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ABSTRACT 

In medical diagnosis, the problem of class imbalance is 
popular. Though there are abundant unlabeled data, 
it is very difficult and expensive to get labeled ones. 
In this paper, an ensemble-based active learning 
algorithm is proposed to address the class imbal-
ance problem. The artificial data are created ac-
cording to the distribution of the training dataset to 
make the ensemble diverse, and the random sub-
space re-sampling method is used to reduce the da-
ta dimension. In selecting member classifiers based 
on misclassification cost estimation, the minority 
class is assigned with higher weights for misclassi-
fication costs, while each testing sample has a vari-
able penalty factor to induce the ensemble to cor-
rect current error. In our experiments with UCI 
disease datasets, instead of classification accuracy, 
F-value and G-means are used as the evaluation 
rule. Compared with other ensemble methods, our 
method shows best performance, and needs less 
labeled samples. 

Keywords: Class Imbalance, Active learning, Ensemble, 
Random Subspace, Misclassification Cost 
 
1. INTRODUCTION 

In the medical diagnosis, it is common that there is a 
huge disproportion in the number of cases belonging to 
different classes [1]. For example, the number of cancer 
cases is much smaller than that of the healthy. The tradi-
tional classifiers, however, are incapable of countering 
such class imbalance problem, because they favor the 
majority class. Moreover, the minority class is much 
more important in real applications. In addition, in real 
world, there are abundant unlabeled data but labeled 
instances are difficult, time-consuming or expensive to 
obtain. It will in turn make the labeled minority class 
much fewer further, which often degrades the perform-
ance of traditional classifiers greatly. As a result, active 
learning with unlabeled imbalanced data becomes an 

important issue in machine learning [3]. 
To address the class imbalance problem, the direct 

way is to reduce the imbalance by re-sampling original 
dataset. Some methods try to under-sampling majority 
class, like Tomek link [4], condensed nearest neighbor 
rule [5] and neighborhood cleaning rule [6][7]. In these 
methods, the majority samples in certain area are con- 
sidered as useless and can be removed from training 
dataset. But, there is a risk of missing representative 
samples. Other methods, like SMOTE [8], try to over- 
sampling the minority class. In SMOTE method, the 
artificial datasets are created according to the distribu-
tion of the minority class. However, the enhancement 
will be little, if the created artificial datasets have the 
same properties as the labeled samples 

Finding proper classifier for minority class is another 
way to counter class imbalance problem. Joshi [9] once 
modified the Boosting algorithm by assigning the minority 
class with a weight different from that of the majority 
class. Akbni [10] adjusted the SVM’s decision-boundary 
by modifying the kernel function. But, the certain classifier 
is only efficient in countering specific class imbalance, 
and cannot be extended to other applications. Another 
trend is to use ensemble of classifiers, which often has 
better performance than single classifier. But, the per-
formance depends on the diversity of the ensemble [11]. 
If classifiers in an ensemble have the same property, 
there will be less improvement of performance even with 
more classifiers. 

Active learning techniques are conventionally used to 
solve problems where there are abundant unlabeled data 
but rare labeled ones [3]. Recently, various approaches 
on active learning from imbalanced datasets have been 
proposed in literatures [12]. For instance, as a good clas-
sifier, support vector machine (SVM) was proposed in 
active learning for the imbalance problem [14]. To re-
duce the computational complexity in dealing with large 
imbalanced datasets, this method was implemented in a 
random set of training populations, instead of the entire 
training dataset. In [16], bootstrap-based over- sampling 
was proposed to reduce the imbalance in the application 
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of word sense disambiguation. Facing the class imbal-
ance issue, however, both re-sampling and classifier 
strategy have their own advantage as well as disadvan-
tage. The best way is to combine them together [17]. But 
progress in this field is little. 

In this paper, an ensemble-based active learning with 
artificial samples is proposed to address class imbalanced 
problem by using unlabeled data. Different from random 
sampling, we try to use active selection strategy to label 
the sample with potential benefit to the ensemble’s di-
versity. In addition, we will create artificial datasets from 
the distribution as the training dataset. The conversely 
labeling of each artificial data will bring diversity to the 
ensemble. Both the training dataset and the artificial 
dataset will be re-sampled according to random subspace 
concept. It will release the difficulty of traditional sam-
pling methods while facing with high-dimension data. 
Further, when choosing member classifiers according to 
misclassification cost, the minority class is assigned with 
a higher weight for misclassification cost, and each test-
ing sample has a variable penalty factor to induce the 
ensemble to correct current error. In the experiments 
with UCI disease datasets, instead of accuracy, F-value 
and G-mean are used to evaluate the performance, since 
they are better for minority classification tasks. 

The rest of this paper is organized as follows. In Sec-
tion 2, the proposed ensemble is described in detail, in-
cluding the creation of artificial datasets, random sub-
space re-sampling and misclassification cost estimation. 
Section 3 introduces how to implement active learning 
with our proposed ensemble method. In experiment part, 
the new evaluation rules are introduced. Based on ex-
periments on the UCI datasets, our proposed method is 
compared with other state-of-art methods. 

2. RANDOM SUBSPACE ENSEMBLE 
WITH ARTIFICIAL DATASETS 

In our ensemble-based active learning, the ensemble 
algorithm is the core. So, in this section, we will intro-
duce our Random Subspace Ensemble with Artificial 
Data (RSEAD) in detail. 

2.1. Overview 

Figure 1 is the algorithm of our Random Subspace En-
semble with Artificial Data (RSEAD). Each member 
classifier in the ensemble is created via the iteration 
steps in Figure 1. 

At the beginning of the algorithm, the training dataset 
T will be mapped into another dataset T, in a 
m-dimension subspace. Then a classifier will be created 
based on T, and used to initiate the ensemble C*. Also, 
the misclassification cost of current ensemble will be 
calculated. Whereafter, the algorithm will enter follow-

ing iteration: 
1) According to the distribution of the training dataset 

T, an artificial dataset will be generated. The size of the 
artificial dataset will be in a certain ratio, Rsize, to that 
of training dataset. They will be labeled with a class dif-
ferent from what the ensemble predicts 

2) In the m-dimension subspace, both T and R will be 
re-sampled to T, and R,. 

3) A new classifier C, will be learned from both la-
beled R, and T,. In order to guarantee the performance of 
the ensemble when pursuing the diversity, the misclassi-
fication cost of the new ensemble with C, is calculated. 
Compared with the previous ensemble, if the new classi-
fier brings more misclassification cost, it will be re-
moved; otherwise, it will be kept in the ensemble; 

4) The above steps will be iterated until algorithm re-
turns the expected size of ensemble, or the number of 
iterations reaches the limited value. 
To predict the class of an unlabeled sample x, each 
member classifier Ci in ensemble C, will assign x with an 
membership probability, 

,
ˆ ( )

iC y
P x . Then the ensemble 

will calculate membership probability of each class y for 
sample x via following equation: 
 

 

Figure 1. Algorithm of RSEAD ensemble. 

Algorithm: The RSEAD ensemble 
Input: 
BaseLearn– Base Learner 
L - Training Set  
R - Artificial dataset  
m - Dimension of random subspace 
Csize - Target size of subspace 
Imax - Maximum number of iterations 
Rsize - Ratio between the size of dataset R and L 
(1) i = 1 ; 
(2) trials = 1 ; 
(3) Preprocessing the training set based on m-dimension 

subspace : ' ( )T RSM sampling T   

(3) ( ')iC BaseLearn T  

(4) * { }iC C  

(5) Calculate the ensemble error,  ; i = i + 1 
(6) While i < Csize and trials < Imax 
{ 
(7) Create artificial dataset , the size will be  
Rsize T ; 

(8) Assign each artificial sample a label different from C*’s 
prediction.  

(9) Re-sample the training set and artificial set in 
m-dimension subspace: 

' ( )T RSM sampling T   ' ( )R RSM sampling R   

(10) ' ' 'T T R   

(11) ( ')iC BaseLearn T  * * { }iC C C   

(12)Calculate the misclassification cost of new ensemble, 
'   

(13) If '   then { '  , i = i + 1  } 

(14) else { * * '{ }C C C   ; trials = trials + 1} 
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Equation (1) reflects the probability of x belonging to 
class y. Therefore, the label with largest membership 
probability will be assigned to x: 

* ˆ( ) arg max ( )
y

y Y

C x P x


               (2) 

2.2. Creation and Labeling of Artificial Datasets 

The diversity is a critical factor for a successful ensem-
ble [11]. An ensemble will have less diversity if its 
member classifiers have the same property. To bring 
more diversity, Bagging [19] divides the training set into 
several smaller one, while Boosting adjusts the distribu-
tion of the training dataset according to the chosen clas-
sifier [20]. Further, in Random Forest [21], both training 
dataset and feature space are divided into smaller ones to 
train different classifiers. However, all these methods 
depend on the training dataset to induce the diversity. 
Therefore, if the training dataset is not big enough, the 
diversity will be limited. 

In our active learning method, the RSEAD ensemble’s 
diversity will be guaranteed in three ways: 1) with active 
learning, the large pool of unlabeled data can be sampled 
to get good training datasets; 2) besides the training da-
taset, the artificial data are also created for training clas-
sifier; 3) both the original training and the artificial da-
tasets will be re-sampled in subspace to enhance diver-
sity. In this part, we will focus on the creation of artifi-
cial dataset and their labeling. 

In our method, the artificial data are created by ran-
domly picking data points from an approximation of the 
training dataset distribution. The numeric attributes are 
defined according to the mean and the standard deviation 
of the training dataset, and generated in Gaussian distri-
bution. For a nominal attribute, its value is based on the 
probability of the occurrence of each distinct value in its 
domain. The Laplace smoothing is used if a certain no-
minal attribute is absent in the training dataset. Further, 
to construct an artificial data, there is a simplifying as-
sumption that the attributes are independent, because it 
will cost much time and labeled data to accurately esti-
mate the joint probability distribution of these attributes.  

In each iteration shown in Figure 1, the ensemble will 
predict the class label for each artificial data x. Firstly, 
ensemble will give a membership probability of x be-
longing to certain class y. The zero membership prob-
ability will be replaced by a small non-zero value in case 
that it may act as a denominator. Then the artificial data 
will be labeled a class that is different from what the 
ensembles predict. Therefore, if current ensemble pre-

dicts the probability of x belonging to y is ˆ ( )
y

P x , then, 
the choice of label for x will be based on 'ˆ ( )

y
P x : 

'
ˆ1 / ( )

ˆ ( )
ˆ1 / ( )

y

y

y

y

P x
P x

P x



                (3) 

Let us show this labeling method with a two-class 
problem. For instance, for an artificial sample x, the en-
semble estimates that it has 20% probability of being a 
positive sample and 80% probability of being a negative 
one. In other words, the ensemble believes that x is more 
likely a negative sample. In our method, to create a new 
classifier with more diversity, x will be assigned with a 
positive label, and then used to train a new classifier. 

The ensemble often has higher accuracy than single 
member classifier if each member classifier is not related 
with others. Therefore, our method of labeling artificial 
data can reduce the relevancy between classifiers, which 
will in turn bring the ensemble with higher accuracy and 
less generalization error. 

2.3. Re-Sampling in Subspace 

Re-sampling is the popular way to deal with class im-
balance problem. However, most of sampling methods, 
like SMOTE, often work in the whole feature space, 
which is not efficient in countering high-dimension da-
tasets. In addition, they often try to consider the class 
imbalance and the properties of the dataset as a whole. 
The data, however, often exhibit characteristics and 
properties at a local level, rather than the global level. 
Hence, it is important to study the dataset in a reduced 
subspace. Although a certain feature subspace may only 
lead to a weak classifier, the ensembling of such weak 
ones can make a strong classifier [22], since it induces 
higher diversity, which is an important condition for a 
classifier with good performance. 

To this end, we proposed the Random-Subspace- 
Mapping Sampling (RSM-sampling) algorithm. 

Suppose we have a dataset L, which has a 
n-dimension space: |L| = l, 1 2{ , ,..., }nF F F F . Any data 
P L  can be represented as 1 2{ , ,..., }nP P P P , where 

iP  is the value of the related feature iF  in the feature 
space F. 

If the dimension of each subspace is set to m, m<n, the 
number of the likely subspace will be max

m
nk C . When 

[ / 2]m n , kmax has its biggest value. For our algorithm, 
each feature subspace will bring a candidate classifier. 
We often choose Cszie< kmax classifiers to construct an 
ensemble, since not every candidate classifier will help 
enhance the ensemble,s performance. 

Before re-sampling, a subspace S should be randomly 
selected from the feature space F. F m n  . 

1 2{ , ,..., }mS S S S F  . Then, in the feature subspace, 
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each data P L  will be mapped into 
       1 2{ , ,..., }S s s smP P P P . 

In each iteration step of our algorithm, both the train-
ing dataset L and the artificial dataset R are re-sampled 
in chosen sub-space. 

2.4. Misclassification Cost Estimation 

When pursuing the diversity, the performance of ensem-
ble should be guaranteed too. To address the problem of 
class imbalance, the misclassification cost is used to 
replace the traditional classification error. A new classi-
fier will be kept in the ensemble if it helps decrease the 
misclassification cost; otherwise, it will be removed. 

In our algorithm, the minority class is assigned with a 
higher weight of misclassification cost than that of the 
majority class. Also, each test sample will be assigned 
with a penalty factor. If current ensemble makes wrong 
decision on it, its penalty factor will be increased; oth-
erwise, its penalty factor will be decreased. In this way, 
the ensemble will choose the new classifier that helps to 
correct the error of current ensemble. Also, since the 
minority samples have more chance to be misclassified, 
this penalty factor will bring an ensemble proper for 
minority class. 

Suppose we have t samples to evaluate the ensemble 
based on misclassification cost. Firstly, each sample’s 
penalty factor will be initialized as: 

1 1 / 1id t i t              (4) 

The misclassification cost of the ensemble gotten in 
k-th iteration can be represented as: 

*

1

cos ( , ( ))
t

k
k i k i i

i

t y C x d


          (5) 

In Equation (5), yi is the correct class label of testing 
sample xi, 

* ( )k iC x  is the predicted class of the ensemble 
for xi. 

k
id  is xi,s penalty factor for the k-th iteration. 

*cos ( , ( ))i k it y C x  is the weight of misclassifying a sam-
ple with label yi as class * ( )k iC x . When * ( )i k iy C x , 
there is *cos ( , ( )) 0i k it y C x   because classification is 
correct. 

If the misclassification cost in the k-th iteration is less 
that that in the (K–1)-th iteration, then newly created 
classifier will be kept in ensemble. There, we have the 
coefficient of performance enhancing:  

ln((1 ) / ) / 2k k k             (6) 

Each testing sample’s penalty factor will be modified 
according to current ensemble’s prediction. If current 
ensemble makes correct classification on xi, its penalty 
factor 1k

id   will be decreased to:  
1 exp( )k k

i i kd d a              (7) 

Otherwise, it will be increased to:  
1 exp( )k k

i i kd d a              (8) 

Please note, all samples, new penalty factors will be 
normalized as following:  

1
1

1

t
k

k i
i

Z d 




   

1 1
1/k k

i i kd d Z 
 .             (9) 

1k
id   will be used in the (k + 1)-th iteration. 
The design of misclassification cost weigh 

*cos ( , ( ))i k it y C x and penalty factor 1k
id   will help the 

ensemble to pick the classifiers that can better deal with 
minority class. 

3. ACTIVE LEARNING WITH THE  
ENSEMBLE RSEAD 

The ensemble with diversity will be used in active 
learning for selecting unlabeled data. Like the QBC [23], 
our proposed active learning method also chooses the 
unlabeled samples that have the biggest prediction dif-
ference among the classifiers in the ensemble. Such pre-
diction difference is often called uncertainty, which is 
calculated via margin measure in our algorithm. The 
margin is defined as the difference of membership 
probability between the samples most likely class and 
second most likely class. 

*
1 2

ˆ ˆ( , ) ( ) ( )y yMargin C x P x P x           (10) 

where y1 and y2 are class labels of unlabeled sample x 
predicted by ensemble C*. y1 has the highest member-
ship probability for x, while y2 is the second highest one. 
Then, the uncertainty can be represented as: 

* 1
( , )

( *, )
Uncertainty C x

Margin C x 



    (11) 

where the  is a small value in case margin is 0. The 
smaller margin is, the bigger the uncertainty is. For a 
two-class task, when 1 2

ˆ ˆ( ) ( )y yP x P x ，the margin will be 
0, and x will have the biggest uncertainty, 

*( , ) 1/Uncertainty C x   

4. EXPERIMENTS 

To evaluate our method,s effectiveness for medical di-
agnosis, eight disease datasets from the UCI machine 
learning repository [24] are used in experiments. In this 
section, we will discuss the experiments in detail. 

4.1. Evaluation Rule 

In a two-class task, a classifier will have four kinds of 
prediction results [25] for dataset with N samples, shown 
in Table 1. TP and FN responsively mean the number of 
correctly and wrongly classified positive samples, while 
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TN and FP mean the number of correctly and wrongly 
classified negative samples. 

The classification accuracy is often calculated as : 

Accuracy = (TP+FN)/N.           (12) 

The accuracy rule, however, is not a good one for im-
balance classification [26], for example, if there are only 
1% positive samples but 99% negative samples. Simply 
classifying all samples as negative class will bring 99% 
accuracy, but misclassified 1% positive samples will 
bring enormous cost. Therefore, such 99% accuracy is a 
disaster for medical diagnosis. 

In our proposed method, F-value [27] defined in Equ-
ation (13) is used to evaluate the classifier for imbalance 
class problem. 

2

2

(1 )
F value



  

 


Precision Recall

Precision+Recall
    (13) 

where, Precision = TP/(TP+FN); Recall = TP/(TP+FP). 
β measures the importance of Precision vs. Recall. In 
our method, β = 1, which means Precision and Recall 
is equally important. 

In addition, G-Mean [28] is also used in evaluating the 
performance of our classifier. 

G-mean= PositiveAccuracy AccuracyNegative  (14) 

where PossitiveAccuracy = Precision, NegativeAccuracy 
= TN/(TN+FP). It can be seen that G-mean measure tries 
to build a balance between positive class and negative 
class. 

4.1. Datasets Description 

For testing, eight disease datasets from UCI are chosen. 
Some basic information about them is summarized in 
Table 2, in which P:N means the number of positive 
samples via number of negative samples. 

4.2. Experiments on the Dimension of Subspaces 

As discussed in 2.3, to randomly select a m-dimension 
subspace from a n-dimension feature space, the number 
of choices will be max

m
nk C . In our algorithm, the m is 

recommended as [ / 2]m n , since it bring the maxim 
choice. Even if we choose a Csize < Kmax, bigger value 
of kmax means more chance to get good member classifi-
ers. 

Based on dataset Breast-w, we test the relation be-
tween the dimension of a subspace and the performance 
of a classifier based on F-value. The result is shown in 
Figure 2. In this experiment, the Csize of the ensemble 
is 30. Since Breast-W has 9 features, m = 1 and m = 9 are 
meaningless to this experiment. So, the dimension of 
feature space m will be changed from 2 to 8 in experi-
ment. In Figure 2, F-value will reach its peak when m = 
5. The F-value at m = 4 is a little less than m = 5, al-

though they have the same kmax. The reason may be that 
5-feature subspace brings more information than 
4-feature one. From Figure 2, we can see that if m is too 
small, the information in each subspace is too little to 
train a good classifier; but if m is too big, there will be 
little diversity among different subspace, which is also 
bad for the performance of the ensemble. This experi-
ment shows that m = [n/2] is a good setting for dataset 
Breast-W. 

4.3. Experiment on the Size of Ensemble 

In this experiment, we test the relation between the en-
semble’s size and its classification performance. The 
Breast-W is still used and the result is shown in Figure 3. 
 
Table 1. Classification of a two-class problem. 

 #classified as 

positive 

#classified as 

negative 

Total 

Positive sample TP FN TP+FN 

Negative sample FP TN FP+TN 

Total TP+FP FN+TN N 

 
Table 2. Summary of experimental UCI disease datasets. 

Dataset #features #instances P：N  

Colic 22 368 136：232 

Sick 30 3772 231：3541 

Diabetes 8 768 268:500 

SAheart 11 462 160:302 

Hepatitis 20 155 32:123 

mammograph 5 961 445:516 

Breast-W 9 699 241:458 

Spect 22 267 55:212 

 

 

Figure 2. F-value for different dimension of subspace on 
Breast-W dataset. 
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Figure 3. F-Value for different size of an ensemble on 
Breast-W dataset. 

 
In the experiment, the dimension of subspace is fixed 

as [ / 2] [9 / 2] 5m n   . Therefore, there will be 
5
9 126C  choices of subspaces to train Csize classifiers 

for the ensemble. In Figure 3, the F-value increases 
quickly when Csize grows from 10 to 30, but the en-
hancement is not big when Csize is changed from 30 to 
120. It shows that for dataset Breast-W, 30 subspaces 
with 5 dimensions are enough to build a good ensemble. 
The additional subspace will contribute little to the di-
versity of ensemble, and there will be no much en-
hancement in performance, though the computation cost 
grows much. Therefore, 30 is a trade-off between per-
formance and computation cost for dataset Breast-W. 

4.3. Experiment Result 

In this experiment, we firstly test the performance of our 
proposed RSEAD ensemble algorithm. For comparison, 
two state-of-art classification algorithms, Bagging and 
Adaboost, are chosen. For fair comparison, C4.5 is used 
as base learner, and is configured with the default setting 
in Weka [29]. In the evaluation of performance, F-value 
and G-mean are used in experiments with 10-fold cross 
validation. For RSEAD algorithm, it has a setting with 

[ / 2]m n ，k = 30, and Imax = 50. 
Shown in Table 3 is the F-value for the minority class 

in each dataset, while Table 4 is the G-value for every 
whole dataset. For each dataset, the highest value is 
marked in bold. For convenience of comparison, the 
base learner C4.5 is also used as the reference. In the 
tables, Ada represents the Adaboost algorithm. 

In Table 3 and 4., all 3 ensembles have good F-value 
and G-mean than C4.5 on eight datasets. Compared with 
Bagging and Adaboost, our RSEAD has higher F-value 
and G-mean on most of dataset. From Table 3, it can be 

concluded that RSEAD has the best performance for 
minority class on 6 datasets. On dataset mammograph, 
the difference between ensembles is not significant. The 
reason may be that ratio between the minority and ma-
jority classes is near 4:5, which has a very small class 
imbalance. Also, dataset mammograph is defined only 
by 5 features, which leaves little room for our random 
subspace re-sampling method to enhance the ensemble's 
performance. In the evaluation based on G-mean, our 
RESEAD wins for all 8 datasets. From Tables 3 and 4, it 
can be seen that our ensemble RESEAD has better per-
formance than Bagging and ADABOOST in countering 
problem of imbalance class. This advantage comes from 
the unique way of creating each member classifier as 
well as the misclassification cost based decision in se-
lecting proper classifiers. Compared with Bagging, 
Adaboost has better performance, because Adaboost 
introduces different cost weight for different misclassi-
fication. It also indirectly proves the correctness of our 
misclassification cost estimation. 

To further test the performance of our active learning 
method with RSEAD ensemble, the Bagging and Ada-
boost are also merged into the active learning architec-
ture for comparison. Single RSEAD is tested further as 
reference. Table 5 shows how many samples each algo-
rithm needs to get certain F-value on each dataset. 
Compared with RSEAD, the active learning methods 
need fewer samples to get the same F-value. Among the 
three active learning methods, our Active-RSEAD has 
significant advantage, which benefits from the design of 
RSEAD ensemble. 
 
Table 3. F-vaule for minority class in each dataset. 

Dataset C4.5 RSEAD Bagging Ada 

Colic 76.54 80.97 79.71 80.03 

Sick 87.65 93.23 90.44 91.43 

Diabetes 61.4 71.8 67.9 69.8 

SAheart 55.3 75.2 67.4 73.1 

Hepatitis 52.8 68.4 67.2 68.5 

mammograph 79.5 81.2 82.1 83.2 

Breast-W 89.7 95.6 92.3 94.0 

Spect 73.1 79.76 76.6 77.5 

 
Table 4. G-mean for each dataset. 

Dataset C4.5 RSEAD Bagging Ada 

Colic 81.5 85.5 83.4 84.51

Sick 91.2 95.8 95.6 95.2 

Diabetes 64.3 76.4 71.4 74.3 

SAheart 60.4 77.8 72.3 77.5 

Hepatitis 58.4 76.3 74.3 73.4 

mammograph 88.4 89.4 89.1 89.3 

Breast-W 94.3 96.5 95.3 95.4 

Spect 82.3 85.6 82.4 83.4         
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Table 5. Number of sampling for target F-vlalue. 

Dataset RSEAD Active-RSEAD Active-Bagging Active Adaboost Target F-value 

Colic 41 23 35 37 85% 

Sick 321 134 178 165 93% 

Diabetes 245 101 114 106 75% 

SAheart 280 123 157 167 60% 

Hepatitis 117 45 56 54 95% 

mammograph 100 24 35 30 80% 

Breast-W 32 36 45 75 95% 

Spect 53 38 43 39 75% 

 

5. CONCLUSIONS 

To address the problem of imbalance class in medical 
diagnosis, an ensemble-based active learning method is 
proposed. Our ensemble algorithm, RSEAD, introduces 
the subspace sampling method to reduce the complexity 
of computation and bring more diversity together with 
the creation of artificial datasets. Further, in evaluating 
the quality of each classifier candidate based on misclas-
sification cost, the minority class is assigned with a 
higher weight for misclassification costs, while each 
testing sample has a variable penalty factor to induce the 
ensemble to correct current classification error. 

In above experiments, eight UCI disease datasets are 
chosen. The F-value and G-mean are used instead of 
classification accuracy to evaluate the performance of 
classifiers. The result shows that our proposed ensemble 
method has better performance than others. Moreover, in 
active learning experiment, having the same perform-
ance with F-value rule, our method needs fewer samples. 
These experiments show that our ensemble-based active 
learning method has significant advantage than tradi-
tional methods. 

Ensemble-based active learning is a promising method 
to counter the problem of class imbalance in medical 
diagnosis. But, there are still many issues for further 
studying. For example, our method only deals with 
two-class tasks, while the real world has many mul-
ti-class tasks. In addition, the noise in a dataset is not 
considered in current study. Also, the weighting method 
in our method needs further improvement from both 
theory and implementation. Therefore, we will focus on 
these issues to improve our active-RSEAD method in 
following research work. 
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