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Abstract 
 
A difficult but important problem in optimal control theory is the design of an optimal feedback control, i.e., 
the design of an optimal control as function of the phase (state) coordinates [1,2]. This problem can be 
solved not often. We study here the autonomous nonlinear system of second order in general form. The con-
straints imposed on the control input can depend on the phase (state) coordinates of the system. The goal of 
the control is to maximize or minimize one phase coordinate of the considered system while other takes a 
prescribed in advance value. In the literature, optimal control problems for the systems of second order are 
most frequently associated with driving both phase coordinates to a prescribed in advance state. In this 
statement of the problem, the optimal control feedback can be designed only for special kind of systems. In 
our statement of the problem, an optimal control can be designed as function of the state coordinates for 
more general kind of the systems. The problem of maximization or minimization of the swing amplitude is 
considered explicitly as an example. Simulation results are presented. 
 
Keywords: System of Second Order, Optimal Feedback Control, Design, Swing, Rocking, Damping,  

Simulation 

1. Mathematical Model of the Considered 
System 
 
Let the motion of the studied object under control be 
governed by a system of two nonlinear autonomous dif-
ferential equations of the form  

   1 2, , , , ,x f x y u y f x y u   ,         (1) 

the dot denotes, as usual, derivative with respect to 
time.  

For example, a controllable mechanical system with 
one degree of freedom is described by similar differential 
equations. In this case, x is positional coordinate and   

 1 , ,f x y u y                (2) 

is the velocity of the object (linear or angular), function 
 2 , ,f x y u  is the generalized force divided by the ob-

ject’s mass or moment of inertia.  
Let for each piecewise continuous vector function 

( )u t , system (1) with initial conditions from some region 
of the phase plane  ,x y  has a unique solution ( )x t , 

( )y t . We assume that the control parameter u  belongs 
to a given set ( , )U x y  depending on the state coordi-
nates x and y. In other words, a vector piecewise con-

tinuous function ( )u t  is assumed to be an admissible 
control, if   

 ( ) ( ), ( )u t U x t y t .              (3) 

Here ( )x t , ( )y t  is the solution of Equations (1) with 
( )u u t= . If set ( , )U x y  depends on state coordinates x, y, 

then condition (3) can be checked for a given piecewise 
continuous control function ( )u t , in general, only by find-
ing the solution of the system (1) with this control.  

Assume in what follows that function  1 , ,f x y u  
does not vanish. To be definite, let  

 1 , , 0f x y u  .              (4) 

Under condition (4), the coordinate x can only increase 
with time. If (1) is a mathematical model of a mechanical 
system with one degree of freedom, then equality (2) 
takes place and inequality (4) holds in upper half of the 
phase plane  ,x y .  

We rewrite system (1) in the form of a first-order 
equation  

 
   2

1

, ,
, ,

, ,

f x y udy
f x y u

dx f x y u
  .         (5) 
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Let  

0 0(0) ,  (0)x x y y               (6) 

be initial conditions for system (1) or Equation (5). To be 
definite, assume that 0 0y  .  

We do not formulate here in the first Section all condi-
tions on the system (1), on the set ( , )U x y  (see relation 
(3)). It is difficult to specify in advance all these condi-
tions. We formulate new assumptions during the problem 
consideration as need arises.  
 
2. Sets of Reachability 
 
Assume that, in the phase plane  ,x y , every trajectory 

( )y x  that starts from point (6) and corresponds to an 
admissible control function ( )u t , intersects the axis 

0Y   at some finite time t and for some finite coordi-
nate x. Note that time t and coordinate x have their own 
values for each admissible control function ( )u t . Con-
sider the set of all possible admissible control functions  

( )u t  and the set of corresponding trajectories ( )y x , ob- 
tained under these controls. More precisely, consider 
only the portions of these trajectories that start from 
point (6) and terminate on the axis of abscissas 0Y  . 
The collection of these curves covers a set of points that 
form a reachable set [3] or so-called integral funnel [4,5]. 
This set of reachability D is schematically shown in Fig-
ure 1. 
 
3. Boundaries of Reachable Set 
 

Let us consider control that maximizes derivative 
dy

dx
  

over variable u  at the point (x, y). This control maxi-
mizes the function ( , , )f x y u  over argument u  on the 
right-hand side of Equation (5) and it has the form  

 max
( , )

, arg max ( , , )
u U x y

u u x y f x y u


     
.      (7) 

 

 

Figure 1. Reachabe set D. 

We assume here function ( , , )f x y u  and set ( , )U x y  
such that the maximum in (7) exists and is unique in each 
point of the phase plane in some domain including the 
reachable set D. We assume also that the solution to sys-
tem (1) with initial conditions (6) under control (7) yields 
a piecewise continuous function ( )u t , i.e., an admissible 
control function. Let max ( )y y x  be the solution to the 
equation  

 max, , ,
dy

f x y u x y
dx

                (8) 

with initial conditions (6). Denote by maxΓ  the part of the 
trajectory max ( )y y x  for 0 maxx x x  , where maxx  is 
the first value of argument x, at which function max ( )y y x  
vanishes  max ( ) 0y x  . Now we will show that the 
curve maxΓ  is the upper boundary of reachable set D 
(see Figure 1).  

Given any control function max( , ) ( , )u x y u x y  , as-
sume that the trajectory of Equation (5) starting from 
some point max( , ) Γx y  , lies above by curve maxΓ . 
Then, at this point, we have the inequality   

 max, , ( , ) , , ,f x y u x y f x y u x y       ,     (9) 

or the solution max ( )y y x  of Equation (8) is not unique. 
However, inequality (9) contradicts condition (7), while 
the solution max ( )y y x  of Equation (8) starting at 
point (6) is unique by assumption.  

Now consider control function that minimizes deriva- 

tive 
dy

dx
 over parameter u  at the point (x,y), i.e., mini- 

mizes the function ( , , )f x y u  over argument u  on the 
right-hand side of Equation (5): 

 min
( , )

, arg min ( , , )
u U x y

u u x y f x y u


     
.    (10) 

We assume here function ( , , )f x y u  and set ( , )U x y  
such that the minimum in (10) exists and is unique in the 
phase plane in some domain including the reachable set 
D. Let the solution to system (1) with initial conditions 
(6) under control (10) yields a piecewise continuous 
function ( )u t , i.e., an admissible control function. 

Let min ( )y y x  be the solution to the equation  

 min, , ,
dy

f x y u x y
dx

              (11) 

with initial conditions (6). Denote by minΓ  the part of the 
trajectory min ( )y y x  for 0 minx x x  , where minx  is 
the first value of argument x, at which function min ( )y y x  
vanishes  min ( ) 0y x  .  

Applying the considerations similar to that used for 
the curve maxΓ , we can prove that curve minΓ  is the 
lower boundary of reachable set D.  
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4. Statement of the Problem and its Solution 
 
The problem is to find an admissible control, under 
which the coordinate x reaches its maximum when the 
coordinate y vanishes at first time (from the beginning of 
the motion). This maximization problem can be sym-
bolically written as   

 
( , )

max  at  0
U x y

x y



u

.             (12) 

It should be accented that coordinate x has to be maxi- 
mized not at a prescribed time but at the time when co- 
ordinate y vanishes. When Equations (1) describe the 
motion of a mechanical system with one degree of free-
dom and equality (2) holds, the condition 0y   means 
that the velocity of motion vanishes. In this case, the goal 
is to maximize the deviation of the x-coordinate from the 
initial position by the time when the velocity of motion 
vanishes.  

Along with the formulated above problem, we also 
consider problem to find an admissible control, under 
which the coordinate x reaches its minimum when the 
coordinate y vanishes at first time (from the beginning of 
the motion):  

 
( , )

min  at  0
U x y

x y



u

.            (13) 

A maximization problem of type (12) was considered, 
for example, in paper [6] and in other works of the same 
authors. In these works, the conditions for the absolute 
stability of bilinear systems were found, by constructing 
a control that maximally “swings” the system.  

The analysis performed in Section 3 implies that in the 
reachable set D, there is no a trajectory with so large 
x-coordinate as maxx  (see Figure 1). Consequently the 
maximum value of x-coordinate is equal to maxx  and 
the control  max ,u u x y  (see formula (7)) solves pro- 
blem (12).  

The control  min ,u u x y  (see formula (10)) solves 
problem (13), and the minimal value of x-coordinate is 
equal to minx  (see Figure 1).  
 
5. More General Case 
 
More general problems than those discussed above are 
the maximization or minimization of the coordinate x at 
the time when coordinate y first takes a prescribed in 
advance value y , which may be nonzero. If 0y y , 
then, as before, the control  max ,u u x y  (see formula 
(7)) is optimal for the maximization problem, while the 
control  min ,u u x y  (see formula (10)) is optimal for 
the minimization problem. If 0y y  (see Figure 2), 
then the maximum of the coordinate x is reached under  

 
Figure 2. Reachabe set D. 

 
the control  min ,u u x y , while the minimum of the 
coordinate x is reached under the control  max ,u u x y . 
This is explained by the fact that, for 0y y , the upper 
boundary maxΓ  of the reachable set D intersects the line 
y y  at a smaller value of coordinate x, than the lower 

boundary minΓ .  
Formulas (7) or (10) can be considered for the formu-

lated above problems as a local maximum or minimum 
principle. 

In the next section, the obtained above results are il-
lustrated by constructing an optimal control of the mo-
tion of the swing.  
 
6. Maximization and Minimization of the  

Swing Amplitude 
 
As a model of a swing with a human on it, we consider a 
physical pendulum of mass  with a point particle of 
mass M moving along it (see Figure 3). 

In Figure 3, x is the deflection angle of the pendulum 
from the vertical line (we consider that x    ), u 
denote the distance OM between points M and O 
( u OM ). Assume that distance u is a control parameter. 
Unlike the general case, here this control parameter u is a 
scalar. The distance u can vary within bounded limits:  

 0 1 0 1 0 1, ,  .u u u u u const u u         (14) 

Let J denote the moment of inertia of the pendulum 
(without point participle M) relative to the point of sus-
pension O,  denote the distance from the suspension 
joint O to the pendulum’s center of mass C ( ρ OC ), g 
is the gravity acceleration.  

According to the principle of moment of angular mo-
mentum relative to joint O, the nonlinear equation of 
motion of the swing has the form [7]:  

   2 ρ sin
d dx dx

J Mu Mu g x c
dt dt dt
       

. (15) 

Here  2J Mu x   is the angular momentum of the  
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Figure 3. The scheme of the swing. 
 
system relative to suspension point O, c is the coefficient 
of viscous resistance (for example, viscous friction in the 
suspension joint O).  

Let y denote the angular momentum  2J Mu x  . 
Then the second-order Equation (15) can be rewritten as 
a system of two first-order equations of form (1):  

 

2

2

,

ρ sin .

y
x

J Mu
cy

y Mu g x
J Mu




   





     (16) 

Let the initial state of system (16) be specified as  

(0) 0,  (0) 0x y  .             (17) 

The problem is to find a law of variation of the dis-
tance u subject to inequalities (14) at which the deflec-
tion of the angle x is maximal at the instant  when an-
gular momentum y (and, hence, the velocity x ) vanishes 
 ( ) 0,  ( ) 0y θ x θ   first from the start of the motion. In 
other words, the goal is to maximize the deviation of the 
swing from the vertical line (amplitude of the swing) at 
the end of the first half-period of its oscillations. We 
consider initial value (0)x  of angle x sufficiently close 
to zero and assume that for this angle (0)x  and each 
admissible control ( )u t  the corresponding instant  
exists when ( ) 0y θ  .  

It follows from second Equation (16) that 0y   (i.e., 
0x  ), if 0 t θ  . Then on the time interval 

0 t θ  , system (16) can be rewritten in a form similar 
to (5), namely  

  2ρ sinMu J Mu g xdy
c

dx y

 
   .      (18) 

According to the above results, maximizing the 
right-hand side of Equation (18) over argument u on in-
terval (14) yields an optimal control law for the swing on 
a half-period of oscillations for which 0y   

1

0

,      if   0

,      if   0.

u x
u

u x


  

 

This control law means that distance u = OM is maximal 
as possible when 0x   and minimal as possible when 

0x  .  
The next (second) half-period of oscillations, for which 

0y   (i.e., 0x  ), can be considered by analogy with 
the first half-period. As a result, we conclude that the 
optimal control of the swing on each half-period is de-
scribed by the relations   

1

0

,      if   0

,      if   0.

u xx
u

u xx


  




           (19) 

Figure 4 shows in the phase plane ( , )x x  the synthe-
sis picture of optimal rocking control ( , )u x x  (19). Un-
der control (19), the point particle M instantaneously 
moves up to the stop when the swing goes through the 
lower position and moves down to the stop when the 
swing maximally deviates from the vertical, i.e., when its 
angular velocity x  vanishes. Thus, the problem of op-
timal rocking of the swing is solved. 

The control given by formula (19) was considered in 
the book [8] but without any discussion of its optimality. 

Now let us consider the problem of optimal damping 
of the swing at the end of each half-period of its oscilla-
tions. To design the optimal damping control we have to 
solve the problem (13) for the right-hand side of Equa-
tion (18). After solving this problem we conclude that 
the deviation of the swing from the vertical at the end of 
each oscillation half-period is minimal under the control:  

1

0

,      if   0

,      if   0.

u xx
u

u xx


  




          (20) 

In Figure 5, the synthesis picture of optimal damping  
 

 

Figure 4. Design of the optimal rocking feedback control. 
 

 

Figure 5. Design of the optimal damping feedback control. 



А. М. FORMALSKII 
 

Copyright © 2010 SciRes.                                                                                  AM 

305

control ( , )u x x  (20) is shown in the phase plane ( , )x x . 
Under control (20), the point particle M instantaneously 
moves down to the stop when the swing goes through the 
lower position and moves up to the stop when the swing 
maximally deviates from the vertical, i.e., when its an-
gular velocity x  vanishes.  

So, the feedback control law (20) for the optimal da- 
mping of the swing is contrary to the feedback control 
law (19) for the optimal rocking of the swing.  
 
7. Simulation of the Optimal Swing Motion 
 
Consider Equations (16) with the following numerical 
parameters:  

2
0

1

5 ,  26.67 ,  70 ,  3 ,

3.75 ,  2 ,  2 .

kg J kg m M kg u m

u m m c N m s

     

     
(21) 

Here we assume that pendulum is a homogeneous 
beam of the length 4 m  , and consequently 

                2 21 4
2

3 3
J      .  

In Figure 6, the graphs of angle x, of angular velocity 
x , of control u as functions of time are shown. These 
functions are obtained solving equations of motion (16) 
under optimal rocking feedback control (19) with para- 
meters (21) and initial conditions (0) 0.1x   , (0) 0y  . 

Figure 6 shows that under control ( , )u x x  (19) the 
amplitude of the swing increases. The relay control func-
tion ( )u t  instantaneously switches from value 1u  to 
value 0u  when angle x becomes zero and switches from 
value 0u  back to value 1u  when the velocity x  be-
comes zero. Between the shift points, control parameter 
u const .  

Figure 7 shows the phase portrait of the rocking mo-
tion in the plane ( , )x x .  

In Figures 6 and 7, we observe the jumps of angular 
velocity x  at the instants when control ( )u t  switches 
from value 1u  to value 0u . At these instants, the mo-
ment of inertia 2J Mu  of the swing together with the 
point particle M (with a human) decreases and the angu-
lar velocity x  increases due to the conservation of the 
angular momentum  2y J Mu x   , which is not zero 
at these times. 

In Figure 8, the graphs of angle x, of angular velocity 
x , of control u as functions of time are shown. These 
functions are obtained solving equations of motion (16) 
under optimal damping feedback control (20) with pa-
rameters (21) and initial conditions (0) 2 1.57x     , 

(0) 0y  .  
Figure 8 shows that under control ( , )u x x  (19) the 

amplitude of the swing decreases. The relay control func- 
tion ( )u t  instantaneously switches from value 1u  to  

 

Figure 6. Graphs of angle ( )x t , angular velocity ( )x t  

and function ( )u t  for rocking feedback control. 

 

 

Figure 7. Phase portrait in the plane ( , )x x  for rocking 
feedback control. 
 

 

Figure 8. Graphs of angle ( )x t , angular velocity ( )x t  

and function ( )u t  for damping feedback control. 
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Figure 9. Phase portrait in the plane ( , )x x  for damping 
feedback control. 
 
value 0u  when the velocity x  becomes zero, and swit- 
ches in the opposite direction when angle x becomes zero. 
Between the shift points, the distance u remains constant. 

Figure 9 shows the phase portrait of the damping mo-
tion in the plane ( , )x x .  

In Figures 8 and 9, we observe the jumps of angular 
velocity x  at the times when control ( )u t  switches 
from value 0u  to value 1u . At these times, the moment 
of inertia 2J Mu  of the swing together with the point 
particle M (with a human) increases instantaneously and 
the angular velocity x  decreases also instantaneously 
due to the conservation of the angular momentum  

 2y J Mu x   , which is not zero.  
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