approximated form is then 
encoded by a 2-D array (item array). An item array in- 
volves two types of cells: interior and exterior cells. An 
interior cell is the one corresponding to one of the recti- 
linear enclosure cells, while other remaining cells within 
the item array are exterior cells. Figure 3 illustrates the 
idea through the simplest encoding scheme; the binary 
encoding scheme used by Oliveira and Ferreira [21]. 

In the same manner, the placement sheet is encoded by 
a 2-D array (sheet array). This array also involves two 
types of cells; occupied and unoccupied cells. Occupied 
cells are those cells utilized via former placement opera- 
tions, while unoccupied cells are the remaining free cells. 
Assigning a certain location inside the sheet to a given 
item is done by adding the corresponding item array, to 
the sheet array at that place. Hence, for a feasible place- 
ment (overlap-free placement), any of the interior cells of 
the item array should not be added to an occupied cell  

 
Original geometry 

 
Rectilinear enclosure 

 
Encoded item array 

Figure 3. Geometry encoding through binary encoding 
scheme (Oliveira and Ferreira (1993)). 
 
within the sheet array. 

3.1.2. Initial Placement Algorithm 
The strategy by which the algorithm works is a scanning 
strategy. Each time a new item is required to be placed or 
packed, the sheet is scanned through a predefined path 
for the first feasible available positioning for that item. 
The path by which the sheet array is scanned is exhibited 
in Figure 4.  

Accordingly, the scanning is carried out along the 
sheet length direction from left to right, where each col- 
umn is scanned from bottom to top; usually called bot- 
tom-left placement policy. The default starting position is 
the sheet origin, while in order to reduce the scanning 
time, an item starts its scanning path from the farthest 
position a smaller item, or even the same item, has 
reached. A smaller item is the one that has a smaller area, 
length, and width than the item being placed. In this way 
many potentially infeasible positions are neglected.  

During the placement procedure, feasibility check, at 
each of the scanned position is carried out for each of the 
allowed orientations (0˚, 90˚, 180˚, and/or 270˚). The 
selected orientation is the one with the highest contacting 
condition; contact with other already placed items and 
with the sheet borders.  

3.2. Stage II: Refinement Placement 

3.2.1. Direct Trigonometry Method (D-Function) 
Through the heuristic compaction routine, to be de- 
scribed in the next subsection, the items are represented  
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Figure 4. Proposed scanning path. 
 
by their actual geometries (hole-free polygons), where 
the direct trigonometry method described by Bennell and 
Oliveira [26] is employed as a geometry handling tech- 
nique. Accordingly, an overlap between any two items is 
detected through three consecutive levels of trigonomet- 
ric tests. The core calculations are carried out through the 
third level. This level detects intersection between any 
two lines that have an overlap potential (according to the 
former levels). A mathematical function known as D- 
function is employed through this level. It was first pro- 
posed by Konopasek [27], and the D-function is given by 
the following expression: 

  ABP A B A P A B  A PD X X Y Y Y Y     X X

0D 
0D 

0D 

 0

 (1) 

Upon calculating the D-function value for a point P and 
an oriented edge AB, the relative position of P with respect 
to AB, as well the extension of  AB in both directions (an 
infinite line), could be defined according to the sign of 
DABP. If ABP , then P is on the left side of AB and its 
extensions. If ABP , then P is on the right side of AB 
and its extension. While If ABP , then P lies on AB or 
its extension. Figure 5 presents the case where P is on the 
left side of .  ABPAB D 

3.2.2. Refinement Placement Algorithm 
The second stage of the combined placement algorithm 
applies a heuristic compaction routine on the pattern ob- 
tained from the first stage. A similar routine to the pro- 
posed one is found in Hopper [28] as “iteration routine”. 
Another one is introduced by Jakobs [19] as “shrinking 
algorithm”. Both authors primarily employ a rectangular 
enclosure representation for the items. 

Through the proposed routine, the compaction process 
is carried out on a number of successive identical passes. 
A compaction pass sequentially considers the items one 
by one. Each of the considered items is tried for compac- 
tion in eight directions; leftward firstly then upward, 
downward, up-left, and down-left. Compacting an item 
in a given direction is performed by incremental transla- 
tional movements carried out in that direction.   

 

Figure 5. The case at which the value of DABP is greater than 
zero. 
 

After each movement, the item’s new position is 
checked for being a feasible one (no overlaps). If the new 
position is feasible, then it is being approved and the 
compaction process is continued in that direction, other- 
wise the item retrieves its last feasible position before 
continuing to the next compaction direction. The routine 
is performed via more than one pass so as to utilize the 
probable in between gaps, resulted after each pass. 

4. Particle Swarm Optimization 

Particle swarm optimization (PSO) is a population-based 
stochastic optimization technique devised to model the 
social behavior of animals, birds, or insects. It was origi- 
nally developed by Kennedy and Eberhart [25]. PSO has 
been successfully applied to several classical optimiza- 
tion problems such as; scheduling, traveling salesman, 
network deployment, task assignment, and neural net- 
work training problems (Blum and Merkle [29]). PSO is 
used here during the optimization phase of SwarmNest to 
search for a better placement sequence, where the feasi- 
bility and value yielded by any sequence is assessed by 
applying the combined placement algorithm. 

4.1. Basics of Continuous Particle Swarm  
Optimization 

In PSO, individual particles represent possible solutions, 
which spread through the problem search space looking 
for an optimal, or even a good enough solution, and each 
particle transmits its current state to other particles in the 
population. In an evolutionary manner, the position of 
each particle is updated according to its current position, 
the particle’s best position so far (personal best position), 
and the global best position ever found by the whole 
population. As the search continues, the whole swarm is 
supposed to be directed more and more towards the posi- 
tion corresponding to the global best solution for the 
whole population. The textbook of Blum and Merkle [29] 
is a good introduction for PSO.  

The algorithm is initialized by randomly generating a 
population of particles; where each particle is associated 
with a position vector and velocity vector (i.e. rate of 
change of a particle’s position per iteration). Elements of 
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the position vector represent the set of continuous deci- 
sion variables. Then the fitness (objective value) of each 
particle is evaluated as a function of its current position 
so as to find the particle of the highest fitness. The first 
iteration is then started by updating both the position and 
the velocity vectors of the entire population according to 
Equations (2) and (3).  

1 1
i i i
n n nx x v                  (2) 

   2 2
g i
n nc r p x

,r r

1 1 1
i i i i

n n n nv v c r p x          (3) 

where: 
i: Refers to the ith particle of the swarm 
n, n + 1: Denote iterations, n being the current itera- 

tion. 

1 2 : Pseudo-random numbers in the interval [0, 1], 
generated for each variable within each particle at each 
iteration 

x : Position vector whose elements are decision vari- 
ables 1 2, , , mx x x , where m is the number of decision 
variables.  

v : Velocity vector. 
ip : Personal best position vector found by particle 

 initially i
oi x . 

gp

,c c

 

: Global best position vector through the whole 
swarm. 

1 2 : Adjustable optimization parameters used to 
control the swarm’s behavior, both values are kept fixed 
for the entire algorithm. 

New fitness values are evaluated at the updated parti- 
cle’s positions, and the best position found so far by each 
particle, as well as the global best position, are updated. 
The procedure is then continued until a predefined ter- 
mination criterion is met. An additional adjustment can 
be applied to Equation (3), whereby velocity is updated, 
by inserting what is known as inertia reduction weight 
 , hence the velocity equation is to be written as 

shown in Equation (4):  

   2 2
g i
n nc r p x 1 1 1

i i i i
n n n nv v c r p x         (4) 

The schematic vector diagram in Figure 6 illustrates 
the updating process of a position vector according to 
Equations (2) and (4).  

4.2. Proposed PSO Algorithm 

Based on the approach followed by Tasgetiren et al. [30] 
in tackling the flow shop scheduling problem, our pro- 
posed PSO algorithm for finding the optimal packing 
sequence is a continuous one that employs a proposed 
criterion in extracting the actual solutions. Through the 
proposed algorithm, the position of a particle, denotes a 
packing sequence, is represented by a vector with the 
same length of the total number of items. The value of  

 

Figure 6. A schematic vector diagram for updating position 
vector . i

nx

 
each element in the position vector always imply an item 
number, thus it initially takes a positive integer number 
from 1 to total number of items. Thus, the initial position 
vectors represent a set of feasible packing sequences. 
Hence, the velocity value of a given particle is equivalent 
to a difference between some two items numbers. Veloc- 
ity values are initially set to zero. The initial population 
is made up of two sets of sequences. The first set in- 
volves the result of applying 10 heuristic ordering rules 
(e.g. by area, by length, and by width), while the other 
set is completely randomly generated sequences.  

The velocity vectors are updated using Equation (4) 
that incorporates inertia reduction parameter   , but 
additionally a decrement factor    is multiplied by 
   during each iteration as in Tasgetiren et al. [30]. 
This would results in a gradual increase in the inertia 
reduction with consecutive iterations; hence, a premature 
convergence is to be avoided in early iterations, while an 
intensive search behavior could be realized in later ones. 
A minimum value for    is preserved to prevent the 
complete elimination of the inertia term in the velocity 
equation. 

Moreover, the applied velocity limits are always set to 
be half the total number of items in both directions (posi- 
tive and negative); this would force the velocity and po- 
sition values to be always in magnitude of the initial po- 
sition values that signify items numbers. A proposed cri-
terion is applied for obtaining the actual discrete se- 
quence from a given continuous position vector. Each 
element i in the position vector contains a real value (− or 
+). The order of the ith element, when all elements are 
ascendingly ordered, becomes the ith element in the ac- 
tual sequence (see Figure 7).  

In addition, an item number is originally assigned 
based on its area, relative to other larger or smaller items, 
that is, the number 1 is given to the item with the small- 
est area and so on. Thus, the value taken by each position 
element implies a physical meaning. A pseudocode for 
the proposed PSO is outlined below. 

Input min min max maxp1 2, , , , ,, ,c c N v v T   //parameters  
1gSet       //initially set global best particle to be 

the first one 
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Variable:  1 2 3 4 5 6 

Pos. vector:  1.80 −0.99 3.01 −0.72 −1.20 2.15

  

Act. seq.: 4 2 6 3 1 5 

Figure 7. Proposed solution extraction criterion. 
 

For i = 1 to Np      //Np is the population size 
Initialize ,i ix v  
   ixZ i  Evaluate    //call the placement algo-

rithm 
Set    ,i i Z ix i st


p Be  

If   Z Zi g

maxt T

 0,1r  rand

min
ijv v

min
ijv v

x
ijv v

max
ijv v

ij

 
g = i       //global best particle 

End if 
Next i 
While      //Tmax is the maximum no. of it-

erations 
t = t +1 
For i = 1 to Np 

For j = 1 to Total no. of items 
 1 20,1 ,r rand
ijv

 
Update   //Equation 4 (velocity equation) 
If , 

 
Else if , ma

  
End if 
Update x      //Equation 2 

Next j 
 i is xExtract  //proposed extraction criterion 

   iZ si 

Evaluate  

If    Z Besti i  
Set    est i Z i

   Besti g

, Bi ip x       //update 
personal best  

End if 
If  , Best

g i       //update global best 
End if 

Next i 
End While 

4.3. Local Search Routine 

The performance of PSO algorithms are highly improved 
when local or neighborhood search is integrated to it. 
The proposed Local Search routine applies three Local 
Search operations; interchange between two randomly 
selected items (Figure 8(a)), interchange between a ran- 
domly selected item and its consecutive one (Figure 
8(b)), and Insertion of a randomly selected item into a 
randomly selected place (Figure 8(c)).  

An interchange operation is completed if only the 
items to be interchanged represent different items. Those  

Original seq.: 2 4 6 3 1 5 

   
 

Mod. seq.: 2 1 6 3 4 5 

(a) 

Original seq.: 2 4 6 3 1 5 

  
 

Mod. seq.: 2 6 4 3 1 5 

(b) 

  
    

  

Original seq.: 2 4 6 3 1 5 

  
 

Mod. seq.: 2 3 4 6 1 5 

(c) 

Figure 8. Applied local search operations: (a) Interchange 
between two randomly selected elements; (b) Interchange 
between a randomly selected element and it’s consecutive; 
(c) Insertion of a randomly selected element to a randomly 
selected place. 
 
operations are applied during each PSO iteration. The 
Local Search routine is carried out for both; global best 
sequence (obtained from  gp ) as well as the personal 
best sequence of each particle (obtained from  ip ). 
The entire routine is repeated up to a predefined number 
of local search iterations. 

5. Experimental Results 

In this section, SwarmNest is benchmarked and charac- 
terized. Firstly, the results obtained by SwarmNest for 31 
benchmark data sets available in the literature are com- 
pared with the published results. Then, 25 factorial de- 
sign of experiments is conducted to characterize Swarm- 
Nest performance. Experiments are conducted on a lap- 
top of 1.5 GB RAM supported by an Intel® Core Duo 
processor of 1.66 GHz CPU speed and 2 MB cache size, 
operated with a Microsoft Windows XP Professional O/S, 
and algorithms are written in Visual Basic. 

5.1. Benchmarking of SwarmNest 

The work of Hopper [28] presents the first considerable 
attempt for collecting and organizing benchmark data 
sets for the 2-D Irregular Strip Packing Problem. Hopper 
collected 18 data sets from the literature. Most of the 
shapes of these data sets simulate the shapes involved in 
the textile industry. Two data sets (Dighe1 and Dighe2) 
are jigsaw problems (or puzzle problems) with known 
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optimum of 100% utilization. Additional 9 problems 
(from Poly1a to Poly5b) were also randomly generated 
and documented for testing purposes. All the data sets in 
Hopper [28] are collections of hole-free polygons that do 
not include any internal holes or arcs. Hopper’s data sets 
were then made available by the EURO Special Interest 
Group on Cutting and Packing (ESICUP)  
(http://paginas.fe.up.pt/~esicup/).  

In Burke et al. [7], 10 new data sets (Profile1, ..., Pro- 
file10) were introduced for benchmarking purposes. Only 
three data sets are included, and two of which are jigsaw 
problems (Profile7 and Profile8). Others are not included 
as they contain holes and/or arcs in the shapes of their 
items. Furthermore, we extracted a single data set 
(Grinde) from Hifi and M’Hallah [18].  

Seven sets of published results were available for our 
comparison; the first set is definitely the results obtained 
by Hopper [28]. Few years later, Gomes and Oliveira [9] 
introduced the first published results to consider Hop- 
per’s data sets. They also conducted a comparison be- 
tween the best ever results published for Hopper’s data 
sets and the corresponding results obtained by their own 
algorithms; SAHA and GLSHA. Gomes and Oliveira 
reported improvements over the best known results for 
15 data sets, but they considered only 15 out of the 18 
data sets, and did not consider any of the data sets Poly1a 
to Poly5b. Gomes and Oliveira [9] results and compari- 
sons were then used as the basis for the subsequent lit- 
erature comparisons. Such comparisons are reported in 
Egeblad et al. [31], Bennell and Song [16], Imamichi et 
al. [10] and Umetani et al. [11]. Also Burke et al. [7] 
introduced 10 new data sets, in addition to considering 
almost all Hopper’s data sets in their reported compari- 
son.  

SwarmNest allows Particle Swarm to be used with ei- 
ther a combined pixel-based, or alternatively, a combined 
D-function-based placement algorithm. The alternative 
placement algorithm applies a D-function-based place- 
ment procedure during its first stage, instead of the 
pixel-based one described in the second section. Both 
procedures are conceptually similar to a great extent, in 
which both adapt the same scanning strategy. The com-
bined pixel-based algorithm is the main one, but some 
data sets would be better tackled with the combined 
D-function-based algorithm, especially those that are 
either jigsaw saw or randomly generated data sets. Hence, 
14 data sets (Han, Dighe1, Dighe2, Profile7, Profile8, 
and Poly1a to Poly5b) were solved with the SwarmNest 
that employs a D-function-based algorithm.  

For every data set, SwarmNest is allowed to run for 20 
times and maximum time allowed for each run is set to 1 
hour. The best results obtained by SwarmNest along with 
the best results reported by each of the 7 publications are 
shown in Table 1, in which a typical utilization% meas- 

ure (total items area/(sheet width x used sheet length)) is 
used as a unified efficiency measure. The best ever solu- 
tion for each problem is recognized with a grey back- 
ground.  

SwarmNest produced better solutions, or at least equal 
to, the best known solutions for 10 out of the 31 bench- 
mark data sets. Moreover, the overall average of Swarm- 
Nest best results over the 31 data sets (78.37%) is better 
than the average of all the published results (77.47%). A 
sample from the best solution patterns obtained by 
SwarmNest is shown in Figure 9. 

5.2. Characterization of SwarmNest 

In order to characterize the better performance of 
SwarmNest, a Statistical Design of Experiments ap- 
proach is adapted. Accordingly, five key factors are de- 
fined, and two levels are set for each factor, and thus a 
(25) factorial design with 32 different experiments is used. 
The five factors are defined, provided that the value for 
each factor, excluding the fourth one, is given by the 
mean value among an entire data set: 
 

 
Shapes1 (length = 56, util. = 71.25%) 

 
Shirts (length = 62.6, util. = 86.26%) 

Figure 9. A sample from the best solution patterns for 
Sw rmNest (length, utilization %). a   
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Table 1. Best published results and best results obtained by SwarmNest for the 31 benchmark data sets. 

Hopper [28] 
(2000) 

Burke et al. 
[7] (2006) 

Gomes & 
Oliveira [9]

(2006) 

Egeblad 
et al. [31] 

(2007) 

Bennell & 
Song [16]

(2010) 

Imamichi 
et al. [10] 

(2009) 

Umetani 
et al. [11] 

(2009) 
Data set 

No. 
Label 

Hopper’s BLF SAHA 2DNest BS ILSQN FITS 

SwarmNest

1 Blaz1 70.42 79.41 83.60 81.59 81.29 84.25 81.68 80.9 

2 Blaz2 63.97 74.5 - - - - - 74.74 

3 Dagli 77.1 83.7 87.15 87.05 87.99 87.40 86.35 83.97 

4 Fu 83.82 86.9 90.96 92.03 90.82 90.67 91.23 89.06 

5 Jalobs1 74.25 82.6 81.67b 89.07 85.96 86..89 89.09 81.67 

6 Jakobs2 68.4 74.8 77.28 81.07 80.40 82.51 80.84 77.2 

7 Marques 82.73 86.47 88.14 89.82 88.92 89.03 89.21 86.47 

8 Shapes 63.33 67.6 - - - - - 71.25 

9 Shapes0 57.83 61.4 66.50 67.09 65.41 68.44 66.50 65.41 

10 Shapes1 62.25 68.3 71.25 73.84 72.55 73.84 73.88 71.25 

11 Shirts 79.65 85.7 86.80 b 87.38 89.69 88.78 86.92 86.26 

12 Swim 67.42 68.4 74.37 72.49 75.04 75.29 74.54 68.25 

13 Trousers 79.12 89.6 89.96 90.46 90.38 89.79 89.40 88.36 

14 Albano 84.09 84.6 87.43 87.88 87.88 88.16 87.56 83.36 

15 Dighe1 71.01 77.4 100 99.86 100 99.89 99.89 100 

16 Dighe2 70.23 79.4 100 99.95 100 99.99 100 100 

17 Mao 68.65 79.5 82.54 85.15 84.07 83.44 83.73 78.4 

18 Han 68.9 - - - - - - 77.19 

19 Poly1aa 69.7 73.2 - - - - - 73.73 

20 Poly2aa 68.1 72.8 - - - - - 75.33 

21 Poly3aa 76.11 76.2 - - - - - 73.87 

22 Poly4aa 72.05 74.6 - - - - - 73.06 

23 Poly5aa 71.57 73.9 - - - - - 72.86 

24 Poly2ba 68.34 75.4 - - - - - 73.41 

25 Poly3ba 73 74.9 - - - - - 73.43 

26 Poly4ba 73.15 74.8 - - - - - 73.66 

27 Poly5ba 72.38 75.8 - - 79.51 - - 72.25 

28 Profile7 - 77.1 - - - - - 81.93 

29 Profile8 - 75.8 - - - - - 79.98 

30 Profile10 - 66.2 - - - - - 63.1 

31 Grinde Only Hifi and M’Hallah [18]: 78.6% 78.97 

aAll the    items shall initially be rotated to their minimum bounding rectangle orientations; bAnother algorithm simpler but faster than SAHA is used, GLSHA. 
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1) No. of items (NI): Total no. of items; 
2) Size ratio (SR): Length + width of the item, divided 

by twice the sheet width; 
3) No. of lines (NL): No. of lines or vertices per item 

or shape; 
4) Coeff. of var. (CV): Standard deviation of the items 

areas, divided by mean area; 
5) Complexity (C): No. of interior angles which are 

greater than 180˚, divided by No. of lines. 
The first factor (NI) reflects the dimensionality of a 

given problem, as the problem of finding the optimal 
packing sequence becomes more complicated with larger 
no. of items. The second factor (SR) expresses the rela- 
tive size of an average item size with respect to the size 
of the placement sheet. The third factor (NL) represents 
an aspect of geometrical complexity of a given item. The 
fourth factor, Coefficient of Variation, (CV) signifies the 
extent of variability between different item sizes within 
the same data set. The last factor (C) is another aspect of 
item geometrical complexity; higher complexity factor 
means higher concavities in an item’s shape, while zero 
complexity means convex-shaped items. 

Two levels, high and low, are selected for each factor. 
Since generating a data set of random shaped items with 
an exact value for each factor is very difficult, a range of 
values is used to specify each factor level. The bench- 
mark data sets were a good guide for selecting those 
ranges. The applied range for each factor at each level is 
shown in Table 2.  

Thirty two (25) different experimental runs are con- 
ducted, where each run consisted of 10 replications, and 
each replication requires one data set of N Items. Hence, 
the 320 (32 × 10) data sets are randomly generated and 
solved by SwarmNest with the combined pixel-compac- 
tion placement algorithm, as being the main placement 
algorithm. The sheet width is always set to 60 units and 
all the items are allowed to rotate by increments of 90˚. 
Main and interaction effects of the five factors on the 
response are exhibited in Table 3.  
 

Table 2. Applied range for each factor level. 

Low level (−) High level (+) 
No. Factor 

Value Range Value Range

1 No. of items (NI) 20 (10, 30) 50 (40, 60)

2 Size ratio (SR) 0.15 (0.1, 0.2) 0.35 (0.3, 0.4)

3 No. of lines (NL) 4.5 (3, 6) 8.5 (7, 10)

4 Coeff. of var. (CV) 0.45 (0.3, 0.6) 0.95 (0.8, 1.1)

Complexity  
(C @ low NL) 

0.025 (0, 0.05) 0.125 (0.1, 0.15)

5 
Complexity  

(C @ high NL) 
0.175 (0.15, 0.2) 0.25 (0.25, 0.3)

Table 3. Main and interaction effects. 

No. Factors Effect No. Factors Effect

1 NI 0.456 17 NI*SR*CV 0.102

2 SR 3.992 18 NI*SR*C −0.758

3 NL 0.067 19 NI*NL*CV −0.309

4 CV 2.633 20 NI*NL*C 0.645

5 C −3.555 21 NI*CV*C 0.462

6 NI*SR −1.508 22 SR*NL*CV 0.34 

7 NI*NL −0.28 23 SR*NL*C 0.147

8 NI*CV 0.306 24 SR*CV*C 0.07 

9 NI*C 0.295 25 NL*CV*C −0.416

10 SR*NL −0.91 26 NI*SR*NL*CV 0.194

11 SR*CV 0.656 27 NI*SR*NL*C −0.112

12 SR*C 0.541 28 NI*SR*CV*C 0.048

13 NL*CV 0.069 29 NI*NL*CV*C 0.322

14 NL*C −1.637 30 SR*NL*CV*C −0.089

15 CV*C −0.039 31 NI*SR*NL*CV*C −0.179

16 NI*SR*NL 0.258  

 
The response is the sheet utilization, or the algorithm 

efficiency. A positive sign associated with an effect value 
means that the response value increases with increasing 
the corresponding factor value, and vice versa, and the 
magnitude of the effect represents its relative weight. 
Statistical package of Minitab 15 is used for calculations 
and analysis of results. 

Clearly, many of the calculated effects appear to be 
not significant enough, which indicates that SwarmNest 
performance is of a low sensitivity to a problem attrib- 
utes. The best performance for SwarmNest is obtained 
with problems of large relative item sizes, low geometri- 
cal complexity or irregularity, and high variability be- 
tween item sizes.  

6. Conclusions 

In this research, the common industrial problem “2-D 
Irregular Strip Packing Problem” is addressed, and a 
heuristic sequence-based approach is developed for 
solving it. A Particle Swarm Optimization algorithm 
(PSO) is applied during the optimization phase of the 
approach, where it is the first time a PSO algorithm is 
incorporated in solving this problem. The introduced 
solution approach is given the name “SwarmNest”.  

Using 31 benchmark data sets, the best solutions of 
SwarmNest are compared with the best published results 
for seven different recent publications. Competitive re- 
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sults were obtained and the best solutions of SwarmNest 
are found to be better than, or at least equal to, the best 
known solutions for 10 out of the 31 benchmark data 
sets.  

Furthermore, the performance of SwarmNest is char- 
acterized through a Statistical Design of Experiments that 
incorporates a specially designed random problem gen- 
erator. The results showed that the best performance for 
SwarmNest is obtained at large item sizes (with respect 
to the sheet), low geometrical complexity, and high 
variability between item sizes. 
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