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ABSTRACT 

A 1-D and 2-D Daubechies 5 (db5) discrete wavelet shrinkage methods using a 10 level decomposition was applied to 
white light lidar data particularly at 350 nm and 550 nm backscattered signal. At 350 nm, the backscattered signal is 
very weak as compared to 550 nm backscattered signal because of the spectral intensity distribution of the generated 
white light. The 1-D and 2-D wavelet shrinkage method gave a much better result as compared with the moving average 
method. However, the 2-D wavelet shrinkage method produced a much better denoised lidar signal compared with the 
1-D wavelet shrinkage method. This is indicated by the 142% increase in correlation coefficient between the 2-D de-
noised lidar signal and the 800 nm original lidar signal as compared with only 12% increase in correlation coefficient 
for the 1-D denoised lidar signal. The 2-D wavelet shrinkage method also gave a much higher SNR value of 65.9 com-
pared to 1-D which is 38.8. 
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1. Introduction 

Supercontinuum generation on air and other gas media 
using high peak power femtosecond lasers opened the 
way for multispectral atmospheric remote sensing using a 
white light lidar. Because of its broad spectrum ranging 
from UV to IR, the technique offers several applications 
[1,2]. We have demonstrated that the coherent white light 
continuum can be used for depolarization and multi- 
wavelength measurement in the same way as the conven- 
tional lidar [3]. However, multi-wavelength lidar obser- 
vations for conventional lidar often use at least two laser 
sources. The multi-wavelength lidar measurements using 
a coherent white light continuum have the capability of 
obtaining the wavelength dependence of the backscatter 
coefficients of aerosols, which can be used to evaluate 
the particle size distribution using one laser source [1]. 
However, the present experiment does not fully utilize 
the potential of a broadband white light continuum. Lidar 
applications using the infrared region of the white light 
remains a challenge, because of the rapid decrease of the 
infrared content of the white light. Furthermore, the 
transmitted intensity of the white light was very weak for 
short wavelength (350 nm and 450 nm) as compared with 

the fundamental wavelength (800 nm). The signals are 
usually buried in noise, depending on the power of the 
laser and the observed altitude. In general, lidar signals 
with noise can be improved by moving average method. 
However, the moving average method only smoothen the 
signals and does not remove specky values especially the 
negative values produced by noises [4]. Lidar signals are 
often presented in single profile representing one acqui- 
sition (one dimension), or in terms of time-height-inten- 
sity (THI) display (two dimensions) to represent one ob- 
servation period. In this paper, we propose a method to 
improve the lidar data by means of one dimensional (1-D) 
and two dimensional (2-D) wavelet shrinkage method 
since the wavelet function is of a localized property and 
has sensitivity to the transient signals such as lidar signal. 
In addition, since the WT has different resolutions on noise 
and signal, it can perform denoising process on lidar sig- 
nal.  

2. Denoising Algorithm  

In our previous paper [5], we applied several wavelets to 
find the most suitable wavelet for white light lidar system 
described in [3]. These wavelets were Haar, Daubechies 
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2 (db2), 5 (db5), and 8 (db8), Symlets 2 (sym2), 5 (sym5), 
and 8 (sym8), and Coiflets 2 (coif2) and 5 (coif5). The 
result showed that db5 was the most suitable for our ap- 
plication, henceforth it is the one used for denoising the 
lidar signal discussed in this paper. 

2.1. 1-D Wavelet Shrinkage 

In the noise reduction based on WT, we have used the 
discrete WT (DWT) over the continuous WT (CWT) be- 
cause CWT is often redundant and computationally ex- 
pensive. The DWT involves transforming a given signal 
with wavelet basis functions by dilating and translating it 
in discrete steps [6]. 

The wavelet shrinkage [7] is a signal denoising tech- 
nique based on the idea of thresholding the wavelet coef- 
ficients. The wavelet shrinkage method is shown in Fig- 
ure 1 and can be summarized as follows: 

1) Apply the DWT to the signal. 
2) Estimate a threshold value. 
3) Remove the coefficients that are smaller than the 

threshold. 
4) Perform an inverse DWT and reconstruct the signal. 
An algorithm for calculating discrete wavelet decom- 
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Figure 1. Flowchart of 1-D wavelet shrinkage method. 

ositions and reconstructions is the Mallat algorithm [8].  
The noisy experimental signal f(t) is considered as 0s

 

k , 
called a “scaling coefficient” at the 0 level of signal de-
composition. Then, as shown in Figure 2, s(j) is succes-
sively decomposed into both s(j-1) and w(j-1) by the fol-
lowing formulas: 
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where w(j) is called the DWT coefficient, {pn} and {qn} 
are the sequence of coefficient. 

The sequences pn of Daubechies’ wavelet is given in 
Table 1 where qn is given by 
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The level of noise in lidar data is unknown and must be 
estimated from the noisy data. In this algorithm we have 
used the universal threshold as suggested in [9], 

              (3) NT log2

where N is the dimensionality of the input data vector 
and σ is the standard deviation of the noise. The σ is of-
ten estimated from the median value of the DWT coeffi-
cients at the first level of signal decomposition [4], 
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Once the threshold value has been calculated, we can ap- 
ply a soft threshold to reduce the noise in signal. If the ma- 
gnitudes of the DWT coefficients, wk

(j), are smaller than 
this threshold value, the DWT coefficients are replaced 
by zero, while the rest of them are calculated as wk

(j)  T. 
Signal reconstruction can be presented as follows: 
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Figure 2. 1-D wavelet decomposition. 
 

Table 1. Daubechies 5 wavelet sequence Daubechies com- 
pactly supported wavelet for N = 5. 

N = 5 

0.1601023 79741929 9
 

0.6038292697971895 
 

0.7243085284377726 
 

0.1384281 59013203 4
 

−0.2422948870663823 
 

−0.0322448695846361 
 

0.0775714938400459 
 

−0.0062414902127983 
 

−0.0125807519990820 
 

0.0033357252854738 
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The denoised signal s(j−1) can be successively obtained 
from w(j) and s(j) as shown in Figure 3. 

2.2. 2-D Wavelet Shrinkage 

Figure 4 gives the flowchart for the 2-D wavelet shrink- 
age method (2-D). As shown in Figure 4, the noisy ex- 
perimental image which is represented by the 
time-height-intensity (THI) display of the lidar signal is 
considered as ,nm  in the same way as 1-D wavelet 
shrinkage (1-D). DWT is applied first to ,nm  in the 
horizontal direction, represented by the time component 
of the lidar return signal. The coefficients applied in the 
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Figure 3. 1-D wavelet reconstruction. 
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Figure 4. Flowchart of 2-D wavelet shrinkage method. 

horizontal direction of the scaling function (sm,n
(j+1,x)) and 

the wavelet function (wm,n
(j+1,x)) are given by 
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Secondly, DWT is also applied in the vertical direction 
to the obtained coefficients, and these are given by: 
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,

 is the coefficient which is applied to the 

scaling function in the horizontal direction and to the 

wavelet function in the vertical direction; j v
m nw 

 1,
,

 is the 

coefficient which is applied to the wavelet function in the 
horizontal direction and to the scaling function in the 

vertical direction; and j d
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 1
,
j

m ns

 is the coefficient which is 

applied to the wavelet function in both directions. The 
vertical direction represents the height component of the 
lidar return signal. 

Then, the algorithm for the computation of the   
can be summarized by the following four equations: 
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The same procedure is done for ,m n  and succes- 
sively decomposed  

,nm  in 2-D. Finally, the de-noised 
image can be reconstructed by 
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Figure 5 shows an example of one level decomposi- 
tion 2-D wavelet transform. 

3. Experimental Results and Discussion 

In this section, we apply the 1-D and 2-D wavelet de- 
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Figure 5. One level decomposition 2-D wavelet transform. 
 
noising algorithms for reducing noise in previous obser- 
vational results found in [3]. We have taken a data size of 
1024 (= 210) points and decomposed into 10 levels for 
1-D and 2-D wavelet denoising. 

3.1. 1-D Wavelet Signal Denoising  

Figure 6 shows the denoised lidar signal based on the 
above 1-D denoising procedure with soft threshold. For 
comparison, the real signal and moving average signal 
are presented in Figure 6. In order to check whether our 
method can filter the noise out and also extract the cloud 
signals, the channel with the weakest backscattered sig- 
nal, 350 nm, is compared to the channel which relatively 
has strong backscattered signal, 550 nm. Figure 6(a) 
shows the backscattered signal at 550 nm. Cloud peaks 
can be seen at about 0.5 km and 1 km. For the strong 550 
nm backscattered signals, the 1-D wavelet denoising me- 
thod applied to the signal caused no significant diffe- 
rence. However, it can be found that cloud signals which 
were buried in noise in the weaker channel at 350 nm 
became noticeable after the denoising procedure by com- 
paring Figure 6(b) with Figure 6(a). Thus, this method 
can effectively detect the lidar signal buried in noise and 
thus reduce the noise. 

3.2. 2-D Wavelet Signal Denoising 

The 2-D wavelet signal denoising technique was applied 
to time height intensity (THI) display to evaluate the 
performance of the proposed 2-D method. Since the 
backscattered lidar signals diminish with the square of 
the range, the signals were corrected accordingly. This 
improved to a considerable degree the visualization and 
interpretation of the obtained lidar signals. The matrix  
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Figure 6. The original lidar signal from (a) 550 nm and (b) 
350 nm and the corresponding denoised lidar signals using 
moving average and 1-D wavelet shrinkage (2005/03/23 
2:13). 
 
size of the reconstructed THI image is 1024 × 1024. We 
assume that the horizontal length of the stored signal 
dataset is extended to 1024 by repeating the 16-min data 
set. The moving average for range series improves the 
signal-to-noise ratio and the image quality of experimen- 
tal lidar THI image especially at 550 nm. But the result 
of this method still includes the noise. In the moving av- 
erage THI image at 350 nm, it is not easy to discriminate 
the high-altitude cloud structures because the noise are 
generally more pronounced at higher altitude. As shown 
in Figure 7(a), the 1-D db5 wavelet denoised images 
gave improved results. However, the 1-D wavelet de- 
noised images become discontinuous in the horizontal 
direction because it was applied solely to the intensity 
level on the vertical line. Lower cloud layers vary more 
rapidly as compared to higher altitude clouds during the 
observation. This can be clearly seen in Figure 8. In 
Figure 8, the original 800 nm lidar signal is shown to- 
gether with the original 350 nm lidar signal and the de- 
noised 350 nm lidar signal using the 1-D and 2-D wave- 
let shrinkage method. At 2:11 am, the 800 nm lidar sig-
nal showed two layers of clouds, one just above 500 m 
and the other one near 1000 m. However this was not  
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Figure 7. The original lidar image from (a) 550 nm and (b) 
350 nm and the corresponding denoised lidar images using 
moving average, 1-D wavelet shrinkage, and 2-D wavelet 
shrinkage. 
 
seen on the 350 nm lidar signal. Application of the 1-D 
wavelet shrinkage method on the 350 nm lidar signal 
revealed the second cloud layer but not the lower cloud 
layer as shown in Figure 8(a). This explains the discon- 
tinuity in the lower cloud layer detection for the 1-D 
wavelet shrinkage method. But using the 2-D wavelet 
shrinkage method on the same 350 nm lidar signal, the 
two cloud layers were revealed, as shown in Figure 8(b). 
In 2-D wavelet denoising, we perform additional hori- 
zontal smoothing. We also calculated the correlation co- 
efficient of the 800 nm lidar signal with the 350 nm 
original lidar signal, 1-D wavelet, and 2-D wavelet de- 
noised signal. The correlation coefficient was applied 
only on the higher cloud layer which is about 1000 m to 
determine the degree of similarity of the shape of the 
cloud signal. The correlation coefficients are 0.27, 0.31, 
and 0.67 for the original, 1-D denoised, and 2-D de- 
noised 350 nm lidar signals, respectively. In terms of 
percent increase in correlation of the 350 nm signal with 
the 800 nm signal, a 12% increase in correlation was 
observed for the 1-D and a 146% increase in correlation  

 
(a) 

 
(b) 

Figure 8. The original lidar signal from 800 nm and 350 nm 
and the corresponding denoised  lidar signals for 350 nm 
using (a) 1-D and (b) 2-D wavelet shrinkage (2005/03/23 
2:11). 
 
was observed for the 2-D. It is also noticeable in Figure 
8 that the shape of the higher cloud layer for 350 nm 2-D 
wavelet denoised signal shows similarity with the 800 
nm as compared with the 1-D wavelet denoised signal. 
We also evaluated the signal-to-noise ratio (SNR) using 
[4] 

 2

1 1

ˆ10log
n n

k K K
i i

SNR I I I
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     
  
    (10) 

ˆ
Kwhere KI  and I  denotes denoised signal and the ori- 

ginal signal, respectively. The calculated SNR were 38.8 
and 65.9 for 1-D and 2-D wavelet method, respectively.  

4. Conclusion  

1-D and 2-D wavelet denoising were applied to white 
light lidar signals using Daubechies 5 level 10. Although 
the wavelet denoising methods cause no significant im- 
provement for strong backscattered signals at 550 nm, 
they are effective in extracting the signals from the noisy 
experimental data for the weaker channel at 350 nm. 
Compared with other methods such as the moving aver- 
age method, the 1-D and 2-D wavelet shrinkage are bet- 
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ter in reducing the noise. Evaluation of the the 1-D and 
2-D wavelet shrinkage method showed that the 2-D 
method was better in revealing the signals buried in noise 
such as the dynamic lower cloud layer as indicated by the 
higher SNR of 2-D compared with 1-D and a higher cor-
relation coefficient of the 2-D with the original 800 nm 
lidar signal. However, the shape of the lower cloud layer 
signal as compared with the lidar signal from strong 
channels such as the 800 nm was not really comparable 
although it was able to reveal the presence of the cloud at 
that height. The 1-D wavelet shrinkage method was not 
able to reveal the abovementioned cloud layer. For the 
higher altitude cloud layer which was quite stable during 
the whole observation, the 2-D wavelet shrinkage me- 
thod also gave a much better improved cloud profile. 
Wavelet denoising is often inadequate for the rapid 
changes in cloud at low altitude when attempting to se- 
parate signals from noisy data but for high-altitude 
clouds, the obtained cloud profiles are slightly improved. 
This seems to be the key feature in 2-D wavelet denois- 
ing as compared with the moving average or 1-D wavelet 
denoising. With the 2-D wavelet denoising method, sig- 
nal detection from IR to UV using the white light lidar 
signal is possible especially if there are no rapid changes 
in the cloud layer or aerosol and any lidar signal for that 
matter. This will allow us to retrieve the microphysical 
properties of cloud or aerosol layers, such as particle size. 
However, faster data acquisition is necessary to be able 
to capture the rapid changes in the aerosol or cloud lay- 
ers. 
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