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ABSTRACT 

Let  be an elliptic curve over a given number field K . By Mordell’s Theorem, the torsion subgroup of  defined 
over  is a finite group. Using Lutz-Nagell Theorem, we explicitly calculate the torsion subgroup  for cer-

tain elliptic curves depending on their coefficients. 

E
  tors

E 

K

2 2 3
2 4 6 ,
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1. Introduction A  is fourth-power free and , then 

A cubic curve over the field  in Weierstrass form is 
given by projectively 

2 2 3
1 3y w a xyw a yw x a x w a    xw a w   

with coefficients in K . Then there is a unique K  
rational point  on the line at infinite 

. If the above is an elliptic curve, then  is 
a nonsingular point and we deal with the curve by 
working with the affine form  

   0,1,0w 
 0,1,0

2
2 4 6

, ,x y
0w 

2 3
1 3 .y a xy a y x    a x a x a       (1) 

Hereafter assume that K  is a number field. Since the 
field characteristic of K  is , we can study  0

2 3y x Ax B  

3 24 27

             (2) 

instead of (1.1). When the discriminant  

E A B E
 E K

 tors
E K

 E 

   is nonzero,  is a nonsingular curve. 
By Mordell’s theorem,  is a finitely generated 
abelian group and its torsion subgroup  is a 
finite abelian group. Mazur proved that  of an 
elliptic curve  over the rational numbers must be iso- 
morphic to one of the following 15 types [1]:  

E

, 1

2 2

N N   
  

10,12

, 1 4.N N   
 

This paper is focused on knowing how the coefficients 
A  and  of (1.2) determine 

tors
. For the earlier 

work, we see the cases 
B  E 

A  or  is zero in [2]:  B
Theorem 1. Let  be the elliptic curve  E

2 3y

1) If 0B 

 
2 2 , if is a square in ,

4 , if 4,

2 , otherwise.
tors

A

E A

 
 



   
  

 



B 0A 

 

2) If  is sixth-power free and , then  

 

4 3

6 ,if 1,

3 ,if 432 2 3 ,or if is square not 1,

2 ,if is cubic not 1,

0, otherwise.

tors
E

B

B B

B




    




 
 
 

 



x Ax B   with A  and  in . B 

It is too hard to determine the group tors
 with- 

out any relation between the coefficients. Hence we 
consider the elliptic curve as follows:  

E 

   2 3y x f k x g k               (3) 

    fwith ,k g k k . Then Theorem 1 yields the 
case when one of   f k  and g k  is zero and  

    max , 1deg degk kf k g k  . In this paper, we deal  

    max , 2deg degk kf k g k  . with the case 
Theorem 2. Let  

   2 3 2: 6 3 3 6 2E y x k x k k     

k  k

 35 9 4k k 

       (4) 

be the elliptic curve with  in . Suppose that  is  
an integer such that   and there is no  

integer  satisfying h  24 3 3 1k h h h   or  

  24 1 3 3 1h h h    . Then  
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 

   
  

 
 

 
 

2

2 2

2

2 2

4 , 20 or 34 mod35 , such that 3 1

satisfying 3 2 and 6 6 5

2 , 20 or 34 mod 35 , such that 3 1

satisfying 3 2 and 6 6 5

2 , is congruent to one
tors

k l

m m l l l

k l

E m m l l

k

  

     

  

   

  


  
 

 


 
2

2

of the elements of the set

and such that 3 1 ,

0, otherwise.

K

l k l l










     





and

2 is square,

and

2 is square,

k l l

lm

k l l

l lm

  

  

 

modulo 35

 

where  5,27, 29,32K x x   

 

2 35 : 4,7,12,15, 22,2 .  

 
2. The Proof of Theorem 2 

We use the Lutz-Nagell Theorem and we have to cal- 
culate p pE  E

E


 if  has a good reduction at the prime 
. p
Theorem 3. (Lutz-Nagell) Let  be an elliptic cur- 

ve (1.1) with coefficients in  and pE
E p

 be a obtained 
curve by reducing coefficients of  modulo . And let 

E E
    , ,1P y P

 

 be the discriminant of . 
1) If 1a  and if  is in 

, then 
0 P x

tors
E  x P  and  y P  are integers;  

2) For any 1 , if  is in a   ,P x P y   ,1P  tors
E  , 

then  4x P  and  8y P  are integers;  
3) If  is an odd prime such that p Ep  , then the 

restriction to  of the reduction homomorphism  E 
tors  :p p  is one-to-one. The same conclu- 

sion is valid for  if 
pE 

2p 
r E

2 E  and ;  1

4) If , so that  is given by  
0a 

2 0 E
2 3 ,

1 3a a a 

y x Ax B  

 ,1  E 
P   0y P

 

and if  is in 
tors

, then either 
 ( and  has order 2) or else 

   ,P x P y P
  0y P    and 

 divides .   2
y P 3 227B

x Ax  

4d A  

2 3:E y
Proof. See [2]. □ 
Lemma 4. Let  be the elliptic 

curve over 
B

p  and  be a point in  ,P x y  pE 

 ,P x y  

 
which is not a point at infinity. Then the followings are 
equivalent. 

1)  is a point of order 3 in pE 
4 23 6 12

;  
2) 2x Ax Bx 

 ,

A  is congruent to 0 modulo 
.  p
Proof. 1)   2) Let 2 2x y

P P P 
 be the point 

. Then by the group law algorithm ([2]),   2

   

4 22 8x Bx 2

2 2

22

2
2

3

2

4

3
3 2

4
2

2 2

x A A
x

y

x A
x A x

y
x Ax B

y
y y




           

 

 

and  

 , .P x y  

3P O

 

  means that  Then 
4 2 2 22 8 4x Ax Bx A xy   

   

          (5) 

 
22

2 3 2
2

3
3 2 2 2 .

4

x A
x A x x Ax B y

y

            
 

2 3

  (6) 

x  should satisfy that y x Ax BSince   , 
4 2 23 6 12 0x Ax Bx A    in  p

 4 2 23 6 12 0x Ax Bx A   
y 2 3

. 
2)  1) Assume that , 
 is not zero and y x Ax B   in p 

,
 . By simple 

calculation, such x y P satisfy (5) and (6) and if  is 
the point  y 2P P then x 

5,7
. We are done. □ ,

Here we choose two rational primes  and calcu- 
late the groups  E   E  k

p E

5  and 7 . For the integer  
unmentioned in our main theorem, we can take another 
prime and apply it as same manner. 

Lemma 5. Let  be the rational prime and  be 
the elliptic curve defined as  

   2 3 26 3 3 6 2y x k x k k     

k


 

where  is a nonzero integer. And using the natural 
surjection from  to p p   , we can get pE

E p p
 4 3 32 3 9 4k k   

 by 
reducing the coefficients of  modulo . If  does 
not divide the discriminant  then 
the group pE  consisting of the points defined over the 
finite field p p

 

 with  elements is   

 
 1) 

 
5 5

9 , 1 mod 5 ,

6 , 2 mod5 ,

3 , 3 mod5 .

k

E k

k




 
 

 

 

 



 

 

 
 

2) 
 
 

7 7

3 3 , 3 mod 7 ,

6 , 1, 4 mod 7 ,

9 , 2 mod 7 ,

12 , 6 mod 7 .

k

k
E

k

k

 



 


 

   
 


 
 
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 Table 1. Point in 5 5E 

k  mod 5 

. 

  5 5E O    5 5E   5 5E  generators in  

1        , 2, 2 , 3, 2 0, 0, 2 , 1, 1   9      0, 0, 2 , 1, 1 , 2, 2    

2      2 , 1,0 , 3, 1   3, 1

 2, 2

0, 0,  6  

3    3 2, 2  

 
 p p  has a subgroup of  E  . E Proof. By [3], every 

3 

7p   9 4p k k 

. Table 1 is the proof of (1). 
Both cases can be calculated as using simple calcu- 

lation. For 2), since  and  ,  can 
not be congruent to  and 

k
0  d 7

2 3
5 mo . When  

, 7  becomes  od 7 E1 mk  2 3y x  x  . By sub- 
stituting all elements of  to 7 x  in 7 , we can find 
that 

E
        , 3 , 2,0 , 6, 2 

 
7 7 . Since it is an 

abelian group with 6 elements, 
1, E 

7 7 6  



E



. Like 
this, if ,  

7 7  has 6 elements. 
Hence it is isomorphic to 

 7
    5,0 , 6, 1 ,

4 mk 
4, 

od
 1 , E 

6  . 
In the case   has a 

torsion subgroup 
 d 7
 

2 mok  2 3: 2x x  7E y
     , 6, 3 , 0, 3 ,     

over 7 . To find the point of order 3 in the elliptic curve 
as the form ((2) in Section 1), we have to get the root of 
the equation  in given field 
and it is the 

1, 3 , 2, 1

4 23 6 12x Ax Bx  

 


2 0A 
x -coordinate of the order 3 point by 

Lemma 4. In this case, the equation is 
 in 7 . Hence there is no 

point of order 3 except  and 
 3 1x x  3 26 6 2x x  

 6, 3  7 7

For ,  has 9 elements. But the 
equation giving criterion of order 3 is  

 in  and  
. Therefore,  

9  

 4x  7
     7 71 , 6, 1 E   

E . 
 od 7  7 7E 3 mk 

  2x 
  3, 1 , 5, 

3 1x x
0, 3 ,

 7 7E 3 3   
 6 mod 7k

   , 6, 2 ,  

 

 


. 
Last, if ,  

 7 7E 
        0, 1 , 2, 1 , 3, 3 , 4,0 , 5, 1   

4,0

 

has only one point   of order 2. It means that 

7 7E 

   2 3 2: 6 3 3 6 2E y x k x k k     

 23 1l l 

23 1l k
2 2 4 69k l l l    23 1x l 

2 0x    23 1,0l 

12  . 
To get 1), we use the same process as 2), I omit it. □ 
Propositions 6 and 7 give the necessary and sufficient 

condition to have order 2 and 3 points.  
Proposition 6. Let  

 be the elliptic 
curve with  in . There is a point of order 2 if and 
only if  is an integer of the form . More- 
over, the point of order 2 is unique.  

k 
k

Proof. Assume that  is an integer of the form 
. Through easy calculation,  satisfies  

. Then  is a root of 
 and  is 

the point of order 2 in 

k
l

6 9k
 3 6 3

0
6k 23k  x k 

Conversely, suppose that the equation of  
  3 26 3 3 6 2 0x k x k k      

k
 has a solution in . 

To have solution of the equation with respect to , x  
should be congruent to 2 modulo 3. By substituting 

x , the equation becomes  3 1m   to 
  2 23 6 9 1k km m m   

2m l
. Since it has an integral 

solution,  23 1k l l  l for an integer .   and 
Now we show that there is no point of order 2 except 

 23 1,0l   in  E  . Assume that    23 1,0l E   . 
Then  23 1k l l  .   

  
      

3 2

2 2 2 4 3 2

6 3 3 6 2

3 1 1 3 9 18 12 2 .

x k x k k

x l x l x l l l

    

        
 

   2 2 4 3 21 3 9 18 12 2x l x l l l Q x  be Let      
  3

9 3 1 1l l
 

with discriminant   . If the solution of 
    Q x  exists, then 3 1 1 0l l   

0l
. It gives us the 

value   or 1 . Hence  and  is singular. □ 0k  E
Proposition 7. Let  

  2 3 2: 6 3 3 6 2E y x k x k k     
k h

 be the elliptic 
curve with  in  . Assume that there is no integer  
such that  24 3 3 1k h h h   or  

  24 1 3 3 1h h h     . Then  E   has no point of 
order 3.  

Proof. As we mentioned in the proof of the previous 
lemma, the point  ,P x y  is of order 3 if and only if 
x  is the root of  

 
      3 2 23 1 12 5 12 12 3 .

ET X

X X X k X k k       
 

 ES X  be the polynomial  Let 

   
   3 2 2

3 1

12 5 12 12 3 .

ET X X

X X k X k k



      
 

Since 21, 3k    E   is not in , it suffices to 
check whether x  is a root of  or not.   0S X E

Suppose that   0S XE x  has a root  
k

 in . Then 
it is an integer. In other words, for an integer  not the 
form  24 3 3 1h h h    24 1 3 3 1h h h   

k
 or  by 

sorting again as , we can fine an integer   such that  x

   
 

3 2 2

2 3 2

12 5 12 12 3

12 12 1 5 3 0.

x x k x k k

k x k x x x

       

           
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From, this  must be a multiple of 12 
and 

3 2 5 3x x x    
x  is one of 12  or 11 for a suitable inte- 

ger . 
3,5,9m 

12 3m 
m

When , x ES

3 296 16m m 

  2
1 1 3m m 

 2
2 1h  h

2 3h h

12x m
k

 2 2
2 5m 

 becomes  
. Because it 

has integral solutions as a quadratic equation with respect 
to , its discriminant  is a square. 
That means that  for an integer . 
Through this we get  or  

. 

 2 4 144m k m 

16 4
4 1m  

4 3k h
  3 1h 

5,12 9m  

12 

k

4 1 

12k k

23h h
12x m

 1

11If  or  then discri- 
minant of the quadratic equations with respect to  is 

 or   3 12 5
 3 12 11m 

  1 , 4m m 
  2

1m 
 2 2 3m

4
6

 respectively. Neither case has a  
perfect square discriminant and admit any integral root. □ 

Proof of Theorem 2. Use the Lemma 5 and Theorem 3 
3), we can determine which finite abelian group has a 
subgroup of  E   for the case  1 mod 35

k   E 
k

 1 mod 7
, i.e., 

 and . In fact, 
tors

 is a 
subgroup of both 

 od 51 mk 
9  and 6  . It yields that it is 

3   or trivial. Since our group has no point of order 3, 
it is trivial. 

Note that 
tors

 is a subgroup of order , if it is 
a subgroup of order  with  , then. So it 
is resolved as trivial group in many cases. 

 E  N
3, 1N 

k

3r N

To observe easily, we can refer Table 2: In this table, 
 takes the value modulo 5 at the horizontal line and 

modulo 7 at the vertical line respectively. The groups 

n  in the brackets at top line and at the very left 
line are result from Lemma 5 . 
C n  

Each entry implies that the type of group: “A”, “B” or 
“C” implies one of subgroups of 4 , 2     or trivial, 
respectively. The same alphabet does not mean the same 
group. And “D” means that both curves  5 5  and 

7 7  are singular. In this table since “C” is trivial, it 
remains that a few cases  

 or 34 . 

E 
 E 

 mod 35



4,7,12,15, 20,k  22,25,27,29,32
For the cases that the subgroup is nontrivial Pro- 

 
Table 2. Type of group tors

E 

  k

. 

mod 7k  mod5  0 1

position 6 makes us know which curve has the point of 
order 2 or not. Hence, it is sufficient to check the value 

 having order 4 points. k
Assume that 20,34 mod35k 

l  3 1k l l
 and there exists an 

integer  such that   . In fact  
 20 mod 35k   34 mod35

5l
 (respectively, ) if and 

only if  26 mod35 19 (respectively,  or   or 
 33 mod35 ). 23 1,0l   is the unique point of order 2. 

Using duplication formula for the elliptic curve, let 
 ,P x y   22 3 1,0P l  be the point satisfying . By 

Substituting  , , 6 3x y k     23 6 2k k  
, ,

 and  for 
x y A B

 

 and  in (in the formulas for x2 and y2 in the 
proof of Lemma 4), we get two equations affirming the 
existence of point of order 4:  

 
    

2
2 2 4 3 2

2 2 4 3 2

2 1 3 18 18 6 1 0

2 1 3 18 18 6 1 0

x l x l l l

x l x l l l F x

       

  

 9C  2   6C 3  3C 4

0  D C B C D

1  6C

 9C



 B C B C B

2  C C C C C

3 3 3C C

 6C



 C C C C C

4  B C B C B

5  D C B C D

6 12C  A C B C A

       
 

where  

   
 

4 2 3 4 3 2 2

6 5 4 3 2

8 7 6 4 2

2 1 3 6 9 18 12 2

2 54 162 108 54 63 7

324 972 864 270 60 5.

 F x x l x l l l x

l l l l l x

l l l l l

      

     

     

 

To have an integral solution of  
 2 2 4 3 22 1 3 18 18 6 1 0x l x l l l       , its discrimi- 

nant  336 3 2l l   have to be a square. Suppose that we 
can find an integer  such that  and m  2 3 2m l l 

23 1 6x l lm    23 1 6l lm 
m

l

 ( or ). It is easy to check 
that the integer  satisfying the above condition exists 
in each case determined by . Furthermore, by sub- 
stituting   , x 3 1k l l    2 3 2m l l  and  to the 
right hand side of (1.4) we get a numerical formula  

  
   
 

3 2

2 2

2 2 2

54 3 2 6 5 2

9 6 3 2 6 6 5 2

9 6 6 5 2

l l l lm

l l l l lm

l m l lm

  

     

   

0l

 

Since   makes the curve (1.4) singular, 
 26 6 5 2l lm 

2 3: 75 506E y x x  

 is a square of a suitable integer if and 
only if there exists a point of order 4. 

So we are done. □ 

3. Conclusions 

By the help of Theorem 2, we explicitly calculate the 
torsion part of Modell-Weil group. 

Example 8. Let  be the elli- 
ptic curve. Then  

  2 .
tors

E   

12k 

 

Given elliptic curve is the form  in Theorem 2 
and  212 3 2 1 2     . Therefore  2E   

tors
. 

And  11,0  is the nontrivial torsion point on  E  .  
 tors

E   is able to be applied to The method to find 
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k
7p 

Copyrigh

all elliptic curve without a condition for  by choosing 
another prime . 

For example, in Theorem 2, there is a condition 
 35 9 4k k  for . This is one for nonsingular curve. 

For the case that 
k

 35 9k k 4 , choose the another 
prime  such that 7p  9 4k p k . Calculate  

 p p  and eliminate the order 3 point and check the 
condition for having order 2 point. Since  
E 

  2 1p p , the smaller  gives simpler nece- 
ssary condition. For example, if  then the ellip- 
tic curve is  

E  p
16k  

: 93 674x 

 
2 3x 

7

E y  

with discriminant . Find 62 5  p pE 


 with  
 and , 11 17p  11 11  and 15E   17 17 18E  . 

Using Lemma 4, we observe that  E 

   2 3:E y x f k x g k  

k

 has no point of 
order 3. So it is a trivial group. 

 

     and for  max deg ,deg 2f k g k  . We can 
use the criterion for the quadratic equation to find a point 
of order 2 or 3. Of course, it is indispensable to consider 
some exceptional cases in the similar way to Proposition 
7. 
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