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ABSTRACT

Let E be an elliptic curve over a given number field K . By Mordell’s Theorem, the torsion subgroup of E defined

over Q is a finite group. Using Lutz-Nagell Theorem, we explicitly calculate the torsion subgroup E (Q)

tain elliptic curves depending on their coefficients.
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1. Introduction

A cubic curve over the field K in Weierstrass form is
given by projectively

YW+ a Xyw+a, YW = X +a, X W+ a, Xw’ +a,w’,

with coefficients in K . Then there is a unique K
rational point (X,y,w)=(0,1,0) on the line at infinite
w=0. If the above is an elliptic curve, then (0,1,0) is
a nonsingular point and we deal with the curve by
working with the affine form

y +axy+ay=x +a,x +a,X+a,. (1)

Hereafter assume that K is a number field. Since the
field characteristic of K is 0, we can study

y> =x’+Ax+B )

instead of (1.1). When the discriminant

Ag = 4A* —27B* is nonzero, E is a nonsingular curve.

By Mordell’s theorem, E(K) is a finitely generated
abelian group and its torsion subgroup E(K)OrS is a
finite abelian group. Mazur proved that E(QB of an
elliptic curve E over the rational numbers must be iso-
morphic to one of the following 15 types [1]:

Z/NZ,N =1-10,12
Z2L®ZJ2N'Z,N"=1-4.
This paper is focused on knowing how the coefficients
A and B of (1.2) determine E(Q)mrs. For the earlier
work, we see the cases A or B is zero in [2]:

Theorem 1. Let E be the elliptic curve
y’=x’+Ax+B with A and B in Z.

"This work was supported by NRF 2012-0006901.
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for cer-
tors

1)If A is fourth-power free and B =0, then

Z/2Z@Z/ZZ, if —Ais a square in Z,
E((@)tors =<Z/AL, if A=4,
Z/2Z, otherwise.

2)If B is sixth-power free and A=0, then

E(Q) s
ZJ6Z if B =1,
7,/3Z,if B =432 =23 or if B is square not I,
Z/27.,if B is cubic not 1,
0, otherwise.

It is too hard to determine the group E(Q)_. with-

out any relation between the coefficients. Hence we
consider the elliptic curve as follows:

y>=x"+f(k)x+g(k) (3)
with f(k),g(k)eZ[k]. Then Theorem 1 yields the
case when one of f (k) and ¢ (k) is zero and
max {deg, f (k),deg,g(k)} =1. In this paper, we deal
with the case max {deg, f (k),deg,g(k)}=2.

Theorem 2. Let
E:y® =x —(6k+3)x—(3k” + 6k +2) 4)
be the elliptic curve with k in Z . Suppose that k is
an integer such that 35{k(9k+4) and there is no
integer h satisfying k :4h(3h2 +3h+1) or
~4(h+1)(30* +3h+1). Then
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ZJ4Z, k =20 or 34 (mod35),3l € Z such that k =-31? (1+1) and

Im e Z satisfying m* =1(31 -2) and 6(6|2 —5Im—2) is square,
ZJ27Z, k =20 or 34 (mod35),3l € Z such that k =-31* (1+1) and
E(Q),, = #m e Z satisfying m* =1(31 -2) and 6(6|2 —5Im —2) is square,

Z/2Z, k is congruent to one of the elements of the set K, modulo 35
and 31 € Z such that k = -31> (1+1),

0, otherwise.

where K, ={x €Z/35Z:x=4,7,12,15,22,25,27,29,32}.

2. The Proof of Theorem 2

We use the Lutz-Nagell Theorem and we have to cal-
culate E; (]Fp) if E has a good reduction at the prime
p.
Theorem 3. (Lutz-Nagell) Let E be an elliptic cur-
ve (1.1) with coefficients in Z and E, be a obtained
curve by reducing coefficients of E modulo p. And let
A be the discriminant of E.

1) If a=0 and if P=(x(P),y(P),l) is in
E(Q),,.-then x(P) and y(P) are integers;

2)Forany a,if P=(x(P),y(P),l) isin E(Q),,.
then 4x(P) and 8y(P) are integers;

3) If p is an odd prime such that p{A_, then the
restriction to E Q)t . of the reduction homomorphism
r,:E(Q)—>E, ij is one-to-one. The same conclu-
sionis validfor p=2 if 2{A; and a =0;

4)If a =a,=a, =0,sothat E isgivenby

y?> =X’ + Ax+B,

and if P(x(P),y(P).,1) is in E(Q), . then cither
y(P)=0 (and P hasorder2)orelse y(P)#0 and
y(P)' divides d =—4A’-27B2.

Proof. See [2]. O

Lemma 4. Let E:y’ =x’+Ax+B be the elliptic
curve over F, and P=(xy) be a point in E(F,)
which is not a point at infinity. Then the followings are
equivalent.

1) P=(x,y) isapointof order 3 in E(Fp);

2) 3x* +6AX* +12Bx— A’ is congruent to 0 modulo

and
—P =(x,-y).

Then 3P =0 means that

x* —2Ax* —8Bx + A* = 4xy? 5)
2
3P+ A

-(3x* + A) #—Zx —(—x* + Ax+2B) =-2y".
(6)
Since y*=x"+Ax+B , x should satisfy that

3x* +6AX* +12Bx— A’ =0 in F,.

2) = 1) Assume that 3x*+6AX* +12Bx—A* =0,
y isnotzeroand y’=x'+Ax+B in F, .By simple
calculation, such x,y satisfy (5) and (6) and if P is
the point (Xx,y) then 2P =—-P . We are done. O

Here we choose two rational primes 5,7 and calcu-
late the groups E(F) and E(F,). For the integer k
unmentioned in our main theorem, we can take another
prime and apply it as same manner.

Lemma 5. Let p be the rational prime and E be
the elliptic curve defined as

y* =x* —(6k+3)x—(3k> +6k +2)

where K is a nonzero integer. And using the natural
surjection from Z to F = Z/pZ , we can get E, by
reducing the coefficients of E modulo p.If p does
not divide the discriminant —2*x3’xk’(9k+4) then
the group E, consisting of the points defined over the

p. finite field FF, with p elements is
Proof. 1) = 2) Let (X,Y,) be the point Z/9Z .,k =1(mod5),
2P =P + P . Then by th 1 lgorithm ([2
+ en by the group law algorithm ([2]), 1) E(F,)=17/6Z.k =2(mod5),
X' ~2Ax* ~8Bx+ A’ Z/3Z.k =3(mods5)
X2 = 4y2 s .
) Z/3Z® 732,k =3(mod7),
3%+ A _
()| BCAL ) E(5) HO K=Lalmod)
_ 4y X'+ Ax+2B 2z, k=2(mod7),
V2= 2y 2y 7127, k =6(mod7).

Copyright © 2013 SciRes.
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Table 1. Pointin E;(Z;).

k (mod5) E,(Z,)-{0} |E,(Z,) generators in E, (Z,)
1 0,(0,%2),(1,%1),(2,%2),(3,%2) 9 0,(0,£2),(1,%1),(2,£2)
2 0,(0,%2),(1,0),(3,£1) 6 (3,%1)
3 (2,%2) 3 (2,%2)

Proof. By [3], every E, (Fp) has a subgroup of
Z/37 . Table 1 is the proof of (1).

Both cases can be calculated as using simple calcu-
lation. For 2), since p=7 and ptk(9%k+4), k can
not be congruentto 0 and 5(mod7). When
k=1(mod7), E, becomes y*=x’-2x+3. By sub-
stituting all elements of F, to X in E,, we can find
that E, (I, )={(1,43),(2,0),(6,42),} . Since it is an
abelian group with 6 elements, E,(F,)=Z/6Z . Like
this, if k =4(mod7),

E,(F)= {(4,i1),(5,0),(6,il),oo} has 6 elements.
Hence it is isomorphic to Z/67Z .

In the case k=2(mod7) E,:y’=x—x+2 has a
torsion  subgroup {(1,ir3),(2,J_rl),(6,i3),(0,i3),oo}
over F,. To find the point of order 3 in the elliptic curve
as the form ((2) in Section 1), we have to get the root of
the equation 3x* +6Ax*> +12Bx— A’ =0 in given field
and it is the X -coordinate of the order 3 point by
Lemma 4. In this case, the equation is
3(x+1)(X +6x’ +6x+2) in F,. Hence there is no
point of order 3 except (6,+3) and E,(F,)=Z/9Z.

For k=3(mod7), E,(F,) has 9 elements. But the
equation giving criterion of order 3 is
3X(x+1)(x+2)(x+4) in F, and
(0,3),(3,#1),(5,%1),(6,%1) € E, (I, ) . Therefore,
E,(Z,)=Z/32®7/3Z.

Last, if k =6(mod7),

E (F;)
={(0,1),(2,£1),(3,3),(4,0),(5.%1),(6,+2) 0}

has only one point (4,0) of order 2. It means that
E,(F,)=Z/12Z.

To get 1), we use the same process as 2), [ omit it. O

Propositions 6 and 7 give the necessary and sufficient
condition to have order 2 and 3 points.

Proposition 6. Let
E:y®=x —(6k+3)x—(3k* +6k+2) be the elliptic
curve with k in Z. There is a point of order 2 if and
only if k is an integer of the form —31%(1-1). More-
over, the point of order 2 is unique.

Proof. Assume that k is an integer of the form
=31?(1-1) . Through easy calculation, Kk satisfies
k*+61°k+91* —=91° =0. Then x=3I*>-1 is a root of
X’ —(6k+3)x—(3k* +6k+2)=0 and (31"-1,0) is

Copyright © 2013 SciRes.

the point of order 2 in E(Q).
Conversely, suppose that the equation of
x> —(6k + 3’)X—(3k2 +6k + 2) =0 has a solution in Z .
To have solution of the equation with respect to k, X
should be congruent to 2 modulo 3. By substituting
3m—-1 to X, the equation becomes
—3’{k2 +6km —9m? (m—l)} . Since it has an integral
solution, m=1> and k=-3I°(1-1) foran integer I.
Now we show that there is no point of order 2 except
(31°-1,0) in E(Q). Assume that (31" ~1,0)e E(Q).
Then k=-3I*(1-1).

x> = (6k +3)x—(3k* + 6k +2)
=(x-31° +1)(x2 (1317 ) x+(91* —181° +121° —2)).

Let Q(x) be X’ —(1-31%)x+(91* 181" +121” -2)
with discriminant —9(3|—1)(|+1)3. If the solution of
Q(x) exists, then —(31+1)(1-1)>0. It gives us the
value 1 =0 or 1.Hence k=0 and E is singular. O

Proposition 7. Let
E:y’ =x —(6k+3)x—(3k* +6k+2) be the elliptic
curve with k in Z . Assume that there is no integer h
such that k =4h(3h” +3h+1) or
~4(h+1)(30* +3h+1). Then E(Q) has no point of
order 3.

Proof. As we mentioned in the proof of the previous
lemma, the point P =(x,y) is of order 3 if and only if
X is the root of

Te(X)
=3(X+1)(X7 = X7 (12K +5) X =(12Kk> +12k +3)).
Let Sg(X) be the polynomial

T (X)/3(X +1)

= X = X7 = (12k +5) X —(12k* +12k +3).

Since (-1,+v-3k*| is not in E (Q) , it suffices to
check whether X isaTootof S.(X)=0 or not.

Suppose that S_ (X)=0 hasaroot X' in Q. Then
it is an integer. In other words, for an integer k not the
form 4h(3h* +3h+1) or —4(h+1)(3h*+3h+1) by
sorting again as k , we can fine an integer X' such that

X =X —(12k +5)x' - (12k> +12k +3)
=—12k* —12(X"+1)k + x” = x"? =5x'=3 = 0.
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From, this X" — x> —5x’—3 must be a multiple of 12
and X is one of 12m+3,5,9 or 11 for a suitable inte-
ger m.

When x=12m+3, S, becomes
—12(K* +12km + 4k —144m’ —96m” —16m) . Because it
has integral solutions as a quadratic equation with respect
to k, its discriminant 16(4m+1) 1+3m)2 is a square.
That means that 4m+1=(2h+1)" for an integer h.
Through this we get k = 4h(3h2 +3h +1) or
~4(h+1)(30* +3h+1).

If x=12m+5,12m+9 or Xx=12m+11 then discri-
minant of the quadratic equations with respect to Kk is
3(12m+5){2(2m+ 1)}, (4m +3) {2(6m+5)}" o
3(12m +1 1){4(m + 1)} respectively. Neither case has a
perfect square discriminant and admit any integral root. O

Proof of Theorem 2. Use the Lemma 5 and Theorem 3
3), we can determine which finite abelian group has a
subgroup of E(Q) for the case k =1(mod35), i.e.,
k=1(mod5) andk =1(mod7). In fact, E(Q), is a
subgroup of both Z/97Z and Z/6Z . 1t yields that it is
Z/37 or trivial. Since our group has no point of order 3,
it is trivial.

Note that E(Q)tors is a subgroup of order N, if it is
a subgroup of order 3"-N with (3,N)=1, then. So it
is resolved as trivial group in many cases.

To observe easily, we can refer Table 2: In this table,
k takes the value modulo 5 at the horizontal line and
modulo 7 at the vertical line respectively. The groups
C, =Z/nZ in the brackets at top line and at the very left
line are result from Lemma 5 .

Each entry implies that the type of group: “A”, “B” or
“C” implies one of subgroups of Z/47,7/27 or trivial,
respectively. The same alphabet does not mean the same
group. And “D” means that both curves E,(F;) and
E,(F,) are singular. In this table since “C” is trivial, it
remains that a few cases
k=4,7,12,15,20,22,25,27,29,32 or 34(mod35).

For the cases that the subgroup is nontrivial Pro-

Table 2. Type of group E(Q)

tors

k(mod7)  k(mod5) 0 1(C,) 2(C,) 3(C,) 4
0 D C B C D
1 (Cy) B C B C B
2 (G) C C C C C
3 (c,ec,) ¢ C C C C
4 (C,) B C B C B
5 D C B C D
6 (C,) A C B C A

Copyright © 2013 SciRes.

position 6 makes us know which curve has the point of
order 2 or not. Hence, it is sufficient to check the value
k having order 4 points.

Assume that k =20,34(mod35) and there exists an
integer | such that k =-3I(1-1).In fact
k =20(mod35) (respectively, 34(mod35) ) if and
only if I=5 or 26(mod35) (respectively, 19 or
33(mod35)). (3I2 —1,0) is the unique point of order 2.
Using duplication formula for the elliptic curve, let
P=(X,y') be the point satisfying 2P = (3I2 -1,0). By
Substituting X', y’,—(6k +3) and —(3k2 +6k+2) for
X,¥,A and B in (in the formulas for X, and Yy, in the
proof of Lemma 4), we get two equations affirming the
existence of point of order 4:

2
(X2 +2(1-317)x' =181 4181 —61” +1) =0
(X +2(1=31)x' =181 +181° 61" +1)xF (x') =0
where
F(x)=x"=2(1-317)x’ +6(91 —181° +12I” —2) X’
—2(541° ~1621° +1081* +541° =631 +7) x
+3241° 97217 +8641° —2701* + 601° - 5.
To have an integral solution of
X2 +2(1-317)x—181* +181° =61 +1=0 , its discrimi-
nant 361°(31=2) have to be a square. Suppose that we
can find an integer m such that m’=1(31-2) and
X' =31> =1+6lm (or 31> —=1-6Im). It is easy to check
that the integer m satisfying the above condition exists
in each case determined by |. Furthermore, by sub-
stituting x', k=-31(1-1) and m*=1(31-2) to the
right hand side of (1.4) we get a numerical formula

541° (31-2)(6l* —5Im-2)
=917 61 (31 -2)-6(61* ~5Im - 2)
=9I’m* - 6(61° —5Im—2)

Since 1#0 makes the curve (1.4) singular,
6(6|2 —5Im —2) is a square of a suitable integer if and
only if there exists a point of order 4.

So we are done. O

3. Conclusions

By the help of Theorem 2, we explicitly calculate the
torsion part of Modell-Weil group.

Example 8. Let E:y*=x’-75x-506 be the elli-
ptic curve. Then

E(Q)tors =7Z/27.

Given elliptic curve is the form k =12 in Theorem 2
and 12=-3x2>x(1-2). Therefore E(Q)  =7/27Z.
And (11,0) is the nontrivial torsion point on E(Q).

The method to find E(Q)__ is able to be applied to

tors
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all elliptic curve without a condition for k by choosing
another prime p>7.

For example, in Theorem 2, there is a condition
351k(9k+4) for k. This is one for nonsingular curve.
For the case that 35| k(9k+4), choose the another
prime p>7 suchthat p{k(9k+4). Calculate
E, (Fp) and eliminate the order 3 point and check the
condition for having order 2 point. Since
‘E (Fp )‘ <2p+1, the smaller p gives simpler nece-
ssary condition. For example, if k =-16 then the ellip-
tic curve is

E:y> =X +93x—674

with discriminant 2°x5x7 . Find E_(Z,) with
p=11 and17, |E,(Z,)=15 and |E,(Z,)=18.
Using Lemma 4, we observe that E ((@) has no point of
order 3. So it is a trivial group.
Remark 9. Generalize our elliptic curve

Copyright © 2013 SciRes.

E:y?=x+f(k)x+g(k)

for keZ and max{deg f (k),degg(k)} <2. We can
use the criterion for the quadratic equation to find a point
of order 2 or 3. Of course, it is indispensable to consider
some exceptional cases in the similar way to Proposition
7.

REFERENCES

[11 B. Mazur, “Modular Curves and the Eisenstein Ideal,”
Publications Mathématiques de I’Institut des Hautes Etu-
des Scientifiques, No. 47, 1977, pp. 33-168.

[21 A. Knapp, “Elliptic Curves,” Princeton University Press,
Princeton, 1992.

[3] D. Kim, J. K. Koo and Y. K. Park, “On the Elliptic
Curves Modulo p,” Journal of Number Theory, Vol. 128,
No. 4, 2008, pp. 945-953. d0i:10.1016/}.jnt.2007.04.015

APM


http://dx.doi.org/10.1016/j.jnt.2007.04.015

