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ABSTRACT 

Only a causal class among the 199 Lorentzian ones, which do not exists in the Newtonian space-time, is privileged to 
construct a generic, gravity free and immediate (non retarded) relativistic positioning system. This is the causal class of 
the null emission coordinates. Emission coordinates are defined and generated by four emitters broadcasting their 
proper times. The emission coordinates are covariant (frame independent) and hence valid for any user. Any observer 
can obtain the values of his (her) null emission coordinates from the emitters which provide him his (her) position and 
trajectory. 
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1. Introduction 

Globally, the current situation in the Global Navigation 
Satellite Systems (GNSS) is almost analogous to the fol- 
lowing one imagine that a century after Kepler, the as- 
tronomers were still using Kepler’s laws as algorithms to 
correct the Ptolemaic epicycles by means of “Keplerian 
effects”. Similarly, a century after Einstein, one still uses 
the Newtonian theory and corrects it by “relativistic or 
Einsteinian effects” instead of starting with Einstein’s 
gravitational theory from the beginning.  

To show this, we will focus on the essential differ- 
ences between an old Newtonian plus “relativistic cor- 
rections” coming from the post-Newtonian framework, 
as in the current operating systems which use only the 
usual class of Newtonian frames, and the new fully rela- 
tivistic framework which use a new class of relativistic 
frame: null emission coordinates. Note that there are not 
“relativistic corrections” in relativity, as they are not 
“newtonian corrections” in Newtonian theory.  

At present the GNSS functioning as global positioning 
systems, are the GPS and the GLONASS. In general, the 
satellites (SVs) of the GNSS are affected by Relativity in 
three different ways: in the equations of motion, in the 
signal propagation and in the beat rate of the satellite 
clocks. We will only briefly comment on the clock ef- 
fects because they are only the measurable ones in the 
present GNSS and in the future Galileo.  

Among the relativistic effects on the rate of the satel- 
lite clocks with a time accuracy of nanoseconds and 10−12 
of frequency accuracy the most important ones (to first 

post-Newtonian order 21 c ) are: the Einstein effect or 
gravitational frequency blue shift of the atomic clocks of 
the satellites (Equivalence principle of General Relativity) 
with respect to Earth bound clocks due to their position 
in the Earth gravitational field, time dilation or Doppler 
shift of second order due to the speed of the satellites 
(Special Relativity) and the kinematical Sagnac effect 
due to the rotation of the Earth (Special Relativity), see 
[1-3] for reviews. If they were not corrected by imposing 
an offset, the GNSS would not be operative after few 
minutes. However, with the present and future more ac- 
curate clocks (picosecond and even femtosecond), it 
would be necessary in the Newtonian framework to con- 
sider other “relativistic corrections” at post-post-Newto- 
nian order as well as metric spatial curvature effects, 
tidal effects or delay effects of gravity in the light propa- 
gation as the Shapiro time delay. 

In this situation, it can be wondered if it would not be 
more convenient to change the present Newtonian frame- 
work to an exact formulation in full General Relativity. 
This would imply to abandon the classical post-Newto- 
nian framework for the description of GNSS. The root of 
this radical change is the consideration of a new 4D 
proper relativistic frame (emission coordinates) instead 
of the usual Newtonian frame, which uses 3D spatial 
reference systems, such as the ECI (Earth Centered Iner- 
tial system) or the ECEF (Earth Centered Earth Fixed 
system), and a time reference (GPS time), separately. 

Emission coordinates were firstly introduced by B. 
Coll in a pioneering proposal published in [4]. To discuss 
and understand the meaning of the null emission coordi- 
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nate system is necessary to introduce previously some 
new definitions, as such location systems or causal clas- 
sification of frames, and mathematical physics tools, 
mainly geometrical. These new definitions and tools pro- 
vide a clear way to understand the differences among the 
special subclass of Newtonian frames and the general 
class of relativistic frames. 

2. Location Systems 

Location systems are physical realizations of 4D coordi- 
nate systems. Hence there is a differentiation of a coor- 
dinate system as a mathematical object from its realiza- 
tion through physical objects and protocols. A location 
system is thus a precise protocol on a set of physical 
fields allowing to materialize a coordinate system. How- 
ever, different physical protocols, involving different 
physical fields, may be given for a unique mathematical 
coordinate system.  

A location system must include the protocols for the 
physical construction of the coordinate lines, coordinate 
surfaces or coordinate hypersurfaces of specific causal 
orientations of the coordinate system that it realizes. 
Thus, for instance, these coordinate elements may be re- 
alized by means of clocks for time-like lines, laser pulses 
for null lines, synchronized inextensible threads for 
space-like lines, laser beams or inextensible threads for 
time like surfaces and light-front surfaces for null hyper- 
surfaces. The different protocols involved in the con- 
struction of location systems give rise to coordinate ele- 
ments (lines, surfaces and hypersurfaces) of different 
causal orientations, i.e., they realize coordinate systems 
of different causal nature.  

2.1. Reference Systems 

Location systems are of two different types: reference 
systems and positioning systems. The first ones are 4D 
reference systems which allow one observer, considered 
at the origin, to assign four coordinates to the events of 
its neighborhood by means of electromagnetic signals. In 
relativity due to the finite speed of the transmission of 
information, this assignment is retarded with a time de- 
lay. 

A paradigmatic reference system in relativity is the 
radar system which is based in the Poincaré protocol of 
synchronization which uses two-way light signals from 
the observer to the events to be coordinated. Unfortu- 
nately, the radar system suffers from the bad property of 
being constructed from a retarded protocol due to the 
finite speed of the transmission of information.  

2.2. Positioning Systems 

The second kind of location systems are 4D positioning 
systems, which allow to every event of a given domain to 

know its proper coordinates in an immediate or instanta- 
neous way without delay. In addition to be immediate, 
the positioning systems must verify other two conditions, 
they must be generic and free of gravity. A positioning 
system is generic, if it can be constructed in any space- 
time and, it is free of gravity, if the knowledge of the 
gravitational field is not necessary to construct it. Refer- 
ence systems privilege one specific observer among all 
others, whereas in positioning systems no observers are 
necessary at all and hence there is no necessity of any 
synchronization procedure between different observers. 

In relativity, a (retarded) reference system can be con- 
structed starting from an (immediate) positioning system, 
it is sufficient that each event sends its coordinates to the 
observer at the origin of the reference system, but not the 
other way around. In contrast, in Newtonian theory, 3D 
reference and positioning systems are interchangeable 
and as the velocity of transmission of information is infi- 
nite, the Newtonian reference systems are not retarded 
but immediate. The reference and positioning systems 
defined here are 4-dimensional objects, including time 
location. 

3. Causal Classification of Frames 

In the Lorentzian space-time of general relativity, direc- 
tions and planes or hyperplanes of directions at any event 
are said to be space-like, light-like (or null or isotropic) 
or time-like oriented if they are respectively exterior, 
tangent or secant to the light-cone of this event. These 
causal orientations can be extended in a natural way to 
vectors, covectors and volume forms on these sets of 
directions. Thus, every one of the vectors A  of a frame 
of the tangent space 

e
 Ae
c

,  has a particu- 
lar causal orientation . 

 1, , 4A   


A

However, the causal orientations AB  of the 
six different associated or adjoint planes 

C A  B
 ,Ae e B  of 

the frame  Ae  are not determined by the specific 
causal orientations A  of the vectors of the frame. For 
instance, the plane associated to two space-like vectors 
may have any causal orientation. So, in general, the 
causal characters A  and AB  are independent. More- 
over, in order to give a complete description of the causal 
properties of the frames, one needs also to specify the 
causal orientations A  of the four covectors or 1-forms 

c

c

c

C

A  giving the dual coframe  A , i.e.  A A
B Be  . 

Following [5], the best way to visualize and characterize 
a space-time coordinate system is to start from four fami- 
lies of coordinate 3-surfaces, then their mutual intersec- 
tions give six families of coordinate 2-surfaces and four 
congruences of coordinate lines. 

Alternatively, one can use the related covectors or 1- 
forms A , instead of the 3-surfaces, and the vectors of a 
coordinate tangent frame  Ae  instead of four congru- 
ences of coordinate lines which are their integral curves. 
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The covector A  is time-like (resp. space-like) iff the 
3-plane  , , B C D  generated by the three vectors e e e
 B B A

 is space-like (resp. time-like). This applies for 
both Newtonian and Lorentzian space-times. In addition, 
for the latter, the covector 

e

A  is light-like (or null) iff 
the 3-plane generated by  B B A

 is light-like (or null). 
Thus, to specify the causal orientations of hyperplanes is 
not necessary because is redundant with the causal ori- 
entation of the covectors. 

e

 23C C

 , ,

In this way, for a specific domain of a Lorentzian or 
Newtonian space-time, each frame   is fully char- 
acterized by its causal class. The causal class of a frame 
is the set of all the frames that have same causal signa- 
ture, which is defined by a set of 14 causal characters: 

Ae

,1 2 12c c C C3 4c c 13 34 1 2 3 4, ,C c c c c14 24C



 

As notation for the causal characters, we will use 
lower case roman types s t l

 , ,S T

 to represent the causal 
character of vectors (resp. space-like, time-like, light- 
like), and capital types  and lower case italic 
types 

L
 , , s t l

x

 c C

 to denote the causal character of 2-planes 
and covectors, respectively. 

3.1. Relativistic Frames 

This new degree of freedom (light-like) in the causal 
character, which is proper of Lorentzian relativistic 
space-times but which does not exist in Newtonian 
space-times, allows to obtain (see [5,6]), as it has been 
commented in the abstract, the following theorem:  

In a relativistic 4-dimensional Lorentzian space-time, 
there exists 199, and only 199, causal classes of frames.  

These 199 causal classes have been completely classified. 
We shall see that among the 199 Lorentzian causal 

classes, only one is privileged to construct a generic, 
gravity free and immediate positioning system. 

The notion of causal class extends naturally to the set 
of coordinate lines of the coordinate system and so, to the 
coordinate system itself. By definition, the causal class of  

a coordinate system  in a domain is the causal    4

 1

class , ,c    of its associated natural frame at the 
events of the domain. In relativity, a specific causal class, 
among the 199 ones, can be assigned to any of the dif- 
ferent coordinate systems used in all the solutions of the 
Einstein equations. However, for the same coordinate 
system and the same solution, the causal class can 
change depending on the region of the space-time con- 
sidered and the coordinate system in this case is said to 
be inhomogeneous. 

In fact, see [7], in any space-time every coordinate x  
plays two extreme roles: that of a hypersurface for every 
constant value , of gradient con stx dx , and that of 
a coordinate line of tangent vector  , when the other 

coordinates remain constant. This simple fact shows that, 
in spite of the historical custom of associating to a coor- 
dinate a causal orientation, saying that it is time-like, 
light-like or space-like, this appellation is not generically 
coherent. Causal orientations are generically associated 
with directions of geometric objects, but not with space- 
time coordinates associated to them. In the case of a co- 
ordinate x , this generic incoherence appears because 
its two natural variations in the coordinate system, dx  
and  , have generically different causal orientations. 
Only when both causal orientations coincide, it is possi- 
ble to extend to the coordinate x  itself the character of 
the common causal orientation of its two mentioned 
variations. 

3.2. Newtonian Frames 

The differences in the geometric description of Lor- 
entzian and Newtonian frames come from the causal 
structure induced by the different metric descriptions of 
Lorentzian and Newtonian space-times. The main dif- 
ference comes essentially from the absence of the light- 
like character in the Newtonian case. In relativity, the 
space-time metric is non-degenerate and defines a one- 
to-one correspondence between vectors and covectors at 
the tangent and cotangent space of every event.  

In contrast, in a Newtonian space-time no non-degen- 
erate metric structure exists and one has two different 
metrics, see [8]. This degenerate metric structure is given 
by a rank one covariant time metric  and an 
orthogonal rank three contravariant space metric 

2dT t
 . In 

the time metric appears t, which is an absolute time scale 
and the hypersurfaces t = const, constitute the instanta- 
neous or simultaneity spaces. A vector is space-like if it 
is instantaneous, i.e. if 

e
 dt e 0 . Otherwise, it is time- 

like. So, it is clear that a frame can have at most three 
space-like vectors so, there only exist four causal types 
of Newtonian frame bases, namely:   , tsss  ttss , 
 ttts ,  tttt . 

Correspondingly, a covector 0   is time-like if it 
has no instantaneous part with respect to the contravari- 
ant space metric  , i.e. if  and it is necessar- 
ily of the form 

    0
dN t   with , being future (resp. 

past) oriented if  (resp. ). Otherwise, the 
covector 

0
0

N 
N0N

  is space-like. Thus, attending to the causal 
orientation of their covectors, there only exist two causal 
types of Newtonian coframes bases: ,  ssts  ssss . 

In summary, it can be shown (see [7]) that one has the 
following implications valid only for Newtonian frames: 

       , ,A AB ABc C c C c A A . 

The simplicity of the Newtonian causal structure with 
respect to the Lorentzian one, lies in the fact that the 
causal type of a Newtonian frame determines completely 
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its causal class. This is related to the fact that, in Newto- 
nian space-time, any set of space-like vectors always 
generates a space-like subspace. As a consequence, the 
number of causally different Newtonian classes of frames 
is equal to the dimension of the space-time. Hence, see 
[7], in the 4-dimensional Newtonian space-time there 
exist four, and only four, causal classes of frames. They 
are: 

 tsss,TTTSSS, tsss ,  ttss,TTTTTS, ssss , 

 ttts,TTTTTT, ssss  and  tttt,TTTTTT, ssss . 

4. Relativistic Positioning  

4.1. Coll Positioning System 

As it has been commented above, among the 199 Lor- 
entzian causal classes, in which the four Newtonian ones 
are included, only one is privileged to construct a generic 
(valid for a wide class of spacetimes), gravity free (the 
previous knowledge of the gravitational field is not nec- 
essary) and immediate relativistic positioning system.  

This is the causal class {s s s s; S S S S S S; l l l l} of 
the Coll homogeneous coordinate system [2,4,5]. In this 
causal class the null emission coordinates of the Coll 
positioning system are included. These emission coordi- 
nates have been also studied in [9-11] in the special case 
of a flat Minkowski space-time without gravity. 

The coordinate system of this causal class is always 
homogeneous and it has associated four families of null 
3-surfaces or equivalently a real non-orthogonal null co- 
frame, whose mutual intersections give six families of 
spacelike 2-surfaces and four congruences of space-like 
lines. Such a coordinate system does not exist in a New- 
tonian space-time where the light travels at infinite speed. 
One satellite clock broadcasting its proper time is de- 
scribed in the space-time by a time-like line  A A  , in 
which each event of proper time A  is the vertex of a 
future light cone. The set of these four light cones of an 
emitter constitutes a one-parameter (proper time) family 
of null hypersurfaces. So, four satellite clocks broadcast- 
ing their proper times determine four one-parameter 
families of lightlike 3-surfaces (future light cones), see 
Figure 1. Thus, the Coll positioning system makes use of 
the mathematical theorem that four future light cones 
generically intersect in an unique event, which is just the 
spacetime position of the receiver or user.  

In this relativistic positioning system, any receiver or 
user at any event in a given spacetime region can know 
its proper coordinates. The four proper times of four sat- 
ellites  read at an event by a receiver 
or user constitute the null (or light) proper emission co- 
ordinates or user positioning data of this event, with re- 
spect to four SVs, see Figure 2. These four numbers or 
parameters can be understood as the “distances” between  

 , 1;2;3;4A A 

 

 2 2 
 1 1 

 3 3 

 

Figure 1. Relativistic emission coordinates: intersection of 
the four future light cones of the SVs with the past light 
cone of a receiver. In the Figure only 3 light cones of the 
SVs are drawn in a Lorentzian space-time of 1 + 2 dimen- 
sions. 
 

 

Figure 2. Past light cone of an event in 3 dimensions, the 
proper time parameterized paths of 3 SVs (in violet) and 
the lightlike geodesics (in green) followed by the signal from 
each satellite to an event of the trajectory of a receiver. 
 
the reception event and the four satellites. In a certain 
domain of R4 of the grid Ω of parameters A , any user 
receiving continuously his null emission coordinates 
from four satellites may know his trajectory in the grid of 
parameters. If the observer has his own clock, with 
proper time denoted by   then he can know his trajec- 
tory with proper time parametrization,  A A   , and 
his four-velocity,   d da Au    . 

For positioning out a GNSS constellation, i.e. for in- 
terplanetary missions in the Solar system, a “pulsar” Coll 
relativistic positioning system can be conceived, see [12, 
13], based on the X-ray signals of four properly selected 
stable millisecond pulsars and a conventional origin of 
the emission coordinates. On the other hand, a navigation 
project called XNAV (based in pulsars) is being devel- 
oped during the last years by DARPA and NASA but 
unfortunately, see [14], is based in the same Newtonian 
concepts that the GPS or Galileo. However, in this case, 
it is more complicated because post-post-Newtonian cor- 
rections must be implemented. 


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4.2. Contravariant Metric in Emission  
Coordinates 

As the emission coordinates belong to the causal class {s 
s s s; S S S S S S; l l l l}, there is not a spacetime asym-
metry like in the standard Newtonian coframe (t s s s) 
(one timelike “t” and three spacelike “s”). In emission 
coordinates obtained from a general real null co-frame (l 
l l l) =  1 2 3 4, , ,d d d d     , which is neither orthogonal 
nor normalized, the contravariant spacetime metric is 
symmetric with null diagonal elements and it has the 
general expression, see [2,15]: 

12 13 14

12 23 24

13 23 34

14 24 34

0

0
d d

0

0

AB A B

g g g

g g g
g

g g g

g g g

 



  



 ,








    (2) 

where  for 0ABg  A B

  0ABg 

. Four null covectors can be 
linearly dependent although none of them is proportional 
to another. To ensure that the four null covectors are 
linearly independent and span a 4-dim space-time, it is 
sufficient that det . Finally, this metric has a 
Lorentzian signature (+, −, −, −) iff .   det 0ABg 

The expression (2) of the metric is observer inde- 
pendent and has six degrees of freedom. In the terminal- 
ogy of [9], the proper times A  are partial observables, 
while the components of the metric ABg  are complete 
observables, i.e., gauge independent or invariant quanti- 
ties under diffeomorphisms in the Lorentzian spacetime. 

A splitting of this metric can be considered, see [15], 
changing from the six independent components (ten 
components minus four gauge degrees of freedom of 
coordinate transformations) of ABg  to a more conven- 
ient set, which neatly separates two shape parameters 
depending only on the direction of the covectors d A  or 
equivalently depending exclusively on the trajectories of 
the emitters, from other four scaling parameters depend- 
ing on the length of the covectors or depending on the 
proper time of each satellite. 

4.3. SYPOR Project: Autolocated Positioning 
System  

SYPOR project is the anagram (in French) of Relativistic 
Positioning System project. The basic idea of this project, 
that was conceived by Coll in [6] and also exposed in [2, 
3], is the following one: A satellite constellation provided 
with clocks that interchange their proper time among 
them (interlinks) and with Earth receivers, is a fully rela- 
tivistic autonomous or autolocated positioning system. 
Note that, nowadays, this procedure of proper time auto 
navigation can be technically fulfilled. 

In the SYPOR, the segment of Control is in the con- 
stellation of satellites, see Figure 3. The function of this  

 

Figure 3. In the SYPOR, the Space and Control segments 
coincide with the constellation. 
 
new Control segment is not to determine the ephemerides 
of the satellites with respect to geocentric coordinates as 
in the newtonian GNSS, but to determine the null emis- 
sion coordinates of the receivers with respect to the con- 
stellation of SVs. Therefore, the procedure used until 
now in the newtonian GNSS is inverted. 

Let us define properly what means autonomous or 
autolocated. Four satellites emitting, without the neces- 
sity of a synchronization convention, not only their 
proper times A , but also the proper times AB  of the 
three close satellites received by the satellite A in A  (in 
total sixteen emitter positioning data ;  B,A A  A B ; 

; 1, 2,3A B , 4 ), constitute an autolocated positioning 
system. 

In an autolocated positioning system, the receivers can 
know not only its spacetime path but also the trajectories 
of the four satellites in the grid of R4 of emission coordi- 
nates. 

5. Gravimetry and Positioning  

In General Relativity, the gravitational field is described 
by the space-time metric. If this metric is exactly known 
a priori, the system just described will constitute an ideal 
positioning system. In practice, the actual space-time 
metric (i.e., the gravitational field) is not exactly known 
(in the GPS it is supposed to be essentially the Sch- 
warzschild metric) and the satellite system itself has to be 
used to infer it. This problem arises when a satellite sys- 
tem is used for both positioning and gravimetry.  

To solve this joint problem, the considered satellites 
should have more than one clock: they may carry an ac- 
celerometer providing information on the space-time 
connection. Of course, in first approximation the satel- 
lites are in free-fall and consequently have zero accelera- 
tion. However, we are considering here the realistic case 
where the acceleration is nonzero due, for instance, to a 
small drag in the high atmosphere and this is measured 
by the accelerometers. Also, the satellites may have a gra- 
diometer, this would give additional information on the 
metric (in fact, on the Riemann tensor of the space-time).  

With these data (and perhaps some additional ones) an 
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optimization procedure could be developed (see [16]) to 
obtain the best observational gravitational field acting 
actually on the constellation. The problem of obtaining 
the space-time metric is a kind of inverse problem since 
one wants to recover the spacetime metric from the ob- 
served data in the Coll positioning system. 

5.1. Two Dimensional Cases 

Coll positioning systems are yet now quite well devel- 
oped for two-dimensional space-times, see [11,17] where 
several results have been developed. For instance, the 
knowledge that the positioning system is stationary and 
that the space-time is created by a given mass, allows to 
know the accelerations of the emitters, their mutual radar 
distances and the space-time metric in null emission co- 
ordinates. The important point for gravimetry is that the 
Schwarzschild mass may be substituted by that of the 
acceleration of one of the emitters. 

5.2. Realistic Four Dimensional Cases 

For applications of an autolocated positioning system on 
or near the Earth’s surface, the primary emission coordi- 
nates should be related to some terrestrial secondary 
4-dimensional Newtonian coordinate system. This prob- 
lem has been solved for a general configuration of the 
emitters in flat Minkowski space-time [18,19] and also 
for the case of a special configuration of the emitters in a 
Schwarzschild spacetime [20].  

However, in general the known results for the flat and 
curved two dimensional spacetimes are not trivially  
generalizable for the realistic curved four dimensional 
one [15] and much work remains to be done in the future. 
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