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Abstract 
 
Airline crew rostering is the assignment problem of crew members to planned rotations/pairings for certain 
month. Airline companies have the monthly task of constructing personalized monthly schedules (roster) for 
crew members. This problem became more complex and difficult while the aspirations/criterias to assess the 
quality of roster grew and the constraints increased excessively. This paper proposed the differential 
evolution (DE) method to solve the airline rostering problem. Different from the common DE, this paper 
presented random swap as mutation operator. The DE algorithm is proven to be able to find the near optimal 
solution accurately for the optimization problem. Through numerical experiments with some real datasets, 
DE showed more competitive results than two other methods, column generation and MOSI (the one used by 
the Airline). DE produced good results for small and medium datasets, but it still showed reasonable results 
for large dataset. For large crew rostering problem, we proposed decomposition procedure to solve it in more 
efficient manner using DE. 
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1. Introduction 
 
Development of crews rostering plan which be able to 
produce the high utility of crews become the priority in 
human resources department in airline industry. It is 
estimated that the use of optimization software for airline 
could save more than US $20 million per year [1]. 
Saving 1% in crew utilization can save cost largerly. 
Though airline crews scheduling became attention in 
many operation research literature such as [1-7] but air-  
line crews scheduling remains to become the main atten-  
tion for many researchers due to its level of complexity 
and difficulty to solve. Therefore, methods and approa-  
ches which are used to solve it are continuously develo-  
ped to get better result both in optimality side and speed 
of computational time. Generally, solving airline crew 
scheduling is done by decomposition approach [8-10]), it 
devides problem into crew pairing and crew rostering. 
Crew pairing is done to get initial feasible solution, that 
is sequence of flight which begin and end at the same 
home base. Crew rostering assigns pairings which were 
arranged for the certain month to set of crews based on 
individual calender.  

Decomposition approach is very effective to solve the 

difficult and complex problem but this method loss the 
global treatment since crew pairing and crew rostering 
done separately. Some other researchers developed the 
integrated approach to overcome obstacle, such as Souai 
and Thegem [5], where crew pairing and rostering were 
done simultantly to get a better optimality level.  

Many optimization methods have been developed to 
solve crew scheduling to increase roster quality and to 
improve computational time such as simulated annealing 
[11], genetic algorithm [5], tree search algorithm [12], 
hybrid genetic algorithm [13] and GASA hybrid algori- 
thm [14].  

This research focused on developing differential evo- 
lution algorithm applied on intelligent airline crew ros- 
tering system. This paper is organized as follows. The 
second section reviews differential evolution (DE). Sec-
tion 3 describes the problem statement. In Section 4, we 
describe our methodology. Section 5 explaines the ex-
perimental setting and the results. Section 6 concludes 
the results. 
 
2. Differential Evolution 
 
Differential evolution is an evolutionary population-based 
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algorithm proposed by Storn and Price [15,16]. Since its 
initiation in 1995, DE has shown its performance as a 
very effective global optimizer. DE originated with Ge- 
netic Annealing (GA) Algorithm. Since GA was very 
slow and effective control parameters were hard to de- 
termine, the modification of the GA algorithm were made. 
DE uses a floating-point instead of bit-string encoding 
and arithmatic operations instead of logical ones. DE 
differs significantly from the evolutionary algorithms in 
the sense that distance and direction information from 
the current population is used to guide the search proc-
ess. DE uses the differences between two randomly cho-
sen vectors (individuals) as the base to form a third vec-
tor (individual), referred to as the target vector. Trial 
solutions are generated by adding weighted difference 
vectors to the target vector. This process is referred to as 
the mutation operator where the target vector is mutated. 
The next step is recombination or crossover which is 
applied to produce an offspring. This new individual is 
accepted only if it improves on the fitness of the parent 
individual. The basic DE algorithm is described in more 
detail below [16]. 
 
2.1. Initialization 
 
In this step, a set of initial solutions are genereted rando-  
mly. A random number generator assigns each variable 
of each vector value from within specified range, lower 
bound, bL, and upper bound, bU. For example the initial 
value (g = 0) of the jth variable of ith vector is: 

   , , , , ,rand 0,1 .j  0x b b bj i j U j L j L      (1) 

where, randj (0,1), returns a uniformly distributed random 
number from within the range [0,1].  
 
2.2. Mutation 
 
DE mutates and recombines the population to produce a 
population of N-trial vectors. In particular, differential 
mutation adds a scaled, randomly sampled, vector dif- 
rence of third vector. To combine three different ran- 
mly chosen vectors to create the mutant vector, vi,g, the 
following equation is used:  

 , , ,+ .,  0 1 2v x F x xi g r g r g r g         (2) 

where the scale factor, F (0, 1+) is a positive real 
number that control the rate at which the population 
evolve. The vector index, r0, r1, and r2, can be chosen 
randomly and meet r0  r1  r2  i. 
 
2.3. Crossover 
 
DE employs the uniformly crossover. Crossover builds 

trial vectors out of parameter value that have been copied 
from two different vectors. In particular, DE crosses each 
vector with a mutant vector to creat ui,g.  

, ,

, , ,

, ,

, ( (0,1) , max

,

jv if rand Cr or j j

x otherwise

   


j i g

i g j i g

j i g

u u  

(3) 
The crosover probability, Cr ∊ [0,1], is user-defined 

value that controls the fraction of parameter value that 
are copied from the mutant. 
 
2.4. Selection 
 
If the trial vector, ui,g, has an equal or lower objective 
function value (better fitness value) than that of its target 
vector, xi,g, it replaces the target vector in the next 
generation; otherwise, the target retains its place in the 
population at least one more generation. 

, , ,

, 1
,
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otherwise
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
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x

x
         (4)

 

Once the new population created, the process of 
mutation, recombination, and selection are repeated until 
the optimum solution is achieved or prespesified termina--  
tion criterion is satisfied, e.g., the number of generations 
reaches preset maximum, gmax. 

DE has been applied in many field successfully. In 
1995, DE has been used by Ken to solve 5-dimension 
Chebyshev model. By the time, Ken modified genetic 
annealing algorithm with differential mutation operator. 
Different from genetic annealing, DE has not found 
some difficulty to find the coefficient even 33-dimension 
Chebyshev. 

Tasgetiren [15] used a discrete differential evolution 
(DDE) algorithm to solve the single machine total earli- 
ss and tardiness penalties with a common due date. A 
new binary swap mutation operator called Bswap is pre- 
nted. In addition, the DDE algorithm is hybridized with a 
local search algorithm to further improve the perform-
ance of the DDE algorithm. The performance of the 
proposed DDE algorithm is tested on 280 benchmark in- 
stances ranging from 10 to 1000 jobs from the OR Li- 
brary. The computational experiments showed that the 
proposed DDE algorithm has generated better results 
than those in the literature in terms of both solution qual- 
ity and computational time. 

A genetic differential evolution (GDE) was derived 
from the differential evolution (DE) and incorporated 
with the genetic reproduction mechanisms, namely cross-  
over and mutation used to solve traveling salesman pro-  
blems (TSP). The Greedy Subtour Crossover (GSX) was 
employed to generate an offspring to denote the differ- 
ence of the parents. A modified ordered crossover (MOX) 
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was employed to perform mutation to generate trial vec- 
tor with a user defined parameter, the parameter were 
used to control the rates of the target vector components 
and the mutated vector components in the trial vector. 
Moreover, a 2-opt local search was implemented to en- 
hance local search performance. GDE was implemented 
to the well-known TSP with 52, 100 and 200 cities with 
variable parameters. Based on analysis and discussion on 
the results, typical values of the parameters were given, 
with which GDE provided effective and robust perform- 
ance [18]. 

Omran and Salman [19] improved Differential evolu-  
tion by combining with chaotic search, opposition-based 
learning, and quantum mechanics, called CODEQ, to 
solve constrained optimization problems. The perform- 
ance of the proposed approach when applied to five con- 
strained benchmark problems is investigated and com- 
pared with other approaches proposed in the literature. 
The experiments conducted show that CODEQ provides 
excellent results with the added advantage of no parame- 
ter tuning. 
 
3. Problem Statement 
 
There are two main processes in the airline crew plan-  
ning. These two process are pairing and rostering. Pair- 
ing, is the step where the flying activities are created. 
The flight timetable is used as input to form sequences of 
flights, known as pairings. The timetable horizon usually 
covers a period of 4-6 weeks. The main objective of this 
process is to utilize the minimum number of crew to 
cover the complete timetable. Rostering is the step where 
the created pairings are assigned to actual crew (pilot and 
stewardess), with regard to the qualifications and previ- 
ously assigned activities, referred to as pre-assignments, 
of the crew. The objective is to find feasible assignments 
that minimize costs and match the notion of quality of 
life for the crew imposed by the airline [9]. In this 
context, problem of airline crew scheduling generally 
varies among different countries. Especially in rostering  

problem since each country may impose different set of 
regulations, rules and policies. The speed of roster 
construction is a critical matter in airline crew schedule- 
ing. In [9], it is stated that for monthly planning, solution 
should be obtained within 15-20 minutes. While, for 
shorter horizon planning, such as daily planning, where 
there are some changes to roster, solutions should be 
obtained within 1-5 minutes. Therefore, solving optimi-  
zation problem of airline crew scheduling in time manner 
become very important. 

In this paper two main problems are addressed. First, 
how to mathematically formulate the problem of airline 
crew scheduling. This formulation includes the construc-  
tion of objective function and spesific set of constraints 
which influence the roster quality. We modified the 
model which is developed by Lučić and Teodorović [11] 
based on the real condition of rostering in the airline 
under study. We modified the single crew and single 
aircraft scheduling model becomes multiple crews and 
multiple aircrafts model. We also added open time crite- 
ria to the objective function. Second, how to solve the 
model using differential evolution approach with consi-  
dering the simplicity of the model, quality of the resulting 
roster, and computational time. 
 
3.1. Index 
 
k is index for kind of crews k = 1, ,K. For example, k = 
1 is for Pilot F-100; k = 2 is for Pilot CN-235; and k = 8 
is for stewardess and etc. 

i is index for numbers of crew members (1, ,mk). For 
example m5 = 17 is the number of crew members for 
Boeing 737-200, and m8 = 55 is the number of stewardess 
of Boeing 737-200. 

j is index rotation/pairing which assigned to crew 
members (1, ,nk). For example n5 = 82, is the number 
of pairings for Being 737-200.  

l is number of days in a month (1, ,31). 
 
3.2. Parameters 
 
djk is length of rotation-j which assigned to crew k. (in 
hours). 

1, if member  from crew  can be assigned to day  

0, otherwiseilk

i k l
p


 


 

1, if /   assigned to crew  start to day  

0, otherwisejlk

rotation pairing  j k l
q


 


 

 
dmax,k is maximum flight times crew k for one month;  
vjk is numbers of take-off rotation j assigned to crew k; 
vmax,k is maximum take-off  in one month; 
Dmin,jk is minimum of numbers of crews k needed to  

complete rotation j; 
tjk is numbers of duty period needed by crew k to com-

plete rotation j; 
tmax,k is maximum of flying day before free day. 

1, if rotation overlap  with rotation  when  assigned to crew  

0, otherwisersk

r s k 
n


 


  
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3.3. Objectives Function 
 
The objective function of this airline crew rostering is 
minimizing three terms of criterias. 
Cost of roster 

Cost of roster paid by the airline company to crew is 
variable cost. By assumption that salary per hour is same 
to all crew, cost of roster can be represented by actual 
flying hours.  

1 1

min 1, ,    
k km n

jk ijk
i j

d x k K
 

          (5) 

Deviation of flying days between crew members 
Let kt  be the average flying days per month for crew 

member k, then  

1 1    1, ,

k km n

jk ijk
i j

k

k

t x

t k K
m

  


           (6) 

The deviation of total flying days per month can be 
formulated as  

1 1

min    1, ,
k k

pm n

kjk ijk
i j

t x t k K
 

          (7) 

where p is positive integer. In this paper we use p = 1. 
Open time 

Open time is days when a crew member does not have 
flying duty. If there are 31 days in a scheduling month, 
then open time for crew member k can be formulated as  

1 1

min 31  1, ,   
k km n

jk ijk
i j

t x k K
 

 
  

 
         (8) 

3.4. Constraints 
 

There are some constraints which must be satisfied 
when constructing a roster. The following are the const-  
raints used: 
Flight time constraint  

Maximum flying hours for pilot and co-pilot is 110 
hours per month, and for cabin crew is 120 hours per 
month. So dmax,k = 110 for k = 1, ,7 and dmax,k = 120 for 
k = 8.  

max,
1

 1,..., ,  1, ,
kn

jk ijk k k
j

d x d i m k K


         (9) 

Duty period constraint 
Maximum duty period allowed to crew member k is 21 

days.  

1

21   1, , ,  1, ,
kn

jk ijk k
j

t x i m k K


          (10) 

Numbers of take-off 
Numbers of maximum take off allowed to pilot is 90, 

then vmax,k = 90. But, cabin crew have no take off con- 
straint.  

max,
1

1, , ,  1, ,
kn

jk ijk k k
j

v x v i m k K


         (11) 

Numbers of crew reqirement 
Every rotation needs minimum numbers of crew.  

min,
1

1, , ,  1, ,
km

ijk jk k
i

x D j n k K


          (12) 

Free day constraint 
Every crew member must be given free days after 7 

flying days.  

7

1

7  1, , ,  1, , 23,  1, ,8
kn p

jk ijk jkl k
j l p

t x q i m p k


 

       

  (13) 

Rotation without free day 
When crew members complete this rotation not al- 

lowed to have free day. 

131

1 1 1

 1, , ,  1, ,
jkk k l tn n

ijk ijk jkl isk k
j j l s l

x x q p i m k K
 

   

          

(14) 

No overlap constraint 
Two rotations in series may not be overlap each other. 

It means that precedence rotation must be finished when 
following rotation will start.  

1

( ) 0 

1, , ,  1, , ,  1, ,

kn

ijk jsk isk
s

k k

x x s j

i m j n k K




 

  


  

     (15) 

Airline rostering problem is optimization problem with 
many constraints. It falls to constrained optimiza-  
tion problem. To use DE to solve this original problem we have 
to transform the problem into an unconstrained optimiza-  
tion problem. We use external penalty function method 
[20,21] to do this transformation. Basically, this method 
incurs big penalty while the solution violated any con- 
straints. The resulting constrained optimization problem 
is as follows 

 

 

1 2
1 1 1 1

3 1 1 2 2 3 3 4 4
1 1

5 5 6 6 7 7 8 8

min 

31

k k k k

k k

pm n m n

kjk ijk jk ijk
i j i j

m n

jk ijk
i j

d x t x t

t x r C r C r C r C

r C r C r C r C

 



   

 

 

 
      

 
   

  

  (16) 

where: 
2

1 max,
1 1

max 0,  1, ,
k km n

jk ijk k
i j

C d x d k K
 

  
       
    
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2

2 max,
1 1

max 0,  1, ,
k km n

jk ijk k
i j

C v x v k K
 

  
       
  

2

3 min,
1 1

max 0,  1, ,
k kn m

ijk jk
j i

C x D k K
 

  
       
    

2
7

4
1 1

max 0, 7  1, ,
k km n p

jk ijk jkl
i j l p

C t x q k K


  

  
       
     

2
131

5
1 1 1 1

max 0,  

        1, ,

jkk k k l tm n n

ijk ijk jkl isk
i j j l s l

C x x q p

k K

 

    

  
       



    


2

131

6
1 1 1 1

min 0,  

        1, ,

jkk k k l tm n n

ijk ijk jkl isk
i j j l s l

C x x q p

k K

 

    

  
        



    


2

7
1 1

max 0, ( )  1, ,
k km n

ijk jsk isk
i s

C x x s j k K
 

  
       
    

2

8
1 1 1

min 0, ( )  1, ,
k k km n n

ijk jsk isk
i j s

C x x s j k K
  

  
        
    

where β1, β2, and β3 are weight coeficients of the objec-
tive function, r1,…,r8 are penalties which are given since 
model violate any constraints where r1,…,r8 → ∞ will 
assure that algorithm will satisfy constraint early before 
considering objective function. Equation (16) becomes 
the fitness function of DE method. If we assume cost of 
roster more important than cost of deviation of flying day 
and more important than open time, then β1, β2, and β3 
are selected carefully where β1   β2   β3 and assure 
followed inequality is true : 

1 2
1 1 1 1

3
1 1

31

k k k k

k k

pm n m n

kjk ijk jk ijk
i j i j

m n

jk ijk
i j

d x t x t

t x

 



   

 



 
 

 

  

 





     

 

(17) 

Term (17) will assure hirarchical ordering of solving 
iteratively by DE.  
 
4. Solving the Model Using DE 
 
In this paper we applied this model on a real case taken 
from MNA (Merpati Nusantara Airlines), Ltd., a private 
airline company based in Indonesia [22,23]. To solve the 
above problem we pursue the following steps of DE. 
 
4.1. Initialization 
 
Initial solution xijk is defined by generating n_pop binary 

random numbers (0 or 1) of dimension nk × mk. Let Xnp,0 
be the initial solution population np, then 

,0 [0;1]  1...,   np npX rand np n pop        (18) 

Randnp[0;1] is binary random 0 or 1 of population np. 
 
4.2. Mutation 
 
Different from those which usually used as a mutation 
operator in DE as indicated in Equation (2), this paper 
introduce a random swap as a mutation operator. Let r0 
be random number between 0 and 1 with nk × mk dimen-
sion for each population np, and vnp,r0,g be element of 
solution V at column r0 at generation g. If Wnp,g-1 is the 
best population for generation g-1 and wnp,r0,g-1 is the 
element at column r0 of Wnp,g-1, then mutant of generation 
g is defined as 

, 0, 1 0

, 0,
, 0, 1

( 1) mod(2), if

,otherwise

np r g m

np r g
np r g

W r c
v

W





  


    (19) 

where cm is mutation probability (0 < cm <1) which 
represents mutation power imposed to the best popula-
tion of previous generation. Term Wnp,r0,g-1 mod(2) means 
what value left after dividing Wnp,r0,g-1 by 2. The selection 
of cm must be done carefully because too small cm can 
cause old solution is difficult to exit from local optimum. 
While, too big cm causes noise solution such that fast 
convergence toward global optima can not be achieved. 
Selecting cm accurately becomes the successful key of 
implementing this algorithm.  

As an illustration how this mutation operator works, 
notice the following example. Suppose we have 3 pilots 
and 4 pairings, use cm = 0.2. 

Suppose we have W0 (current solution): 

0

1 0 0 0

1 1 1 1

1 0 1 0

W

 
   
  

 

Entry (i,j) = 1 indicates a pilot i be placed in pairing j, 
entry(i,j) = 0, otherwise. After generating randomly, 
suppose we got: 

0

0,10 0, 40 0,08 0,70

0,30 0, 20 0,90 0,15

0,85 0,05 0, 25 0,55

r

 
   
  

 

To have a new solution, apply Equation (19). By 
comparing r0 and cm for each corresponding entry in W0 
and r0, we have matrix W’0 , where each entry (typed in 
bold) should be changed since r0 < cm.  

0

1 0 0 0

' 1 1 1 1

1 0 1 0

W

 
   
  
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The changes should be made as follows 

Cell(1,1) v = (w0 + 1) mod(2) = (1 + 1) mod(2) = 2 
mod(2) = 0 

Cell(1,3) v = (w0 + 1) mod(2) = (0 + 1) mod(2) = 1 
mod(2) = 1 

Cell(2,4) v = (w0 + 1) mod(2) = (1 + 1) mod(2) = 2 
mod(2) = 0 

Cell(3,2) v = (w0 + 1) mod(2) = (0 + 1) mod(2) = 1 
mod(2) = 1 

The other entries of W0 remains the same as ro ≥ cm,. 
Therefore, we obtain the new solution 

0 0 1 0

1 1 1 0

1 1 1 0

V

 
   
  

 

We follow this process each time the algorithm is on the 
mutation step. 
 
4.3. Crossover 
 
Crossover changes over parent solution Xnp,g by mutant 
solution Vnp,g to construct a new solution Unp,g. Cross-
over is done by defining threshold probability (0 < cr < 
1) for mutant to change current solution. Then we gener-
ate n_pop random numbers (0,1). If the random number 
< cr, then the mutant replaces the current solution and 
otherwise.  

,
,

,

, (0,1)

,
np g np r

np g
np g

V if rand c
U

X otherwise

 


   (20) 

 
4.4. Selection 
 
This process is done by comparing the fitnesses of the 
parent solution and the new solution which is produced 
from crossover process. The new population will replace 
the old population only if the new population has better 
fitness than that of the old population. The fitness func- 
tion refers to Equation (16). Then, the solution of the 
next generation Xnp,g+1 can be obtained from this for- 
mula:  

, , ,
, 1

,

, ( ) ( )

,
np g np g np g

np g
np g

U if f U f X
X

X otherwise

 


  (21) 

where f(Unp,g) and f(Xnp,g) are the fitness of Unp,g and Xnp,g 
respectively. 

The constructed mathematical model consists of some 
aspirations/criterias as the objective function and some 
constraints. The objective function includes minimum 
flying times, deviation of flying days, and open time. 

Some constraints which are considered when construc-  
ting a roster include overlap, crew requirement of pairing, 
free days before seven days of flying days, maximum 
flying times, and maximum numbers of take off.  
 
5. Experiments and Analysis 
 
We used Matlab to implement DE algorithm. The expe- 
riments were done using the datasets shown in Table 1. 
The datasets consist of pairings, numbers of crews, type 
of fleed and rules. Datasets are divided into two catego-  
ries: small and large datasets. Small dataset consists of 
assignment of F-100, CN-235, DHC-6, and Cassa 212 
pilot. While, large dataset consists of assignment of 
Boeing 737-200 pilot and stewardess.  

The experiments aim to assign crew members in which 
pairings. The results of the experiments on small datasets 
were compared with column generation [22,23] and 
MOSI (method used by the company). For large datasets 
we included exact decomposition as a comparative method 
[23]. 

Probability of mutation (cm) and probability of cross- 
er (cr) are the key succes factors for DE implementation. 
Therefore, these two parameters should be determined 
carefully. The precise parameter values will lead to the 
global optimal solution. In this paper, these parameters 
settings were done through trial process. The best cm, is 
determined by using one dataset (Cassa 212) with npop = 
50, gmax = 50, cr = 0.7 and the experiments were done 
with 5 replications. Table 2 shows the objective function 
values for different cm. The best value is typed in bold. 
We found that cm = 0.05 is the best one. 

Using cm = 0.05, the same procedure was done to find 
the best cr. The results are shown in Table 3. 

Next, using combination of cm and cr we tried to 
determine the best values of these two parameters. 
Through experiments, we obtained the best combination 
between cm and cr are 0.1 and 0.5 as shown in bold in 
Table 4. 

Criteria in the objective function are weighted based 
on their significances. In this paper we put roster cost 
minimization as the most significance followed by devia- 
tion of minimum flying days and open time with weights 
of 104, 102 and 1 respectively. Other parameter needs to 
set up is pinalty for the constraints. Penalties for overlap 
and rotation without free day, number of pilot require- 
ments and day off constraints are 1015, 1013 and 1011 res- 
pectively based on their signifances.While, the penalties 
for flying day, flying times, and numbers of take off are 
set to 106 as these constraints are assumed to be the same 
important. 

Experimental results for small datasets are indicated in 
Table 5. For the flying time criterion, DE spent more 
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Table 1. Characteristic of the datasets. 

No Name of aircraft Type of crews 
Numbers 
of crews 

Numbers of 
pairings 

1 F-100 Pilot 5 4 

2 CN-235 Pilot 4 8 

3 DHC-6 Pilot 3 10 

4 Cassa-212 Pilot 6 13 

5 Boeing 737-200 Pilot 17 82 

6 Boeing 737-200 stewardess 55 114 

 
Table 2. Average objective function values on different cm. 

No cm 
Average objective function value 

(× 1013) 

1 0.000 9,980 

2 0.025 41.00 

3 0.050 3.00 

4 0.075 22.60 

5 0.100 7.60 

6 0.125 48.20 

7 0.150 122.20 

8 0.175 140.80 

9 0.200 163.40 

 
Table 3. Average objective function values on different cr. 

No cr 
Average objective function value 

(× 1013) 

1 0.300 22.00 

2 0.350 43.20 

3 0.400 21.80 

4 0.450 80.60 

5 0.500 42.60 

6 0.550 41.00 

7 0.600 22.60 

8 0.650 40.60 

9 0.700 23.40 

 
time than two other methods. The reason is because DE 
did not violate pilot requirement constraint. This is 
different with column generation and MOSI which 
violated pilot requirement constraint. It shows that DE, 
column generation, and MOSI produced the same per- 
formance to meet the roster constraints. Except for Cassa 

212, DE can meet all of the constraints. While, column 
generation and MOSI violate pilot requirements con- 
straints. Column generation and MOSI just assign 1 out 
of 2 required pilots to pairing 8981. From roster quality 
side, DE is only inferior for flying times criterion for 
Cassa 212 aircraft. The other methods show the same 
results for other assignments. 

Table 6 shows the total deviation of average flying 
days for three methods. We see that DE is superior for all 
assignments except for Cassa 212. This proves that DE 
produced good roster quality. From Table 6, we see that 
DE produced better deviation of flying days than other 
methods for three assignments and MOSI is superior for 
Cassa 212. 
 
Table 4. Average objective function values on different com-  
bination of cm and cr. 

No cm cr 
Average objective 

function value (× 1013) 

1 0.05 0.400 21.80 

2 0.05 0.5 42.60 

3 0.05 0.6 22.60 

4 0.05 0.7 3.00 

5 0.1 0.4 22.20 

6 0.1 0.5 2.40 

7 0.1 0.6 23.20 

8 0.1 0.7 7.60 

 
Tabel 5. Comparison of flying time. 

 Fying time 

Name of  
Aircraft 

DE 
Column 

Generation 
MOSI 

F-100 66.0 66.0 66.0 

CN-235 92.0 92.0 92.0 

DHC-6 156.0 156.0 156.0 

Cassa 212 251.0 242.0 242.0 

 
Tabel 6. Comparison of deviation of flying days. 

 Fying time 

Name of 
Aircraft 

DE 
Column 

Generation 
MOSI 

F-100 7.2 14.4 14.4 

CN-235 2.0 12.0 4.0 

DHC-6 8.0 10.7 11.3 

Cassa 212 11.3 21.0 6.0 
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For the open time criteria, as shown in Table 7, DE 
produced superior results compared to the other methods 
for Cassa 212 and the same results for other assignments. 

Dataset of pilots and stewardess assignment on Boeing 
737-200 aircraft has a larger size. This dataset consists of 
17 pilots with 82 pairings and 55 stewardess with 114 
pairings. It required high number of iterations and com- 
putational time to obtain near optimal solution if random 
initial solutions were used. We proposed a sequence of 
partial optimization and total optimization techniques. In 
partial optimization, the dataset is splitted into several 
smaller sets and the corresponding optimization problems 
were solved by DE method. At the end of this stage, all 
of solutions were combined all together to form initial 
solution for the total optimization problem. Setting the 
initial solution through this process decreased the compu-  
tational time significantly.  

For the pilot assignment of Boeing 737-200, number 
of pairings is much higher than the available pilots. 
Therefore the resulting flight schedules violate several  

constraints. The results for this assignment are shown in 
Table 8. The table presents the flying days and the actual 
difference produced by each pilot. In this case, we com- 
pared 6 methods namely differential evolution (DE), col- 
umn generation, MOSI, exact decomposition with 21 
flying days (DEC21), exact decomposition with 20 fly- 
ing days (DEC20) and exact decomposition with 19 fly- 
ing days (DEC19). The results are presented in Table 8.  

 
Table 7. Comparison of open time. 

 Open time 

Name of 
Aircraft 

DE 
Column 

Generation* 
MOSI* 

F-100 137.0 137.0 137.0 

CN-235 88.0 88.0 88.0 

DHC-6 50.0 50.0 50.0 

Cassa 212 119.0 123.0 123.0 

 
Table 8. Comparison flying days and differences. 

Differential 
Evolution 

Column 
Generation* 

MOSI* 
Method 

DEC21** 
Method 
Dec20 

Method 
Dec19 

Pilot 
flying 
day 

diff. 
flying 
day 

diff. 
flying 
day 

diff. 
flying 
day 

diff. 
Fying 
days 

diff 
Fying 
daya 

diff 

1 21 0 20 0 21 0 20 0 21 0 22 1 

2 20 0 18 0 21 0 22 1 23 2 22 1 

3 20 0 20 0 23 2 26 5 23 2 24 3 

4 21 0 20 0 22 1 24 3 23 2 23 2 

5 21 0 17 0 18 0 17 0 18 0 17 0 

6 21 0 20 0 22 1 24 3 23 2 23 2 

7 22 1 21 0 16 0 18 0 17 0 20 0 

8 21 0 26 5 21 0 22 1 24 3 22 1 

9 20 0 16 0 17 0 20 0 18 0 19 0 

10 18 0 18 0 16 0 13 0 16 0 14 0 

11 22 1 23 2 22 1 19 0 19 0 19 0 

12 21 0 21 0 21 0 22 1 22 1 21 0 

13 20 0 24 3 24 3 22 1 21 0 20 0 

14 21 0 23 2 24 3 20 0 20 0 22 1 

15 20 0 20 0 19 0 21 0 21 0 21 0 

16 20 0 22 1 21 0 21 0 21 0 22 1 

17 22 1 22 1 23 2 18 0 18 0 17 0 

Total 351 3 351 14 351 13 349 15 348 12 348 12 

Avg 
Std.D 

20.65 
0.99 

 
20.65 
2.57 

 
20.65 
2.57 

 
20.53 
3.04 

 
20.47 
2.43 

 
20.47 
2.40 

 

Number of pilot 
violate flying. 

days 
3  6  7  7 8  8  
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We see from the table that all of the methods violated 
flying days constraint. DE assigned smoother flying days 
than other methods based on the standard deviation 
values. DE reached the smallest standard deviation. We 
also recorded that DE produced the smallest number of 
pilots violating flying days constraint, that is 3 pilots. 
While, column generation, MOSI, DEC21, DEC20 and 
DEC19 respectively produced 6, 7, 7, 8 and 8 pilots 
violating the constraint. 

Different from those of pilot assignments, in steward- 
ess assignment of Boeing 737-200, we compared DE, 
column generation and MOSI. Table 9 shows that DE 
only violated crew requirement constraint while column 
generation and MOSI violated both crew requirement 
and flying days constraints. We can see in Table 9 that 
column generation and MOSI assigned 6 and 7 steward- 
esses exceeding the maximum flying days, 21 days.  

While, in the pilot assignment of Boeing 737-200, as 
shown in Table 10, DE is superior for minimum devia- 
tion of flying days.  

In the assignment of Boeing 737-200 stewardess, DE 
is superior by its minimum deviation of flying days 
compared to other methods. But, DE is inferior for flying 
time and open time criteria. 
 
6. Conclusions 
 
We have investigated the use of DE in solving airline  
 
Tabel 9. Violation of flying days constraint for assignment 
of Boeing 737-200 stewardess. 

Method 
Constraints 

DE 
Column 

Gen. 
MOSI 

Flying days - √ √ 

Flying times - - - 

Take off - - - 

Overlap - - - 

Free day - - - 

Requirement of pilots √ √ √ 

 
Tabel 10. Roster quality of pilot assignment of Boeing 737-200. 

Methods 
Criteria 

DE 
Column 
Gen.* 

MOSI* DEC21**

Flying times 1,114.0 1,114.0 1,114.0 1,114.0 

Dev. of fly. days 13.1 33.6 34.5 38.5 

Open time 176.0 176.0 176.0 178.0 

Tabel 11. Roster quality of stewardess assignment of Boeing 
737-200. 

Methods 
Criteria 

DE 
Column 

Generation 
MOSI* 

Flying times 3,488.0 3,285.0 3,285.0 

Dev. of fly. days 92.0 110.0 106.2 

Open time 693.0 658.0 658.0 

 
crew scheduling problem. Generally, the rostering prob- 
lem in MNA has characteristic indifferent from other 
airline companies in terms of roster constraint and roster 
quality. Selecting mutation and crossover probability 
accurately became the successful key to implement DE. 
The best mutation and crossover probability are 0.1 and 
0.5 respectively. Different from using DE in general, in 
this paper we introduced random swap as mutation op- 
erator. For small datasets, DE was proven more competi-
tive then column generation and MOSI, based on con-
straints fulfillment and roster quality. In the assignment 
of Boeing 737 pilot, DE produced smoother flying days 
and the least pilots which violated flying days constraint 
compared to other methods. For the stewardess assign-
ment of Boeing 737-200, DE violated the least con-
straints compared to column generation and MOSI. DE 
produced superior deviation of flying days criterion but it 
is still inferiror for iwo other criteria. 
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