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ABSTRACT 

Extreme Black Holes is an important theoretical laboratory for exploring the nature of entropy. We suggest that this un- 
usual nature of the extremal limit could explain the entropy of extremal Kerr black holes. The time-independence of the 
extremal black hole, the zero surface gravity, the zero entropy and the absence of a bifurcate Killing horizon are all re- 
lated properties that define and reduce to one single unique feature of the extremal Kerr spacetime. We suggest the 
presence of a true geometric discontinuity as the underlying cause of a vanishing entropy. 
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1. Introduction 

One of the most remarkable ideas in black hole theory is 
the analogy between the laws of classical black hole me- 
chanics and the laws of thermodynamics. 

Black hole thermodynamics has become an active area 
of research since Bekenstein showed that the entropy of a 
black hole is proportional to the area of the horizon [1]. It 
is a well known fact now that that a black hole exhibits 
an unusual similarity to a thermodynamic system. 

Our analysis reveals a purely geometrical disparity be- 
tween the extreme and near extreme Kerr geometries, due 
to the singular nature of extreme regime. In other words, 
the approach to extremality is not continuous. The nature 
of the extremal Kerr metric is very different from other 
stationary solutions. We focus on relating the entropy of 
extremal Kerr black holes strictly to their geometric 
structure. Any classical method involving a finite number 
of steps used for the extremal case leads to subtle incon- 
sistencies like a vanishing entropy and zero surface grav- 
ity while the area of the event horizon still remains posi- 
tive. Using the near-extremal limit to evaluate the black 
hole entropy leads to major discontinuities. 

Our aim is to understand this discontinuity working 
solely on pure geometric grounds. The discontinuous na- 
ture of entropy during the transition from non-extremal 
to extremal black hole is directly connected with a dis- 
continuous topological nature of the horizon. The en- 
tropy of extremal black holes can’t be determined as a 
limit of the non-extremal case. The geometry of the ex- 
treme black holes could shed some light on understand- 
ing black hole entropy in general. Extremal black holes 
can’t be regarded as limits of non-extremal black holes 
due to this discontinuity. We suggest that the reason for 

this discontinuity is that non-extremal and extremal black 
holes are topologically different and the switch from one 
to another can’t be done in a continuous manner. In this 
paper we study various properties of extreme Kerr black 
holes to expose the underlying topological nature of the 
discrepancy between extreme and non-extreme regimes. 

2. No Evolution or Time Reversibility 

It is well known that Einstein’s field equations are time- 
reversal invariant. A maximally extended spacetime in- 
cludes apart from the black hole solution, its “time-re- 
verse” case. In the non-extreme case, the extended space- 
time  0   possesses a bifurcate Killing horizon. In 
the extreme case (surface gravity ), no distinct time- 
reverse equivalent exists, the black hole is time-indepen- 
dent everywhere and possesses a single degenerate Kill- 
ing horizon. The surface gravity  of a black hole can 
not be reduced to zero within a finite time. In the ex- 
tended Schwarzschild spacetime, a white hole region be- 
comes the time-reverse of the black hole region. The fu- 
ture event horizon, which separates two regions, is dis- 
tinct from the past event horizon. The two regions inter- 
sect at the bifurcation two-sphere. The time-reverse of 
one region yields another region. In the non-extremal 
Kerr extended case, a new region is the time-reverse of 
the black hole, generating distinct patches in between the 
two horizons. The extremal Kerr extended spacetime does 
not contain such a distinct time-reverse patch but always 
duplicates of the same patch. There is no distinct time- 
reverse region and no distinct event horizon. The extre- 
mal Kerr black hole has no time-reverse equivalent or, in 
other words, it is time-independent everywhere. Further- 
more, a naked singularity is composed of one single re- 

0 


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gion and has no time-reverse region, has no event hori- 
zon and zero entropy. 

In the extremal case, the Killing vector field on the ho- 
rizon is null on a timelike hypersurface intersecting the 
horizon and it is spacelike on both sides [2]. The event 
horizon is determined by a Killing vector field whose 
causal properties change from timelike to spacelike across 
the horizon. This Killing horizon becomes null on a time- 
like hypersurface surrounding the horizon. The presence 
of a Killing vector field which is timelike in a region 
around the event horizon is a very peculiar and puzzling 
feature. The horizon Killing field is spacelike except at 
the horizon itself [3]. 

In Boyer-Lindquist coordinates, the Kerr metric is 
given by 
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The horizons are situated at   , i.e. at,  
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: ,
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The Kerr spacetime gets divided into three regions:  

                (6) 
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Region I is the exterior, region II lies between the two 
Killing horizons at , and region III is an asymp- 
totic region. The mass of the black hole is m, its angular 
momentum J am

a m
, and its event horizon happens at 

 . The extremal case is obtained by setting r  r  , 
in which case there is no region II since the two horizons 
coincide. The  case describes the generic black 
hole, while  describes a naked singularity [4]. 

a m
a m

0 The solutions for  generate the inner and outer 
horizons: 
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The metric has two Killing vectors,  

t  and  . We 
can construct a Killing vector   as a linear combina- 
tion of two vectors: 0K R      with 0  being a 
constant. 

Both 2  and  are positive but on the ring singu- 

larity they vanish. 



In the non-extremal case,  .    r r r r      is 
positive for r r r r or  r r  and zero for   and 
r r . But   is negative in the region  represent- 
ing 


r r r   , always remaining between the horizons. 

Since any linear combination of the two Killing vectors 
remains spacelike,   is nonstationary. 

In contrast, the extreme case  has 
2 a m  r a   , 

positive everywhere except at the event horizon  r a  
where it is zero. If 0   at 0 , we obtain the 
angular velocity of a zero angular momentum observer 
(ZAMO). A ZAMO observer exists at every point in the 
spacetime. The Killing vector 

r r

  is timelike or null. At 
each point, one can have a different timelike Killing vec- 
tor (except at the horizon where it vanishes). There is no 
point where all Killing vectors are spacelike and no re- 
gion is non-stationary. A general Killing vector field of the 
generic Kerr solution is given by the linear combination  
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This can vanish for all   only if  [5], that is 
on one of the horizons. It vanishes on the outer horizon 
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The linear combination defines the horizon Killing 
vector field  . We have 
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In 3 + 1 decomposition, the Kerr metric becomes: 
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where we introduced the lapse function N, the shift 
vector  and the induced metric . aN h



2

ab

Depending on , the solution depicts a black hole or 
a naked singularity. The lapse function is never negative. 
Since  ,  and  depend only on r and    , the lapse 
function N also depends only on r and   and is time- 
independent. The induced ab  and the momentum con-
jugate Pab are time-independent everywhere. Thus, there 
is no time evolution of the phase space ab  . The 
coefficients 

h

, abh P 
h , rr  and h h  can’t be positive and 

they are independent of time. They all depend on r and 
 : ab  is zero everywhere. h N  is also time-inde- 
pendent and it depends only on r and  . The momentum 
conjugate to ab ,  is also time independent. The 
extrinsic curvature 
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Obviously  is only dependent on r and   and 
consequently it is independent of time. There is only one 
single classical microstate  , ,  ,abP rabh r   




a m

  avail- 
able. 

In the non-extremal case, the region   is non-sta- 

tionary and the general 3 + 1 decomposition in this re- 
gion has N2 positive. However, all  components are 
time dependent. The phase space in  is time depend- 
ent. The entropy is not vanishing, since there is more 
than one classical microstate hidden from the outside 
observer. 

3. No Thermality 

A non-extremal spacetime with an outer and an inner 
horizon becomes extremal as the outer horizon approa- 
ches the inner one. The two horizons are in equilibrium 
at two different temperatures and the temerature of the 
outer horizon approaches zero. Consequently, no ther- 
mality is observed at the outer horizon. 

In the extremal regime, the flux is the same both out- 
side and inside the horizon and approaches zero on the 
horizon, with a vanishing temperature in the extremal 
case. There is a finite discontinuity of flux in the extre- 
mal limit of the non-extremal regime. There is no physi- 
cally acceptable smooth transition from the extremal re- 
gime as a limiting case of the non-extremal one and the 
pure extremal case. 

To understand the thermal nature of an extreme black 
hold, let us firstly find the probability flux across the ho- 
rizon. To achieve this, we write the Kerr metric in Kru- 
skal coordinates and set   for the extreme regime:   
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the surface   appears at v u . The Kruskal 
coordinates U, V are: 

  

The future horizon is located at:  
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π
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To find the outgoing probability flux across the hori-
zon, we find:   
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 , no thermality is observed. 
The horizon behaves like a transparent membrane. The 
flux at , is obtained by regularizing the delta- 
function. Using the limit , we obtain:  
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A finite discontinuity of flux and no thermality is present 
at the horizon. This discontinuity is not coordinate re- 
lated. For an extremal black hole, the proper radial dis- 
tance from the horizon to any point close to the horizon 
outside or inside, is infinite. It is impossible for any inci- 
dent particle state to cross the horizon. An extremal black 
hole cannot absorb or emit particle states. The coordi- 
nates ,  remove the coordinate singularity at the 
horizon. However  fails to be a proper distance. The 
discontinuity in  is not physical. The flux needs an 
infinite proper time to become zero at the horizon when 
it is incident either from inside or outside. When equated 
to the Boltzmann factor, it implies an infinite  . This is 
equivalent to setting a zero temperature for the black hole. 
In the extremal limit, when  [6], the effective 
temperature is zero and the emission probability is also 
zero. The flux is the same both outside and inside the ho- 
rizon and zero at the horizon. This means a vanishing 
temperature, therefore a finite discontinuity in flux. 

r  r

4. Vanishing Entropy 

An interesting question appears. Where should we calcu- 
late the entropy: on (or nearby) the horizon or within the 

black hole (disc) itself? Is the entropy created immedi- 
ately after the gravitational collapse, or later during the 
black hole evolution? The extremal entropy is independ- 
ent of the black hole evolution and its internal configure- 
tion. Can such a function be purely derived from geo- 
metric or topological considerations? The third law of 
thermodynamics states that the surface gravity vanishing 
limit cannot be reached within a finite time [7]. Cosmic 
censorship Conjecture forbids reducing the surface grav- 
ity to zero. It is impossible through a finite number of 
physical processes to reach the zero limit surface gravity. 
However, the extremal Kerr black hole has a vanishing 
surface gravity therefore zero temperature. 

Statistical mechanics describes the entropy of a system 
by the natural logarithm of internal states count: S = lnQ. 
A microstate Q? is a function of the system’s macrostate. 
The entropy is a function of these variables. An interest- 
ing relation between (macroscopic) entropy and statisti- 
cal thermodynamics (number of microscopic states) be- 
comes evident. Where there is only one microstate, Q = 1 
and the entropy is zero, no disorder is present. One single 
state corresponds to the extremal regime. Extremal black 
holes can’t be viewed as limits of non-extremal regime 
because of this discontinuity. Our assessment is that the 
non-extremal and extremal regimes are topologically dif- 
ferent and the discontinuity itself can be explained on 
geometric grounds. 

An infinitesimal perturbation in mass, spin and hori- 
zon area can be written in Kerr metric: 
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and replace the term  by  , we find that the 
entropy  must be identified with A 4  up to an affine 
constant, which we set to zero by introducing the limit 
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The entropy becomes:  
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where BH  is the Bekenstein-Hawking entropy, G is 
Newton’s constant and A is the event horizon area. 
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We see that in extremal regime, HT  because 

  . The analogy between the Equations (35) and (36) 
can’t be done anymore. We also have  
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The entropy can be now described a function of m with a 
singularity at the extremal limit . m a

Let us assume the entropy being an arbitrary function 
of the area:  
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 are the change in entropy and 
area of the black hole when the internal configuration is 
changed (for example, when a particle falls into it). After 
the particle crosses the horizon, there is no information 
about its state or status. We therefore assume that it is 
equally probable for it to exist or not. The minimum en- 
tropy change can be written  
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diverging for any   . For any small finite  , the 
proper radius of the particle becomes infinite. Therefore 
we need to have   0 

0
. For  (point particle), we 

have . The change in entropy requires that  
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


            (44) 

with a discontinuity in the extremal limit. 
A semi-classical picture evaluates the gravitational 

path integral by employing the euclideanized black hole 
geometry. If we consider the euclideanised case, the met- 
ric in n dimensions near the horizon is  

2 2 2d   ds N N   .       (45) 

and the proper angle   in the r-  plane near the ho- 
rizon becomes  

  




N

       (46) 

where   is the N differentiated with respect to r. N 
depends on the proper angle  :  

     22
2 1  2  .t t N r r O r r  

      

2 2 2 2d d d ,s

   (47) 

In two dimensions, the metric near the horizon reduces 
to:  

   

 
            (48) 

2 .r r NN with    To avoid a conical singular- 
ity at the horizon, the period of   is identified with , 
which corresponds to the topology of a disc with zero de- 
ficit angle in the 

2π

-r   plane. This can always be done 
for non-extremal black holes, as   r

 is nonzero. 
In the extremal case, the proper radius diverges and the 
proper angle tends to zero. The disk topology is replaced 
with an annulus one. The topology of the transverse sec- 
tion in either case is 

NN 

2nS  . For a wrong periodicity, the 
geometry would have a singularity at the origin linked to 
the excess angle, like a cone structure that we may create 
out of a sheet of paper. The conical excess angle be- 
comes  and the topology is that of an annulus. The 
topology of the transverse section in either case is 

2π
2nS  . 

An interesting feature of the solution is that the interior 
of the black hole is completely absent in the euclidean 
case. To know what is happening inside the black hole, 
the euclideanized spacetime is continued to an imaginary 
value of the radial coordinate near the horizon. 

The Euclidean action leads to the entropy  

d
1

d
.ES I


 

  
 

uclidEt it

              (49) 

The euclideanized version imposes   in the 
metric, with r r 2 2R S

, uclidr t
2R r

 leading to a  manifold to- 
pology. The polar coordinates  E  are defined 
on the  with origin   and periodicity   of the 
Euclidean time angle E . An interesting fact is that 
the Lorentzian manifold   regions can’t be in- 
cluded in the Euclidean solution. The boundary contribu- 
tions from the vicinity of the origin for the non-extremal 
regime are independent of 

uclidt
r r

  and the canonical action 
is proportional to  , leading to Bekenstein-Hawking 
entropy 4S A G  [8]. The  contribution does not 
degenerate at the origin because . 

2S
r r

r


In the extremal regime,   is infinitely far away from 
any point outside the horizon and consequently this point 
must be removed from the whole Euclidean manifold. 
The extremal black hole horizon is an infinite proper dis- 
tance from any stationary observer. There is an absence 
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of a conical singularity at the origin of the manifold. The 
topology of the Euclidean extremal solution becomes 

. The periodicity of the the Euclidean time is 
not fixed. Because the origin doesn’t exist any more, for 
any periodicity of the Euclidean time, no conical singu- 
larity is formed [9]. The origin is not part of the manifold 
and the contribution from the vicinity of the origin van- 
ishes. Consequently the entropy is zero. 

1 2R S S 

2n

We believe that this topology can explain what is ac- 
tually happening with the entropy. If we consider the 
black hole as a microcanonical ensemble, in a Hamilto- 
nian formulation, the action I is proportional to the en- 
tropy. A dimensional continuation of Gauss-Bonnet theo- 
rem to n dimensions gives us the action:  

I A                  (50) 

with   the Euler characteristic of the euclideanised 
r   plane and 2nA   the area of the transverse 2nS  . 
The black hole entropy becomes  

   .
4

A
S

G




1

                (51) 

In the non-extremal regime,    corresponding to a 
disc and leading to the regular area law. In the extremal 
case, we have 0   (annulus), implying a vanishing 
entropy. 

5. Discussion 

Cosmic Censorship tries to solve the following problem: 
can a singularity exist in the absence of a horizon (naked 
singularity, not a topic of this paper)? Similarly, the ex- 
istence of extreme black holes relies upon answering the 
question: can a spinning singularity exist without two 
separate horizons? This is an interesting problem. Ex- 
tremal Kerr black holes are stationary black holes whose 
inner and outer horizons coincide. An extremal black 
hole has  and no bifurcate Killing horizon. Also, 
the past and future horizons never intersect. There is no 
physical process that can make an extremal black hole 
out of a non-extremal black hole. A near-extremal black 
hole has a sort of potential barrier close to the horizon 
that prevents to reach extremal regime. These type of 
black holes represent the asymptotic limit of physical 
black holes [10]. Extremal black holes never behave as 
thermal objects. Their temperature is always undefined 
and their emission spectrum is non-planckian. Their non- 
thermal nature is a consequence of the geometric nature 
of the horizon. All characteristics of the stress-energy 
tensor are different from those in the non-extremal re- 
gime. A final thermal macrostate can’t be achieved in a 
smooth continuous way without violating the energy con- 
ditions. The extremal Kerr black hole cannot be produced 
through a process involving any finite number of steps 
without violating the weak energy condition. Conse- 

quently an extremal black hole cannot be produced 
through a finite number of processes or through standard 
gravitational collapse. 

0 

, abh P 

0

However, black hole entropy can be also defined as a 
measure of the observer’s accessibility to information 
about the internal configuration hidden behind the event 
horizon. This internal configuration can be depicted as 
the sum of points in the phase space, defined by a 
number of classical microstates ab  . We can say 
that extremal Kerr black hole has zero entropy because it 
possesses a single classical microstate. Extremal black 
holes have zero temperature, surface gravity    and 
zero entropy therefore they obey the strong version of the 
third law of thermodynamics. 

We could say that an extremal Kerr black hole has 
zero entropy only because it has one single classical 
microstate. There is no continuous set of classical states 
and no time evolution. All metric components are time 
independent. Any observer should have complete access 
to the unique classical state found within the region be- 
yond the event horizon. 

A regular black hole has non-zero entropy because an 
event horizon hides its internal configuration and there 
are more than one internal states within its configuration. 
An extremal black hole has an event horizon but because 
the phase space is time independent, it doesn’t hide more 
than one internal configuration. The extremal solution 
doesn’t have a time-reverse equivalent or a bifurcate 
Killing horizon. The condition for a non-zero entropy is 
the existence of a bifurcate Killing horizon in the ex- 
tended spacetime. Wald’s general formula for the en- 
tropy of a black hole [11] should be calculated at the bi- 
furcation two-sphere not on the event horizon. The en- 
tropy is calculated as the integral of a geometric quantity 
over the spacelike cross section of the event horizon. The 
generated entropy at the event horizon represents the 
Noether charge of the Killing isometry that generates the 
event horizon itself. This geometric origin of the entropy 
suggest a deeper connection between the gravitational 
entropy, the topological structure of the spacetime and 
the nature of gravity. We suggest a purely local and geo- 
metrical character of the entropy. The different nature of 
the event horizon in the regular and extreme case re- 
quires different calculations of the entropy. The thermo- 
dynamic features are consequences of the topological 
structure of the space-time. The geometric nature of the 
boundary of the manifold determines the character of the 
entropy of the black hole. In the non-extremal regime, 
the proper distance and the coordinate distance between 
the inner and outer horizons are finite. In the extremal 
case, the proper distance between the event and Cauchy 
horizons becomes infinite, even though the coordinate 
distance vanishes. All these peculiar features are con- 
nected to a major property of extremal geometry: the 
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absence of outer trapped surfaces within the horizon, 
which will be the subject of further work. Wald also as- 
sumed a local, geometrical character of the concept of 
black hole entropy [12], when he calculated the entropy 
at the bifurcation two-sphere. Entropy is depicted as a 
local geometrical quantity integrated over a spacelike re- 
gion of the horizon. 

For a regular black hole, the zeroth law imposes that 
the horizon of a black hole must be bifurcate and the sur- 
face gravity must be must constant and non-vanishing. In 
the case of a degenerate Killing horizon there is no such 
bifurcation between the horizons. The area between ho- 
rizons is completely absent. 

6. Conclusion 

The primary condition for a non-zero entropy is the exis- 
tence of a bifurcate Killing horizon. This single criteria is 
enough. We analyzed a few features of the Kerr black 
hole that distinguish the extremal regime from the near- 
extremal one. From a thermodynamic point of view, 
there is a discontinuous nature of the entropy between the 
non-extremal and extremal cases, as the entropy of ex- 
tremal regime is not the limit of the non-extremal one. 
While dual and string theory dual microstate counting 
predict non-vanishing entropy solutions for extreme re- 
gime, we suggested that the unusual nature encountered 
in the extremal limit using semi-classical methods repre- 
sents a genuine relevant topological discontinuity and 
therefore the origin of a vanishing entropy. The entropy 
is zero, in agreement with semi-classical solutions, due to 
a degeneracy of the horizon geometry. The spacetime to- 
pology plays an essential role in the explanation of in- 
trinsic thermodynamics of the extreme black hole solu- 
tion. We conclude that the topology itself of the extreme 
black hole is enough to explain entropy in this regime. 
Moreover, the study of extreme black holes could play a 
crucial role in understanding gravitational entropy in 

general. 
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