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ABSTRACT 

In this present context, mathematical modeling of the propagation of surface waves in a fluid saturated poro-elastic me- 
dium under the influence of initial stress has been considered using time dependent higher order finite difference 
method (FDM). We have proved that the accuracy of this finite-difference scheme is 2M when we use 2nd order time 
domain finite-difference and 2M-th order space domain finite-difference. It also has been shown that the dispersion 
curves of Love waves are less dispersed for higher order FDM than of lower order FDM. The effect of initial stress, 
porosity and anisotropy of the layer in the propagation of Love waves has been studied here. The numerical results have 
been shown graphically. As a particular case, the phase velocity in a non porous elastic solid layer derived in this paper 
is in perfect agreement with that of Liu et al. (2009). 
 
Keywords: Love Waves; Fluid Saturated Initially Stressed Porous Layer; Time-Space Domain; Finite Difference 

Scheme; Accuracy; Dispersion Analysis; Phase Velocity 

1. Introduction 

The simulation of surface waves propagating in a fluid 
saturated poro-elastic media is of great importance to 
seismologists due to its possible applications in geo- 
physical prospecting, reservoir engineering and survey 
techniques for understanding the cause and estimation of 
damage due to natural and manmade hazards. Also the 
difficulty in exploring natural resources is gradually in- 
creasing as the nature of the reservoir is more complex 
and heterogeneous than it was assumed in past and the 
characterization of the subsurface materials as fluid satu- 
rated porous media is more realistic. It is also more ac- 
curate to consider soil as two phase composite materials, 
granular solid and pore fluid. The size of pores is as- 
sumed to be small and macroscopically speaking, their 
average distribution is uniform. 

Since poro-elastic theory was developed by Biot [1-3] 
many efforts have been made in using experimental and 
numerical methods to characterize elastic wave propaga- 
tion in porous, liquid-saturated solids. Quite a good 
amount of information about the effect of initial stress on 
propagation of surface waves is available in the literature 
of many authors namely, A. M. Abd-Alla [4], S. Gupta  

[5], Shishir Gupta [6]. In these papers they have followed 
the conventional analytical method to solve these prob- 
lems. But recently the finite difference method appears as 
an important tool for numerical simulations of partial dif- 
ferential equations and has been used widely in simulat- 
ing elastic waves. Due to easy and straightforward ap- 
proach, robustness, requiring small memory and compu- 
tation time, the Finite Difference Methods are the most 
popular methods for seismic modeling. Also wave equa- 
tion modeling in the time domain is popular because of 
its easy implementation and accuracy, compared to fre- 
quency domain modeling. In time-domain modeling, 
higher-order differencing operators are used to reduce the 
required spatial sampling. Virieux [7,8] have used velo- 
city-stress finite difference method for the propagation of 
P-SV wave and SH wave in heterogeneous media. To 
improve the accuracy and stability of finite difference 
scheme, many authors have used and developed different 
types of difference schemes. Levander [9] applied 4th 
order approximation in space to the P-SV scheme. Ha- 
yashi and burns [10] developed finite difference scheme 
with variable grids. R. W. Graves [11] discussed the si- 
mulation of seismic wave propagation in 3D elastic me- 
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dia using staggered-grid finite difference method. Kristek 
et al. [12] considered seismic wave propagation in visco- 
elastic media using 3D forth order staggeredgrid finite 
difference scheme. Saenger et al. [13] have considered 
the rotated staggered grid finite difference method. Boh- 
len et al. [14] discussed the accuracy of heterogeneous 
staggered-grid finite-difference modeling. Kristek et al. 
[15] discussed on the accuracy of the finite-difference 
schemes for the one dimensional elastic problem. Tess- 
mer [16] discussed Seismic finite difference modeling 
with spatially variable time steps. Finkelstein et al. [17] 
developed finite difference time domain dispersion re- 
duction schemes. Y. Liu et al. [18,19] discussed ad- 
vanced and truncated finite difference method for seismic 
modeling and Y. Liu et al. [20] employed a plane wave 
theory and the Taylor series expansion of dispersion rela- 
tion to derive the FD coefficients in the joint time-space 
domain for the scalar wave equation with second-order 
spatial derivatives. They demonstrated that the method 
has greater accuracy and better stability than the conven- 
tional method. Dublain [21] has demonstrated the advan- 
tages of the higher order difference scheme. Lie et al. [22] 
designed spatial finite difference stencils on a time-space 
domain to simulate wave propagation in acoustic verti- 
cally transversely isotropic medium. Two-dimensional dis- 
persion analysis and numerical modeling demonstrate 
that this stencil has greater precision than one used in a 
conventional F. D. Lie et al. [23] discussed finite differ- 
ence numerical modeling in two phase anisotropic media 
with even order accuracy. Zhu et al. [24] developed finite 
difference modeling of the seismic response of fluid sa- 
turated, porous, elastic solid using Biot theory. Lie et al. 
[25] developed a time-space domain dispersion-relation- 
based staggered-grid finite-difference schemes for mod- 
eling the scalar wave equation. Also, the new stencils can 
adopt a larger time step. Dispersion analysis and nume- 
rical modeling results demonstrate that the new stencils 
have greater accuracy and can effectively suppress the 
dispersion and retain the waveform. 

In this paper, following [22,25] we have modeled the 
Love waves in a fluid saturated poro-elastic media under 
the influence of initial stress using time-space domain 
higher order finite difference method. The dispersion 
equation has been obtained and the presence of the po- 
rosity parameter, the non-dimensional anisotropic para- 
meter and the non-dimensional parameters due to the ini- 
tial stress in the equation of dispersion shows the signifi- 
cant effect on the propagation of love waves. The phase 
velocity of Love wave has been computed numerically 
and presented graphically. It is observed that the anisot- 
ropic parameter in the porous layer and the porosity of 
the layer both have the increasing effect but the initial 
stress field has an decreasing effect on the phase velocity 

of Love wave. 

2. Formulation of the Problem and Its Finite 
Difference Approximation 

2.1. Formulation 

We consider a model consisting of fluid saturated an- 
isotropic poro-elastic layer of finite thickness under com- 
pressive initial stress; the x-axis is chosen parallel to the 
layer in the direction of propagation of surface wave and 
the z-axis is taken vertically downward. 

Neglecting the viscosity of the fluid and the body force, 
Biot’s dynamical equations for the fluid-saturated an- 
isotropic porous layer under compressive initial stress are 
given by [1,2] 
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where 11P S 
1,2,3)j

, the initial stress along x axis,  

ij , ( ,s i  , are the components of stress tensor in 
the solid skeleton,  s fp   is the reduced pressure of 
the fluid (  is the pressure in the fluid, and p f  is the 
porosity of the porous layer), i  are the components of 
the displacement vector of the solid and  are those of 
fluid of the porous aggregate, i  are the an- 
gular displacement vectors. The dynamic coefficients, 

11 12 22

u

iU
2,3,w i  

, ,    take into account of the inertia effects of the 
moving fluid and are related to the densities of the solid 

S  the fluid f  and the layer   by the equation 

 11 12 1 Sf     , 12 22 ff    , 

so that the mass density of the aggregate is 

 11 12 222 s f Sf             . 

Also the dynamic coefficients, moreover, obey the ine- 
qualities  2

11 12 22 11 22 120, 0, 0, 0.         
The stress-strain relations for the fluid-saturated an- 

isotropic porous layer under initial stress are given by 
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where  , ,

1

2ij i j j ie u u   and  and e   u    U   

are the corresponding dilatations which opposite in sign, 
A, N, L correspond to the familiar Lame’s constants, R is 
the amount of pressure required on the fluid to force a 
certain volume of the fluid into the aggregate while the 
total volume remains constants and Q is the coefficient of 
coupling between the volume change of the solid and that 
of the fluid. 

Also the angular displacements are given by 
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For the propagation of Love waves along x axis, using 
conventional conditions, 

i.e.  and   20, ,0uu 
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where 2  and 2  the equations 
of motion given by (1) and (2) are reduced to the form 
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where 1N N     and 2P N   is the non-dimen- 
sional parameters due to the initial stress. 

Eliminating the component of liquid displacement V 
from (4) and (5) we have 
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From the Equation (6) it can be seen that the velocities 
of shear waves in the porous medium in x and z direc- 
tions are N d   and L d   respectively and from 
(7),  is less than 11d    and hence, in turn, less than  , 
the density of the elastic layer for all values of 12 0  . 
This shows that the velocities of shear waves in x and z 
directions in the fluid saturated porous layer will be more 
those of corresponding elastic layer. 

2.2. Finite Difference Approximation 

Equation (6) can be written as 
2 2
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where  1 , N L       and N d   , the ve- 
locity of shear wave in the porous medium in x direction. 

The shear wave velocity in the x-direction may be ex- 
pressed as 
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
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                (9) 

where 2
11 12 22d      and a N  , the velocity 

of the shear wave in the corresponding non-porous, ini- 
tial stress free anisotropic elastic medium along the di- 
rection of x. Also, 

11 11 12 12 22 22, ,              (10) 

are the non-dimensional parameters for the material of 
the porous layer [1,2]. 

To improve the accuracy we have considered here the 
higher order finite difference scheme for spatial deriva- 
tives as 
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As generally higher order finite difference on temporal 
derivatives scheme requires large space in the computer 
memory and usually unstable, 2nd order finite difference 
scheme is used for temporal derivatives as 
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(14) 
Using the plane wave theory, let us consider 

     i
, e x zk x mh k z jh t nn

m jv
              (15) 

Substituting (15) into (14) and simplifying, we have 
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where r
h


 , cos , sinx zk k k k   ,  , being the  

propagation direction angle of the plane wave. 
Using the Taylor series expansion for cosine functions, 

we have from (16) 
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Comparing the coefficients of 2 jk , we get, 
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where  1, 2, , .j M 
This equation indicates that the coefficients m  are 

the function of 
a

 . To obtain a single set of coefficients, 
an optimal angle has to be chosen. We solve the equation 
(19) to get m  by using a 4   and then  can be 
obtained from (18). 

0a

3. Errors and Accuracy 

The error function of Equation (17) can be written as 
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Since the minimum power of h in the error function 
(20) is 2M, the accuracy of this finite difference scheme 
is 2M when we use 2nd order time domain finite differ- 
ence scheme and 2M-th order space domain finite dif- 
ference scheme. The increase in M may decrease the 
magnitude in errors but may not increase the order of ac- 
curacy. As we have used the finite difference scheme in 
both time domain and space domain, the wave Equation 
(8) can be solved in both time domain and space domain 
simultaneously by (14). 

4. Dispersion Analysis 

Let us define a parameter   to describe the dispersion 
of Finite difference by using Equation (17) as follows: 
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If   is equal to 1, then there is no dispersion. How- 
ever, if   is far from 1, a large dispersion will occur. In 
calculating  , , the grid points per wavelength, 
ranges from 0.04 to 0.5 and the variation of 

0d 
  is from 0 

to π 4 . 
The presence of d, the porosity parameter, N L  , 

the non-dimensional anisotropic parameter and  
2P N  , the non-dimensional parameters due to the 

initial stress shows that the dispersion curve are affected 
by these also. 

It may be noted that  1 d  gives the fraction of po- 
rosity in the layer. If the layer is non-porous then 

 and hence 0f  s   and we find 11 12 1     

and 12 22 0    which leads to 
2
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11
22

1

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   i.e.  

1d  . 
Again if  then f1f     and the layer be- 

comes a fluid, and in that case the shear wave velocity in 
the layer cannot exist which so happens when . 0d 

Thus we have the following: 
i) , when the layer is non-porous solid; 1d 
ii) , when the layer tends to be fluid; 0d 
iii) 0 d 1  , when the layer is porous. 
Here we study the dispersion curves for different grid 

points per wave length, velocities, porosity, anisotropic 
parameters, non-dimensional parameters due to the initial 
stress and time steps. 

5. Numerical Calculation and Discussions 

The numerical calculation of the Equation (21) has been 
done for different values of the parameters , d and by 
taking, 1500  . The phase velocity FD av   of Love 
wave from the Equation (21) versus xh , the grid points 
per wavelength, has been computed for different values 
of 

1,0.95,0.90,0.85,0.80, ,0.45d   , 

2 0,0.2,0.4,0.6,0.8P N   , 1,2N L   , 

the propagation angle 0,π 16,π 8,3π 16,π 4   and 
0.0005,0.001,0.0015,0.002,0.0025,0.003t  . 

Figures 1-3 display the dispersion curves of Love 
waves with respect to different grid points per wave 
length, at different values of M in a homogeneous non 
porous initial stress free elastic solid, porous isotropic 
and anisotropic layer under the influence of initial stress 
respectively. It is found that dispersion is more for the 
lower values of M and less for higher values of M. Here  
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Figure 1. Dispersion curves for love waves for different 
values of M when ,  and . ς 1 d 1 0 0ξ  
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Figure 2. Dispersion curves for love waves for different 
values of M when ,  and . ς 1 0 8d   0 2ξ  
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Figure 3. Dispersion curves for love waves for different 
values of M when ,  and . 2ς  0 8d   0 2ξ  

also it is observed that the increase in porosity and ani- 
sotropy leads to the increase in the magnitude of the 
phase velocity of Love waves whereas the increase in 
initial stress parameter leads to decrease in the phase 
velocity of Love waves. 

Figure 4 shows the effect of porosity in the dispersion 
of phase velocity of Love waves with respect to different 
grid points per wave length in a homogeneous, isotropic 
porous layer without initial stress field and under the in- 
fluence of initial stress. It is observed that as the porosity 
increases, that is, as the value of d decreases, the phase 
velocity of Love wave increases and decreases as the ini- 
tial stress field increases. 

Figures 5 and 6 show the effect of initial stress field in 
the propagation of Love waves with respect to different 
grid points per wave length in a isotropic and an-iso- 
tropic non-porous elastic solid and fluid saturated porous 
layer. As the anisotropy increases, the phase velocity of 
Love wave increases and the phase velocity of Love  
 

 

Figure 4. Dispersion curves for love waves for different 
values of porosity d and initial stress  when ξ 1ς  . 

 

 

Figure 5. Dispersion curves for love waves for different 
values of initial stress ξ and anisotropic parameter  when 
d = 1. 

ς
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Figure 6. Dispersion curves for love waves for different 
values of initial stress  and anisotropic parameter  

when . 

ξ ς

d  
 
wave decreases as the initial stress field increases. 

Figures 7 and 8 display the dispersion curves of Love 
waves with respect to different grid points per wave 
length at different angles of propagation in a homogene- 
ous fluid saturated porous layer and non-porous elastic 
solid layer for different values of initial stress respec- 
tively. It is observed that dispersion is more for the lower 
degree of propagation angles as compare to the higher 
degree of angle. Phase velocity is more in fluid saturated 
porous layer than in non-porous elastic solid layer. Later 
is the case discussed by Yang Liu et al. [20]. 

Figures 9 and 10 displays the dispersion curves of 
Love waves with respect to different grid points per wave 
length at different time steps in a homogeneous non po- 
rous elastic solid and non-homogeneous, anisotropic fluid 
saturated porous layer without initial stress field and un- 
der the influence of initial stress respectively. It is found 
that initially the dispersion is less and as time increases, 
the dispersion increases. 

6. Conclusion 

It is observed that the higher order time dependent finite 
difference method plays an important role in the propa- 
gation of Love waves in a porous layer under the influ- 
ence of initial stress. Graphically we have shown that the 
dispersion curves of Love waves are less dispersed for 
higher order finite difference method. It has also been 
shown that initially the dispersion is less and as time in- 
creases, the dispersion increases. The significant effect of 
porosity, anisotropy and initial stress simultaneously in 
the propagation of Love waves in a porous layer has also 
been discussed. The phase velocity of Love wave is more 
in fluid saturated porous layer than in non-porous elastic 
solid layer. The anisotropy has an increasing effect where- 
as the initial stress field has a decreasing effect on the 

 

Figure 7. Dispersion curves for love waves at different 
propagation angle  for different values of initial stress 

 when anisotropic parameter  when 
θ

ξ ς   d   . 

 

 

Figure 8. Dispersion curves for love waves at different pro- 
pagation angle  for different values of initial stress  

when anisotropic parameter  when d . 

θ ξ

ς    
 

 

Figure 9. Dispersion curves for love waves waves at differ- 
ent time steps for different values of anisotropic parameter 

 when initial stress ς ξ    and d .  
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Figure 10. Dispersion curves for love waves waves at dif- 
ferent time steps for different values of anisotropic pa- 
rameter  when initial stress  and d = 0.8. ς 0 2ξ  
 
phase velocity of Love waves. 
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