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ABSTRACT 

Botrytis cinerea affects plant yield and quality. Many 
Botrytis species are morphologically similar leading to 
difficulty in pathogen identification. Spectroscopy can 
be used to identify pathogenic fungi. This study de- 
scribes a novel method for fungal characterization. 
Here, we determined the spectral signatures of dif- 
ferent B. cinerea isolates as well as various fungal 
genera. A unique spectral pattern was investigated at 
both genus and isolate level. The short wave infrared 
II (2055 - 2315 nm) provided the best discrimination 
between the fungal samples observed. Moreover, the 
spectral analysis was performed on non-transformed 
data and investigated significant differences among 
fungal genera as well as B. cinerea isolates, while the 
results investigated high similarity among replicates 
of the same isolate of B. cinerea. The results of each 
spectral test were obtained reproducibly without an 
expensive cost consumable during sample prepara- 
tion and measurements. This innovative approach 
would allow us to identify, discriminate and classify 
fungi rapidly and inexpensively at the genus, species 
and isolate level. 
 
Keywords: Gray Mold; Fungal Identification; Fungal 
Classification 

1. INTRODUCTION 

Botrytis cinerea Pers.:Fr. (teleomorph: Botryotinia fucke- 
liana (de Bary) Whetzel), the cause of gray mold, is a 
necrotrophic pathogen causing economically important 
pre- and postharvest diseases in at least 235 plant species. 
One of the major infections it causes, grape and straw- 
berry fruit rot, leads to reduced quality and quantity of 
fruit. Although variation in morphology and aggressive- 
ness characteristics had been reported between isolates of 

Botrytis spp. [1,2], many species are morphologically 
similar [2]. No key to all recognized species is available 
and identification of species based on traditional criteria 
can be difficult [3]. Moreover, genomic variability had 
been demonstrated in fungi [4-6]. Genetic characteriza- 
tion of B. cinerea had showed significant differentiations 
among isolates collected from different host plants [7,8]. 
It was previously determined that isolates sampled from 
grapes and tomatoes were genetically differentiated us- 
ing random amplified polymorphic DNA (RAPD) and 
polymerase chain reaction-restriction fragment length 
polymorphism (PCR-RFLP) markers [9]. Discrimination 
of fungi at species-level had been investigated using ITS 
rDNA test, but variation in the ITS region within Botrytis 
is low, limiting its use in this genus [3]. 

Remote sensing is the acquisition of information 
about an object or phenomenon, without making physi- 
cal contact with the object. Hyperspectral sensors col- 
lect numerous wavelengths of reflected or transmitted 
radiance in many contiguous wavelengths. In modern 
usage, the term generally refers to the use of aerial sensor 
technologies to detect and classify various objects by 
means of propagated signals [10,11]. Certain objects 
leave unique “fingerprints” across the electromagnetic 
spectrum (EM). These “fingerprints” are known as spec- 
tral signatures and enable identification of the scanned 
organism. Spectral signatures are the specific combina- 
tion of reflected and absorbed electromagnetic radiation 
at varying wavelengths which can uniquely identify an 
object. Hyperspectral data contain information that re- 
lates to important biochemical properties in the cell [12- 
16]. 

The measurements can be made with various instru- 
ments, including spectroradiometers. Hyperspectral re- 
mote-sensing approaches have been proposed for various 
agricultural purposes such as the identification and clas- 
sification of plant species, estimation of plant yield, de- 
tection and quantification of crop diseases [16,17], ex- 
traction of crop biophysical parameters [18-20], applica- 
tion of fungicides and plant nutrition [21]. Recently, 
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Fourier transform infrared spectroscopy (FT-IR) has 
been used for identification of many microorganisms 
[22-25]. This method involves the analysis of all com- 
ponents of the cell by infrared spectroscopy, using trans- 
formed data in order to make promising results [26-28]. 
Data transformation had already been used for the dif- 
ferentiation of pathogens at the species level [29-33]. 
The objective of this study is to discriminate spectral 
footprints of fungi especially B. cinerea isolates directly 
from the raw data using spectroradiometer. The spectral 
signature of each tested isolate could be an indicator of 
its characteristic. This would allow the identification of 
fungal species accurately and rapidly as molecular ap- 
proaches but inexpensively for a routine work.  

2. MATERIALS AND METHODS 

2.1. Plant Samples and Fungal Cultures 

The modified selective medium, m1KERS, was based on 
medium compositions previously developed [6,34,35] 
without adding pentachloronitrobenzene component, the 
basis of KERS medium [36,37]. The composition of this 
medium (g/L distilled water) is: glucose, 20 g; NaNO3, 1 
g; KH2PO4, 1.2 g; MgSO4·7H2O, 0.2 g; KCl, 0.15 g; agar, 
25 g. This medium was autoclaved at 121˚C for 20 min. 
After cooling to 65˚C, the following ingredients were 
added: chloramphenicol, 0.05 g; tannic acid, 5 g; CuSO4, 
2.2 g; Cabrio Top fungicide (Pyraclostrobin), 0.1 g. Dif-
ferent organs from strawberry (Var. Florida & 029) and 
grape (Var. Superior & Flame) were tested for Botrytis 
infection (Table 1). To reduce the risk of cross-con- 
tamination, samples were dipped separately in sterile 
water for 5 min, dried on paper towels, then plated onto 
m1KERS and incubated at 23˚C for 3 - 21 days. The  

 
Table 1. Detection of Botrytis infection in various plant organs. 

Plant Variety Plant organ Isolate 

Florida Fruit BCS15 
Strawberry 

029 Anther BCS1 

Pedicels BCG30 

Pedicels BCG17 

Small berries BCG27 

Small berries BCG7 

Pedicels BCG19 

Flower BCG24 

Leaf BCG13 

Leaf BCG3 

Superior 

Leaf BCG16 

Flower BCG4 

Grape 

Flame 
Pedicels BCG12 

mycelium growth and the brown halo formation of B. 
cinerea were tested in comparison with other fungal 
genera used as negative controls (Aspergillus sp., Rhizo- 
pus sp., Penicillium italicum, Penicillium digitatum, Fu- 
sarium sp., Alternaria sp. and Rhizoctonia sp.). The sam- 
ples were examined daily for development of B. cinerea 
isolates which were transferred to potato dextrose agar 
(PDA; Difco) and incubated for 21 days at 23˚C. Three 
replicates were prepared for each fungal culture. 

2.2. Spectroradiometer Standardization 

Spectral data were collected using an ADS field spectro- 
radiometer (Boulder, CO, USA). It has the characteristic 
of being nearly 100% reflective within the wavelength 
range of 350 nm to 2500 nm. The spectral resolution of 
this instrument was 3 nm at wavelengths between 350 - 
1000 nm, and 10 nm for longer wavelengths, with spec- 
tral sampling intervals of 1.4 and 2 nm, respectively [38]. 

The protocol used for the collection of spectral data 
was based on measuring radiance from a Spectralon® 
panel (North Sutton, NH, USA). A designed probe was 
attached to the instrument’s fiber-optic cable to ensure 
standardized environmental conditions for reflectance 
measurement. The fiber-optic cable provides the flexibil- 
ity to adapt the instrument to a wide range of applica- 
tions. The measurements were performed by holding the 
pistol grip by hand. Bare foreoptic 25 degrees used for 
outdoor measurements resulting circular field of view 
with 3 cm diameter as measurements were taken at 3 cm 
height in nadir position 90 degrees over target surface. 
For the current study and as recommended in the instruc- 
tions of using the device in outdoor measurements, ref- 
erence panel is closer to the foreoptics. For outdoor op- 
timization, the Spectralon® was tilted directly towards 
the sun during optimization. Dark-current is systematic 
noise from the instrument electronics and detectors. In 
the current study, the spectroradiometer includes me- 
chanically controlled shutters and software for recording 
and automatically subtracting dark-current. After cali- 
brating the spectroradiometer, the measurements were 
performed under sun light condition at 11 am-1 pm ac- 
cording to manufacturer instructions by holding the pis- 
tol grip. The reflectance was averaged for each 10 (nm) 
resulted in a specific number of spectral bands (NSB) for 
each spectral zone (NSZ) with a total of 138 spectral 
bands. The number of spectral bands in each spectral 
zone is represented in Table 2. 

2.3. Spectroradiometer Measurements 

The spectral measurement was performed on seven dif- 
ferent fungi (Aspergillus sp., Botrytis cinerea, Penicil- 
lium italicum, Penicillium digitatum, Fusarium sp., Al-  
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Table 2. Number of spectral bands for each spectral zone. 

Spectral zone Spectral bands (NSB) 

Blue 10 

Green 10 

Red 21 

NIR 25 

SWIR I 56 

SWIR II 26 

define ranges that significantly differ along the 2150 
bands. The selected bands then formed the basis for a 
linear discriminant analysis (LDA) that classified the 
different fungal genera and B. cinerea isolates. We ap- 
plied a one-way ANOVA to filter out wavebands that did 
not differ significantly in mean reflectance among dif- 
ferent fungi. A one-way ANOVA was carried out on 
fungi as the independent factor for each of the 2150 
wavebands. We considered p < 0.05 as an indication for 
the significant differences as the mean reflectance of at 
least two of the different fungi differed in the tested band; 
all bands meeting this criterion were included in the 
LDA. One potential criticism of this band selection pro- 
cedure is that the results of tests on adjacent bands are 
not statistically independent. However, our objective in 
applying ANOVA was not to test hypotheses about dif- 
ferences within specific bands; rather, we were seeking 
to eliminate bands from the analysis that provided no 
useful information for discriminating fungal reflectance 
patterns, and thereby reduce the number of analyzed 
bands to a level that would be operational for LDA. This 
band selection procedure was performed on all tested 
samples. 

 
ternaria sp. and Rhizoctonia sp.) and thirteen isolates of 
Botrytis cinerea (BCS1, BCS15, BCG3, BCG4, BCG7, 
BCG12, BCG13, BCG16, BCG17, BCG19, BCG24, 
BCG27, BCG30). Each fungal culture, aged 21 days, has 
three replicates in an individual petri dish. The spectral 
measurement for each fungal culture was measured three 
times (three observations at the same time) and then we 
have taken the average of these three measurements to 
represent the spectral curve of each fungus and then to 
show the variation of the spectral patterns among dif- 
ferent fungal cultures. 

2.4. Data Treatments 

Spectral zones that represent the atmospheric windows 
(portions of the electromagnetic reflectance that include 
data noise because of the relative air humidity) were re- 
moved. Spectral pattern of each measured sample was 
identified. Data were divided into six different spectral 
portions as follows: blue (350 - 440 nm), green (450 - 
540 nm), red (550 - 750 nm), NIR (760 - 1000 nm), SWIR 
I (1010 - 1775 nm) and SWIR II (2055 - 2315 nm). 

2.5. Statistical Analysis 

Statistical analysis was performed using SAS program 
[39]. All means comparison for all measurements were 
examined by Tukey’s HSD (honestly significant differ- 
ence) using one way ANOVA (analysis of variance) test. 
We have subjected spectral measurement data of seven 
different fungi and thirteen isolates of B. cinerea for sta- 
tistical analysis. These samples were tested across the six 
spectral zones previously described. To reduce the effect 
of low-frequency noise conditions of spectral bands re- 
sulted from outdoor measurement, we tested multiple 
spectra with spectrum averaging set to 10 - 25 nm. 

Before conducting the Statistical analysis, the distribu- 
tion of the spectral responses was assumed to be normal 
under the central limit theorem and the equality of statis- 
tical variances was verified for every spectral location. 
Then, the hypothesis test was carried out using one way 
ANOVA at every spectral location between 350 nm and 
2500 nm (a total of 2150 spectral bands).  

The Tukey’s significant difference test was applied to  

3. RESULTS AND DISCUSSION  

3.1. Detection of B. cinerea Using m1KERS  
Medium 

Different organs from both strawberry and grape (Table 
1) were screened to detect B. cinerea after incubation on 
m1KERS medium during 3 - 21 days. The appearance of 
brown halo formation surrounding the infected plant 
samples was observed after three days of incubation in- 
dicating the presence of Botrytis infection in tested plant  
samples. While the other fungal genera used as negative 
controls did not show any brown halo formation during 
the same period. Different isolates of B. cinerea were 
then identified morphologically by light microscope and 
also characterized on PDA medium. 

3.2. Spectral Reflectance of Different Fungal 
Cultures 

An average measurement of each fungal culture was 
taken (see materials and methods) to identify the spectral 
reflectance pattern which was averaged for each 10 nm 
resulted in a specific number of spectral bands for each 
spectral zone (Table 2). The results demonstrated si- 
milarity in spectral analysis among different fungi using 
the spectral zones: blue, red, near infrared and SWIR I 
(Data not shown). While, the spectral analysis of each 
fungus using SWIR II at 2055 - 2315 nm showed a 
unique form of spectral signature that able to distinguish 
the tested fungus (Figure 1). Statistical analysis using  
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Figure 1. Spectral reflectance pattern of different fungi using SWIR II at 2055 - 2315 nm. 
 

 

Figure 2. The standard deviation of the spectral reflectance of all analyzed fungal genera within the six spectral zones (Blue, Green, 
Red, NIR, SWIR I and SWIR II). 
 
Tukey’s HSD test was carried out to show the variation 
between the different fungi in the six different spectral 
zones (blue, green, red, NIR, SWIR I and SWIR II). 

variation of spectral reflectance among tested fungi. Ad- 
ditionally, the result of Tukey’s HSD test showed that 
SWIR II spectral zone provided the best discrimination 
between tested fungi as it showed that each fungus has a 
unique median, data range, maximum and minimum val- 
ues (Figure 3). 

The standard deviation of the spectral reflectance of 
all analyzed fungi were indicated within the six spectral 
zones (Figure 2), and showed that the same significant 
values (p < 0.05) were only located within the green and 
SWIR II spectral zones in which all tested fungi showed 
the same values of standard deviation. However, the 
number of spectral bands (NSB) was higher in the SWIR II 
spectral zone than that demonstrated in green spectral 
zone (Table 2). This indicated that the SWIR II was 
more suitable than other spectral zones to clarify the  

3.3. Spectral Reflectance of Different Isolates of 
B. cinerea 

An average measurement of each isolate of B. cinerea 
was taken (see Materials and Methods) to identify the 
spectral reflectance pattern. Different isolates were tested 
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for spectral reflectance using the six spectral zones (blue, 
red, near infrared and SWIR I) which showed similarity 
in spectral data among isolates (Data not shown). While, 
the spectral analysis of each isolate using SWIR II at 
2055 - 2315 nm showed similar forms of signature which 
could be divided into 5 groups depending on their foot- 
print similarity: group 1 which contained the majority of 
B. cinerea isolates: BCG30, BCG4, BCS15, BCG7, 
BCG24, BCG12 (Figure 4(a)), group 2: BCS19, BCG27, 
group 3: BCS1, BCG16, group 4: BCG3 and group 5: 
BCG13 (Figure 4(b)). This evidence may indicate the 
existence of other polyphagous species within B. cinerea. 
Statistical analysis using Tukey’s HSD confirmed that 
the spectral zone SWIR II at 2055 - 2315 nm was the 
best spectral region to differentiate the isolates of B. 
cinerea as the result of this test showed a unique median, 
data range, maximum and minimum value for each iso- 
late (Figure 5). Additionally, the spectral analysis of the 
replicates of each isolate using SWIR II demonstrated 
significant values (p < 0.05) of standard deviation with 
adequate number of spectral bands (NSB), thus it con- 
firmed the ability of SWIR II spectral zone to discrimi- 
nate the different isolates of the same fungus, B. cinerea 
(Figure 6). In contrast, at the isolate level, close values 
of standard deviation between the replicates of the same 
isolate were observed at all different spectral zone (Fig- 
ure 7) as well as the SWIR II spectral zone indicating the 
high similarity of their spectral pattern at any spectral 
range. 

Indeed, the current spectral measurements and data 
analysis demonstrated result reproducibility confirming  

the accuracy of using the minimal range of SWIR II 
(2055 - 2315 nm) for fungal discrimination. In fact, pre- 
vious studies had demonstrated a large spectral range 
(Vis-NIR, 400 - 2498 nm) to distinguish fungal species 
by spectroscopy [40]. Similarly, other spectroscopic 
techniques had been used to discriminate and classify 
yeasts [41] and filamentous fungi [42] at a large spectral 
range (FT-IR, 500 - 4000 cm–1) only after processing 
data using Fourier transform infrared spectroscopy. Here, 
we used outdoor spectroradimetric measurements to 
identify the spectral signatures of different fungal genera 
and different isolates of Botryis cinerea based on the 
spectral reflectance characteristics. The statistical analy- 
sis was carried out on the raw data (the spectroradiomet- 
ric measurements) without any data transformation or 
any other pre-processing. Few studies have been carried 
out to examine spectral reflectance through specific por- 
tion of the electromagnetic spectrum (EM). The current 
study examined the spectral signature of the fungus 
through a wide range of the electromagnetic spectrum 
(300 - 2500 nm). Statistical analysis showed the high 
capability of SWIR-2 spectral zone to identify and dis- 
criminate the different samples over the rest of the spec- 
tral zones. The reason of this could be due to the high 
capability of this portion of the EM to identify cellular 
molecules by their constituent bonds that affect the 
spectral reflectance characteristics. The reason could be 
also due to the high sensitivity of this portion of the EM 
to the water content of the measured cells [43,44]. In 
addition, this novel method has proved its reliability to 
detect, identify and classify the tested fungus directly 
from the fungal culture without combining with neither 

 

 

Figure 3. Statistical analysis of spectral reflectance values of different fungi using SWIR II spectral zone. 
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(a) 

 
(b) 

Figure 4. Spectral reflectance pattern of different isolates of B. cinerea. 1, 2, 3, 4 and 5: grouping the spectra de-
pending on their footprint similarity. 

 

 

Figure 5. Statistical analysis of spectral reflectance of different B. cinerea isolates at the SWIR II. 
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Figure 6. The standard deviation of the spectral reflectance of different isolates of B. cinerea at the SWIR II spectral zone. 
 

 

Figure 7. Discrimination of isolate replicates of B. cinerea. 
 

methods that depend on cell composition like proteins/ 
biological materials [45-50] nor transforming data [22- 
25]. The results of this study permit us to use spectrora- 
diometer at such limited spectral zone for direct fungal 
classification. Other advanced molecular technique like 
PCR approach could not directly classify the tested un- 
known pathogen although it has many advantages like 
rapidity, specificity and sensitivity [50]. 
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