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Abstract. Network mobilephone-based positioning 
experiences degradation of location accuracy due to 
localised non-line-of-sight (NLOS) signal propagation. 
This is well known to be a major source of error in 
network-based mobilephone positioning. NLOS error 
systematically causes the Mobile Station (MS) to appear 
further away from the base station than it actually is, 
thereby increasing the positioning error. One method to 
mitigate the effect of NLOS error is to generate a NLOS 
error correction map, and then use the correction map to 
rectify the distorted MS location. The correction map can 
be generated using the following procedure: (1) 
estimating the NLOS errors at points where the real 
positions can be obtained utilising other information such 
as the points very near BTS (Base Transceiver Station) 
and the intersections of streets, or the location where the 
measurement has been made; and (2) interpolating or 
extrapolating the errors to specific points that we are 
interested in. Assuming some reference points have been 
obtained, this paper utilises kriging, an estimation 
technique that is widely used in mining, to generate the 
correction map. Theoretically kriging can also be used 
wherever a continuous measure is made on a sample at a 
particular location in space or time. Using simulations 
with a typical dense urban environment assumption, the 
feature of the NLOS error variogram is analysed and 
different models of the variogram are compared. The 
correction map of NLOS error is generated using some 
‘sampled’ points, and compared with the ‘true’ NLOS 
error map to show the efficiency of kriging. 
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1 Introduction 

Over the past decade, Mobile phone positioning 
techniques (PT) have received considerable attention 
(Rappaport TS, 1996) and great number of new value-
added services have been proposed or developed, such as 
the location based information service, navigation 
assistant, resource management, gaming, emergency 
service etc (D’Roza and Bilchev, 2003; Wilde G, 2002). 
The requirements set forth by the US FCC E911 is one of 
the major forces to push the mobile phone PT moving 
forwards. It requires wireless carriers to provide precise 
location information within 50 to 100 meters in most 
cases (Http://www.fcc.gov/911/enhanced/).  
The most popular and simple method is Cell ID. But the 
accuracy of Cell ID is dependent on the density of the 
BTS, and is relatively poor especially in rural areas (Dru 
and Saada, 2001). Another basic method is based on the 
received signal strength. However, since the signal 
propagation suffers rapid deep fading and long term 
fading (Lee, 1991), no model can describe the feature of 
signal propagation very well in many environments. The 
accuracy of this method is better than Cell ID (Yamamoto 
et al., 2001). Much attention has been focused on the 
signal time delay and angle of arrival measurements. No 
matter what kind of approach such as angle of arrival 
(AOA) (Sakagami et al., 1992), time of arrival (TOA) 
(Hashemi, 1991) or time difference of arrival (TDOA) 
(Drane et al., 1998) is utilized, line-of-sight (LOS) 
propagation is necessary for accurate location estimates. 
In other words, non-line-of-sight (NLOS) error is the 
dominant error in location estimation (Jr. JC and Stüber 
GL, 1998). NLOS errors are always positive, and range 
from a small number to thousand meters (Silventoinen 
and Rantalainen, 1996), depending on the propagation 
environment. 
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To protect location estimates from NLOS error corruption, 
many approaches have been investigated. In (Morley and 
Grover, 1995), an algorithm based on probability density 
function (pdf) model is utilized to reduce the NLOS error. 
However, it is very difficult to formulate the pdf, and this 
pdf should vary greatly with changing of the environment. 
A widely used idea to mitigate the NLOS error is NLOS 
error identification and reconstruction. The method in 
(Wylie and Holtzman, 1996) and (Woo SS et al., 2000) 
reconstruct LOS TOA measurements from a time history 
of LOS and NLOS TOA measurements, and assumes 
knowledge of the NLOS standard deviation for 
identifying NLOS BTS. While in (Cong and Zhuang, 
2001), the NLOS BTS detection is based on TDOA 
residuals. The algorithm in (Wang, 2003) shows a 
constrained optimization method. Unfortunately, none of 
these methods can solve the NLOS problem well, since 
too many elements affect the signal propagation, and the 
propagation environment varies from place to place. In 
fact the problem could be solved using a basic data base 
method. In this method, the NLOS error can be directly 
extracted from the reference measurements at the 
reference points. Jayaraman et al. (2000) and 
Gunnarsdottir and Hole (2001) describe methods for 
collecting data to create the database. But the data 
collection and data base maintenance is quite a costly 
process. In order to make this work easier, a wireless 
signal map matching method (WSMM) is proposed (Lee 
and Rizos, 2003). Generally, more reference points can 
help to generate a database that can describe the real 
situation more precisely. But no matter how many 
reference points have been measured, the area of interest 
cannot be completely covered. Interpolation and 
extrapolation is absolutely necessary.  

Now the question arises: how to efficiently estimate the 
NLOS error at the location (say x0), which is not 
reference point, only knowing the limited reference 
points (say x1, …, xn). In this paper, we are interested in 
both estimation of the NLOS error and the confidence on 
the estimate. After a brief introduction of Geostatistics 
and kriging, the simulated NLOS error in a Manhattan-
like urban environment is generated, and the features of 
NLOS error is checked using a simulation; this is 
followed by the different variogram models fitting. 
Finally, the results utilizing universal kriging (UK) are 
shown. 

2 Geostatistics and Kriging 

Geostatistics was first used by the mining industry, as 
high costs of drillings made the analysis of the data 
extremely important. The prediction of the ore grade in a 
mining block from observed samples at irregularly spaced 
locations is one of the most important problems. The 
basic tool in geostatistics, the variogram, is used to 

quantify spatial correlations between observations. The 
estimation procedure is called kriging after D. Krige, who 
and his colleagues started to apply statistical techniques 
to ore reserve estimation in 1950s. As there many 
advantages of kriging, and especially with the advent of 
powerful computers, application of kriging can be found 
in very different disciplines ranging from the classical 
fields mining and geology to soil science, hydrology, 
meteorology, environmental sciences, agriculture etc. 
Theoretically, kriging can also be used wherever a 
continuous measure is made on a sample at a particular 
location in space or time (Cressie, 1991; Armstrong , 
1998 ). In spatial information system, it is necessary to 
use the limited data to describe the real nature as 
precisely as possible, kriging is a good candidate to 
choose. 

In geostatistics, the geological phenomenon is described 
in terms of fluctuations around a fixed surface (“drift” or 
“trend”). The fluctuations are not error but rather fully-
fledged features of the phenomenon, with a structure of 
their own. The observed value at each data point x is 
considered as the outcome, z(x), of a random variable, 
Z(x). Its mean is the drift, m(x). A classical assumption in 
geostatistics is the second order stationarity, but in 
practice, a slightly weaker assumption is more widely 
used, that is the intrinsic hypotheses. It consists of two 
conditions: 

• The expected value of the random variable Z(x) 
is constant all over the domain D. 

• The variance of the increment corresponding to 
two different locations depends only on the 
vector separating them 

This condition can be formulated as: 

( )[ ] µ=xZE  (1) 

for all x∈D 
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where γ(h), called variogram, depends only on the vector 
h and not on the locations x and x+h.  

kriging provides a solution to the problem of estimation 
based on the knowledge of the variogram and the above 
assumption. Here is the simple case that the mean is 
constant across the entire region of study. Unfortunately, 
in reality it is common that the mean is not constant. The 
simulation shows that a drift of NLOS error exists. 
Assume the mean is a function of the site coordinates: 

( ) ( ) ( ) ( )xxfxfxfxZ pp δβββ ++++= )(1100 …    

where β0,…, βp are unknown parameters; δ(x) is intrinsic 
and E[δ (x)]=0. 
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In matrix notation, the above expression can be written as: 

YXZ += β  (3) 

In order to deal with the drift, UK (universal kriging) is 
proposed (The ordinary kriging can be treated as a subset 
of UK when f0(x)=1, β1= …= βp=0). To predict Z(x0) the 
UK predictor is a linear combination of values of the 
sample Z(xi). 
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where λi is the weighting factor. 

For the purpose of making this predictor to be unbiased 
for all possible vectors β, the following conditions need 
to be satisfied. 
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the best unbiased linear estimator is the one which 
minimizes σ2

k(x0) under the constraint on the sum of the 
coefficients in (4). Introducing the Lagrange multipliers 
this leads to a straightforward linear equation. 
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So, the result is 
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kriging is the best linear unbiased estimation (BLUE) that 
has the following features: (a) this estimator is a linear 
function of the data with weights calculated according to 
the specifications of unbiasedness and minimum variance. 
(b) The weights are determined by solving a system of 
linear equations with coefficients that depend only on the 
variogram that describes the structure of a family of 
functions. A major advantage of kriging is that it is more 
flexible than other interpolation methods. The weights are 
not selected on the basis of some arbitrary rule that may 
be applicable in some cases but not in others, but depend 
on how the function varies in space. Another advantage 
of kriging is that it provides the means to evaluate the 
magnitude of the estimation error. The mean square error 
is a useful rational measure of the reliability of the 
estimate; it depends only on the variogram and the 
location of the measurements. 

 
Fig. 1 Manhattan-like urban environment 

3 NLOS error simulation 

3.1 NLOS error 

As a random function, NLOS error can be modeled by a 
deterministic part and a random part. Basically, there are 
three types of methods to generate the NLOS error. In 
most of the papers, simplified models such as 
deterministic, Gaussian or other distribution models 
(Cong and Zhuang, 2001) are utilized. Though this 
method is convenient, nevertheless, it can hardly describe 
the real NLOS error. On the contrast, 3D ray tracing plus 
Poisson or Rician model (Aguado et al., 1997) can 
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accurately generate the NLOS error in a special 
environment, but it is a very complex method. It is time 
consuming and also costly. The chosen method in this 
paper is the medium accuracy model; deterministic part is 
generated by Dijkstra algorithm (2D only), and the 
random part is represented by Gaussian model. Assuming 
in a Manhattan-like urban environment, only 3 BTSs are 
arranged as shown in Figure 1. By adding NLOS error 
and random measurement error, the TOA measurements 
are generated. Multiplying TOA with the speed of light, 
the real propagation distance can be obtained. Compare 
the propagation distance and the distance between the MS 
and BTS, the NLOS error (plus random measurement 
error) can be derived. Figure 2 shows the NLOS error in 
Manhattan-like environment. Streets 1 to 5 are the streets 
of south-north direction from east to west respectively 
(because of the symmetric environment, the NLOS error 
in the streets of west-east direction are similar). Two 
features can be noticed: first, there is a shift of NLOS 
error; second, the NLOS error is continuous. It is well 

known that using TOA measurements to compute the MS 
location, the MS’s clock bias should be considered. 
However, the TDOA measurements can get rid of the 
clock bias automatically. In this paper, the object will be 
analyzed is the injected NLOS error rather than the 
NLOS error directly. The TDOA measurements can be 
generated by simply subtracting TOA measurement of 
one BTS from TOA measurement of reference BTS (here 
BTS1 is the reference). Two TDOA measurements 
representing TDOA21 and TDOA31 for each point are 
available. Figure 3 depicts the injected NLOS error on 
ideal domain and distorted domain. In the ideal domain, 
the injected NLOS error is more regular. The figure 
implies that there is a strong intrinsic relationship 
between the NLOS error and the location. Unfortunately, 
what should be dealt with is the NLOS error in the 
distorted domain. Since the determination of the MS’ 
location is contaminated by the errors, the relationship 
between the NLOS error and the location is weaker and 
this makes the approach difficult. 

 
Fig. 2 NLOS error in Manhattan-like urban environment 
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Fig. 3 Injected TDOA21 error in idea domain and distorted domain 

3.2 Hyperbolic equation solving algorithms 

Once the TDOA estimates have been obtained, they are 
converted into range difference measurements and these 
measurements can be converted into nonlinear hyperbolic 
equations. Assuming BTS1 is the reference BTS, let (x, y) 
be the MS location and (Xi, Yi) be the known location of 
the ith BTS. The TDOA measurement is 
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Several algorithms have been proposed, such as 
Friedlander’s method (Friedlander, 1987), Taylor-Series 
method (Foy, 1976), Fang’s method (Fang, 1990) and 
Chan’s method (Chan and Ho, 1994) etc. Each method 
has advantages and disadvantages. For example, Chan’s 
method can provide exact solution; it also takes 
advantage of redundant measurements and further more it 
approaches CRLB  (Cramer-Rao lower bound). However, 
occasionally, Chan’s method has ambiguities in the 
solution, and if the measurement has large errors 
(including NLOS error), it cannot work efficiently. 
Taylor-Series method is an iterative method, and the 
redundant measurements can be used as well. The 
provisional value and GDOP can significantly affect the 

proceeding solution and convergence is not guaranteed. 
However, in the condition of large errors, it provides 
more freedom for tuning; so it works more efficiently 
than other methods. The Taylor-Series method is chosen 
to solve the hyperbolic equation in this paper.  

With a set of TDOA estimates, the method starts with a 
provisional value (x0, y0) and computes the deviations of 
the location estimation dx and dy. 
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and W is the covariance matrix of the estimated TDOAs. 
The whole process is repeated until dx and dy are 
sufficiently small. 

 
 Fig. 4 Ideal MS position distribution and distorted MS position 

distribution 
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Due to the injected NLOS error and noise, the position 
estimates based on the TDOA do not coincide with the 
true position. The ideal MS position distribution and the 
distorted MS position distribution are shown in Figure 4. 

4 Choosing a variogram model 

Variogram γ is the basic tool for the structural 
interpretation of phenomena as well as for estimation. It 
is defined in (1). Normally, γ is not known and needs to 
be estimated from the TDOA measurements. There are 
several ways to estimate the variogram (Cressie, 1991). 
The classical formula is: 
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Most of the time, the points are irregularly spaced. In 
order to have more pairs, the summation xi-xj=h has to be 
weakened. 

ε≤−− hxx ji δ≤− ),( hxxAngle ji  

 
Fig. 5 Mean and median summaries of nonstationarity (top: row 

summaries, bottom: column summaries) 

In order to make the processing easier, the data is 
adjusted slightly to a grided map. Before computing the γ, 
the nonstationarity of the injected NLOS error should be 
checked. Figure 5 is an attempt to summarize the possible 
nonstatioarity in the mean using the sample median and 
sample mean across rows and down columns. There 
appears to be a shift in the east-west direction but little or 
no shift in north-south direction. Computing the 
variogram in this direction first is a good choice. 

 
Fig. 6 (a) Estimated north-south variogram of injected TDOA21 error 
(top) (b) Estimated north-south variogram of injected TDOA21 error 

residuals (using o.l.s to get β) (bottom) 

Unfortunately, there is still a little shift in north-south 
direction. Figure 6(a) depicts the variogram computed 
using the formula above, taking the width of each bin to 
be 24 meters. The effect of the trend is plainly obvious, 
leading to a steadily increasing parabolic-like curve. How 
to decompose the data with shift is a classical problem. 
Some approaches have been proposed. One of them is to 
start with o.l.s. (ordinary-least-squares) estimator of β in 
(3), compute a variogram estimator from the residuals, fit 
a variogram model, then obtain a g.l.s (general-least-
squares) estimator of β based on the fitted model, and so 
forth. In this paper, this iterative approach is used, 
although this approach suffers from a bias problem 
(Cressie, 1991). Figure 6(b) shows the estimated north-
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south variogram of injected TDOA21 error residuals after 
o.l.s. The reason not to use the experimental variogram 
directly is because most of the experimental variograms 
are not admissible, as it needs to be conditionally 
negative definite. Only after few iterations, the result is 
converged. Finally, two models are chosen: exponential 
(11) and a spherical model (12). 
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Fig. 7 The chosen variogram models: exponential model (top) and 

spherical model (bottom) 

The parameters retained were: for exponential model, 
C0=350m2, C=2000m2, a=500m; and for spherical model, 
C0=300m2, C=1700m2, a=800m. These two models are 
shown in Figure 7. γ(0)=0 shows a discontinuity at the 
origin, which is called the nugget effect. This is caused 
by the unknown micro scale variation. The chosen 

models have a sill, which means that when the distance 
between two points is large enough, they are independent. 
This means the model can be described by covariance. In 
UK, some times the covariance matrix is needed (Cressie, 
1991). The model is chosen visually. Some of the 
automatic methods such as least squares can be used, but 
it is not suggested by most of the professionals 
(Armstrong, 1998). 

 
Fig. 8 Histogram of the normalized residuals based on exponential 

model 

5 Results 

The variogram model should be checked before the 
application. The evaluation of it was done through cross-
validation (Isaaks and Srivastava, 1989; Armstrong, 
1998). For each measurement location xi the values are 
estimated as if they were unknown. The kriging variances 
in (5) are also computed. Then the normalized residual 
can be formed: 

K

ZZS
σ
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It should be normally distributed with 0 mean and 1 as 
standard deviation (N(0,1)). Figure 8 shows such a 
distribution using exponential model. The mean, standard 
deviation and max of the normalized residual using 
different model are compared in table 1. Here, the 
exponential model is slightly better than spherical model. 

Tab. 1 Results of cross-validation 

 Exponential 
model 

Spherical 
model 

Mean normalized residuals 0.0005 0.0006 
Std. normalized residuals 1.0931 1.1882 
Max normalized residuals 5.3041 5.7611 

As mentioned before, in real application, obtaining the 
measurement of reference point is not trivial. WSMM can 
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aid to get some references automatically. In the simulated 
Manhattan-like environment, 25 points can be derived 
automatically. A correction map should be generated by 
these reference points. Figure 9 plots the injected 
TDOA21 NLOS error correction map. It is similar with 
Figure 3 (bottom). Normalized residuals (the true data are 
known since they are generated by simulation) can be 
computed using (13). The results are listed in table 2. 

Tab. 2 Results using 25 references 

Mean of normalized residuals 0.1259 
Std. of normalized residuals 1.0007 
Max of normalized residuals 3.6893 

 

 
Fig. 9 Estimated injected TDOA21 error in distorted domain 

Using the same algorithm, the injected TDOA31 NLOS 
error correction map can be generated. The corrected 
TDOA measurements can be derived by simply 
subtracting NLOS error from TDOA measurements. Then 
Taylor-Series method is applied again, and a new position 
distribution can be generated. Because of the reason 
mentioned in previous section, the NLOS error cannot be 
removed completely, but a part of it should be mitigated. 
The new distorted position exposes better relationship 
with the NLOS error. The processing can be done again. 
After two iterations, Figure 10 illustrates the final result. 
It is very clear after UK, the new distorted MS position 
distribution is closer to the ideal distribution. 

6 Conclusions 

The algorithm using kriging can efficiently estimate the 
NLOS error with the knowledge of some references and a 
reasonable variogram model. Normally, kriging is used in 
the situation where the exact location of measurement is 
known. In the application to mitigate NLOS error, 
however, the true location is the answer we are looking 
for. The distorted location covers some real specifics of 

the NLOS error and location. It makes the application 
harder. There are still some questions to be answered. 
First of all, the real data is necessary to verify this 
algorithm. Secondly, how to extract NLOS error at 
reference points efficiently. Thirdly how many references 
are needed to get rid of the NLOS error to a fix 
percentage. Finally, how to determine the variogram 
model for a specific environment, although some 
evidences show this application is not very sensitive with 
variogram model. Future work is focussed on optimising 
the algorithm for real world application.   

 
Fig. 10 The final distorted MS position distribution 
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