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ABSTRACT 

One of the more efficient methods to hedge portfolios of securities whose put options are not traded is to use stock in-
dex options. We use the mean-extended Gini (MEG) model to derive the optimal hedge ratios for stock index options. 
We calculate the MEG ratios for some main stocks traded on the Tel Aviv Stock Exchange and compare them to the 
minimum-variance hedge ratios. Computed for specific values of risk aversion, MEG hedge ratios combine systematic 
risk with basis risk. Our results show that increasing the risk aversion used in the computation reduces the size of the 
hedge ratio, implying that less put options are needed to hedge away each and every security. 
 
Keywords: Hedge Ratios; Systematic Risk; Basis Risk; Risk Aversion; Mean-Gini 

1. Introduction 

In this paper we use the mean-extended Gini (MEG) 
model to derive optimal hedge ratios for portfolios with 
stock index options. Since their introduction in the earlier 
1980’s, stock index futures and options have allowed 
investors to manage equity portfolios by hedging against 
systematic risk. The main practical issue is to determine 
the proper hedge ratios, i.e., the number of futures con- 
tracts or put options to be traded in order to insure the 
portfolio. Hedge ratios of stock index options are ex- 
pected to reduce two types of risk: systematic risk of the 
portfolio and risk of futures hedging, for which reason it 
has become a major investment instrument. 

The standard approach for reducing risk in futures 
hedging is to use minimum variance to maximize ex- 
pected utility so as to determine the optimal hedge ratios. 
Another approach, which has been in practice for the past 
15 years, is to use MEG hedge ratios. Contrary to mini- 
mum variance, MEG hedge ratios allow the incorporation 
of risk aversion intensity into the hedging coefficient. A 
comprehensive review of futures hedge ratios and, in 
particular, mean-Gini hedging can be found in Lien and 
Tse [1], and Chen, Lee and Shrestha [2]. MEG has also 
been used to investigate hedging effectiveness in futures 
commodities contracts by Shaffer [3], in FTSE contracts 
by Butterworth and Holmes [4], and in currency hedging 
by Shaffer and DeMaskey [5]. These papers confirm the 
superiority of the MEG model over the mean-variance 
model in futures hedging. Indeed, their results show that 

MEG hedge ratios achieve greater risk reduction for all 
classes of risk-averse investors. 

There are several main reasons why the MEG model 
should be used to insure a portfolio. First, MEG allows 
the derivation of hedge ratios that comply with the ne- 
cessary and sufficient conditions for stochastic domi- 
nance. As such, the MEG model ensures that the hedge 
ratio is included in the second degree stochastic domi- 
nance (SSD) efficient set (Cheung, Kwan, and Yip [6]). 
Second, MEG ratios remedy the failures incurred by the 
interdependence of the price index and the error terms. In 
particular, the Gauss-Markov conditions required by the 
ordinary-least-squares (OLS) regression model may be 
violated and the results will not be validated as optimal 
hedge ratios. Thus, MEG ratios are consistent estimators 
for minimum variance ratios (Shalit [7]). Third, if the 
probability distribution of the stock price index is not 
normal, as would be expected based on empirical inves-
tigations, the OLS coefficients will draw most of their 
statistical significance from the extreme observations 
whereas with MEG all observations contribute more 
evenly to the power of the estimates (Shalit and Yitzhaki 
[8]). 

In the next section we derive the theoretical hedge ra- 
tios using a portfolio hedging model with stock index put 
options. Then in the third section, we present a primer on 
mean-Gini theory whose purpose is to show why the 
MEG model has been used in futures hedging. In the 
fourth section, we use the mean-Gini methodology to 
derive the MEG hedge ratios with stock index put options. 
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In the fifth section, we apply this methodology to securi- 
ties traded on the Tel-Aviv Stock Exchange and estimate 
the hedging ratios. 

2. The Portfolio Insurance Model with Index 
Put Options 

Consider a standard two-period model of portfolio in- 
surance. An investor who holds a portfolio of n securities 
buys stock index put option contracts to limit the port- 
folio’s downside risk. We assume this is the only avail- 
able strategy because, as it is the case in many financial 
markets, futures contracts and options on individual 
stocks are not readily traded or lack liquidity. The initial 
portfolio value is: 

0

1

n

i i
i

w 


  0S

0

               (1) 

where  are the initial stocks prices and αi are their 
shares in the portfolio. To insure the portfolio against 
downside risk, the investor buys x index put options that 
expire at the end of the holding period at which time the 
hedged portfolio value is: 

0
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where P0 and P1 are the initial and the final index put 
option prices and  are the final stock prices. 1

iS
Our goal is to determine the hedge ratio that comprises 

the number of index contracts needed to insure the port- 
folio. When investors maximize expected utility of port- 
folio returns, the optimal hedge ratio can be obtained by 
using the mean-variance (MV) model since, as shown by 
Levy and Markowitz [9], MV approximates expected 
utility, regardless of the utility and the probability distri- 
bution. Furthermore, Benninga, Eldor and Zilcha [10,11] 
showed that the optimal hedge ratio is equal to the mi- 
nimum-variance hedge ratio which is: 
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where δi is the regression coefficient of the share price on 
the index put option price as follows: 

1 1
0i iS    P i             (4) 

When the index put option is written on a wider mar- 
ket index, the hedge ratio can be decomposed into two 
elements. The first is the standard systematic risk βi and 
the second is the sensitivity of the index to changes in the 
put option prices, or the inverse of the put option delta. 
Indeed from Equation (4), the optimal hedge ratios δi are 
derived as: 

d d d 1

d d d
i i

i i

S S I

P I P
     


        (5) 

where I is the market index. The systematic
tained by regressing the share price over th

 risk βi is ob- 
e market in- 

dex I. The index put option delta, Δ, is the rate of change 
of the put option with respect to the market index. Since 
the put option delta is identical for all assets in the port- 
folio, it does not affect the hedge ratio when the shares in 
the portfolio get changed. 

The systematic risk βi used for the hedge ratio is 
slightly different from the usual definition of beta be- 
cause it is obtained by regressing the stock prices on the 
index underlying the put option, which is done as fol- 
lows: 

0i i iS I               (6) 

For the hedge ratio to be optimal the regression model 
must be valid, i.e., I and εi must be st
pe

Mean-Gini (MG) theory was originally developed by 
s applied to finance by 

atistically inde- 
ndent. Since this condition may be violated, we pro- 

pose to apply the MEG model to hedging in portfolio 
insurance. To understand the rationale of using this 
model, we begin with a brief review of the mean-Gini 
theory. 

3. A Primer on Mean-Gini 

Yitzhaki [12,13]. Afterwards it wa
Shalit and Yitzhaki [14] as an alternative model to MV 
for evaluating systematic risk and constructing optimal 
portfolios that are consistent with expected utility maxi- 
mization and stochastic dominance. MG presents robust 
results when MV is bound to fail, in particular, when as- 
sets are not normally distributed or when the regression 
used to estimate betas by ordinary least-squares provide 
biased estimators (Shalit and Yitzhaki [8]). Furthermore, 
MEG allows for the introduction of risk aversion diffe- 
rentiation into the estimation of systematic risk (Gregory- 
Allen and Shalit [15]). For these reasons, the MEG model 
has been used to estimate optimal hedge ratios in futures 
markets (see Lien and Tse (2002) [1] and Chen, Lee, and 
Shrestha, [2]). 

The Gini coefficient is a measure of dispersion used 
mainly in income inequality where the index is related to 
the Lorenz curve. In finance, it quantifies risk similarly 
to the role played by the variance as a measure of risk. 
Gini’s mean difference is defined as half the expected 
value of the distance between all pairs of returns. For 
portfolio returns w, it is written as: 

  1 2

1
,

2
w E w w               (7) 

where w1 and w2 are independent real
portfolio returns. This definition of th

izations of the 
e Gini can be de- 

veloped into the following more practical representation 
that is commonly used in financial applications1: 
1See Yitzhaki [16] for the numerous representations of the Gini. 
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   2cov ,w w G w             (8) 

where G is the cumulative probability distribution of w. 
The Gini is a dispersion statistic that measures risk the 
same way the standard deviation evaluate

ed Gini parameter associated with 
risk aversion. This parameter expresses the
which the lower realizations relative to the 

s risk. Even 
more advantageous to risk analysis is the extended Gini 
that allows specifying risk aversion intensity in the dis- 
persion statistic. The extended Gini coefficient of port- 
folio w is defined as: 

    1
cov , 1

 
w G w


 


            (9) 

where ν is the extend
 extent to 
highest re- 

turns are weighted in order to evaluate risk. As investors 
become more averse to risk, they worry significantly 
more about lower returns, thus giving them compara- 
tively more weight than that given to the higher returns 
when computing the measure of dispersion. The parame- 
ter of risk aversion ν ranges from 1 (representing a risk 
neutral investor) to infinity (for the most risk-averse in- 
vestor exemplified by the max-min individual)2. In par- 
ticular for  = 2, the standard Gini coefficient is obtained 
as in Equation (8). 

The main advantage of MEG theory stems from the 
necessary and sufficient conditions for stochastic domi- 
nance which state that portfolio A is preferred to portfolio 
B for all risk-averse investors if 

   
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A B

A A B B
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where A, B  A  , and  B   
lio A an

are the
the extended Gin ortfo d B, 
follows from Equation (10) that maximizing α ‒ α for 

 prov stors 

The MEG model in futures hedging is rooted in research 
n futures 

ma wan and Yip [6]; Hodgson and 

e mean return. 
Th

 on market index in the same manner 
th

 means and 
respectively. It is of p

all portfolios ide inve whose risk aversion 
parameter is  with their MEG efficient frontier. As an 
alternative, financial analysts sometimes minimize the 
extended Gini of the portfolio () subject to a given 
mean return, as done in Shalit and Yitzhaki [17]. 

4. The Mean-Extended Gini Hedging 
Methodology 

papers that advocate the use of Gini methods i
rkets (Cheung, K

Okunev [18]; Kolb and Okunev [19] [20]; Lien and Luo 
[10]; and Shalit [7]). Some of the more comprehensive 
reviews of MEG in futures markets appear in Lien and 
Tse [1] and Chen, Lee, and Shrestha [2]. 

Many methods are used to estimate MEG hedging ra- 

tios, all of which are based on minimizing the extended 
Gini of the hedged portfolio subject to th

e problem resides in calculating the extended Gini as 
the covariance of the portfolio return and its cumulative 
probability distribution. Kolb and Okunev [19,20] used 
the rank of the returns as an empirical distribution and 
derived the minimizing Gini hedge ratios by means of a 
search method. On the other hand, Lien and Luo [21] 
improved the estimation of the cumulative probability 
function using a smoothing kernel method while main-
taining the numerical searching procedure. Shalit [7] 
provided an analytical solution to the MEG hedge ratios 
based on the instrumental variable (IV) regression. Later, 
Lien and Shaffer [22] showed that Shalit [7] had erred 
when he assumed identical rankings for the hedged port-
folios returns and the futures prices in order to estimate 
the hedge ratio. 

However, the portfolio insurance model is different 
from the futures hedging model because the index put 
option is written

at the beta CAPM is obtained as the regression of the 
risky asset on the market portfolio. The portfolio hedging 
model is developed as follows. Consider investors with a 
risk-aversion coefficient. The optimal mean-extended 
Gini hedge ratio for an index option is obtained by maxi- 
mizing the mean minus the extended Gini of the hedged 
portfolio as follows: 

   max wH  E w             (11) 
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We then differentiate Equation (11) with respect to αi 
and x. Since the extended Gini is ogenous of degree 
one in the αi and x we now apply Euler’s theorem to ex- 
pr

hom

ess the Gini as: 
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or 

    0wE w               (14) 

ovariance remains unchanged when subtract- 
ing a constant, we obtain the optimal h
brings the extended Gini of the portfoli

As the c
edge as that which 
o to zero: 

2See Butterworth and Holmes [4] for an illustration of the risk aversion 
parameter used in the extended Gini. 
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where δi(ν) is the optimal MEG hedge ratio that uses i
dex options for an investor with risk aversion coef
ν. The question now is how to evaluate the ratio using 

n- 
ficient 

financial data. As w are returns of a well-diversified 
portfolio of many securities and P is a put option written 
on a wider market index, the assumption that w and P 
have the same probability distribution as the market in- 
dex I is valid one. Hence, one can write Equation (16) as 
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(17) 
where the put option delta Δ(ν) is expressed in terms of 
MEG. We obtain the optimal MEG hedge ratio using 
index options in two steps. First, the  I

i   are f

r

ound 
as the mean-extended Gini regression coefficients of the 
stock returns over the market index for a specific ν. 
These are basically IV regression coefficients where the 
instrument is   1

1  G I
 

    for each ν. The cumulative 
probability distribution G(I) is estimated by using the 
rank of the market index I. Second, the Δ(ν) are obtained 
from the IV regressions of he put option price over the 
market index with each one using the appropriate in- 
strument   1

1  G I
 

    for the different ν. 
The main issue in using MEG hedge ratios is to check 

whether these ratios differ statistically from MV ratios. 
Indeed, if the ratios a e basically the same there is no 
ne

 t

ed to calculate MEG ratios and the MV hedging ratios 
will satisfy all risk-averse investors. A natural question 
that arises is how to assess whether MEG ratios differ 
from MV ratios? Two avenues may be pursued: The first 
is theoretical since, as shown by Shalit [7], MEG ratios 
subside to the MV ratio if stock returns are normally dis- 
tributed. Then, the issue is to test the normality of the 
financial returns. The second is an econometric approach 
that consists of applying Hausman’s [23] specification 
error test to examine whether the MEG ratios differ from 
the MV ratio. The Hausman [23] test uses the statistic: 

 
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where  MVV  is the variance of MV beta and 
 

  is 
th etween the stock return and th ru- 
mental variable. The m(ν) statistic is distri
square with one degree of freedom. 

tock options on indi- 
ly way investors 
ing positions in 

e correlation b e inst
buted Chi- 

5. Data and Estimation Results 

We conducted our research using data from the Tel-Aviv 
Stock Exchange (TASE) since no s
vidual securities are traded there. The on
can hedge individual stocks is by hold
stock index options and futures although some firms 
whose shares are listed overseas have options traded on 
their stocks, (for example, Teva Pharmaceuticals, which 
is listed on the TASE and NASDAQ, has options traded 
on AMEX). 

The sample consists of 1080 daily returns of 57 stocks 
traded on the TASE from August 1, 1993 until December 
31, 1997, together with 14,340 observations of put op- 
tions written on the TASE 25 stock index for the same 
time period. The Tel Aviv Stock Exchange began to offi- 
cially trade stock index options on August 1, 1993, hence 
the sample period has some historical significance. The 
TASE 25 stock index is a capitalization-weighted index 
of the 25 stocks with the highest market values traded on 
the exchange. Options contracts on the TASE 25 stock 
index are traded daily from Sunday through Thursday. 
The contracts are quoted in New Israeli Shekels (NIS) at 
100 NIS times the TASE 25 level. 

Our goal is to estimate the 57 stocks hedge ratios for 
the TASE25 options contracts as expressed by Equation 
(5). First, we calculate the systematic risks for all 57 
stocks using both the MV and the MEG approach for 
several coefficients or risk aversion ν ranging from 2 to 
20. This is done by estimating Equation (6), and then 
regressing securities daily returns on the daily returns of 
the TASE 25 stock index using OLS and MEG (IV) re- 
gressions. Then, to test whether the MEG betas are statis- 
tically different from the MV beta we compute Haus- 
man’s statistic to see whether this result depends on the 
normality distribution of the stock returns. We test for 
normality of stock returns by using the standard Jarque- 
Bera statistic. 

The systematic risk coefficients for all the firms are 
presented in Table 1. For the major stocks traded on the 
TASE, the betas vary around 1 for the MV and the MEG 
models. To what extent the MEG betas differ from the 
MV beta depends upon the Hausman statistic reported 
below the coefficient for each MEG hedge. If the Haus- 
man statistic is greater than 3.84 the MEG beta is statis- 
tically different (at 5%) from the MV hedge ratio. In ge- 
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SE

 = 12) β(ν = 14) β(ν = 16) β(ν = 18) β(ν = 20) 
Hausman

JarqueBera

 
Table 1. MV and MEG betas on the TA  (Daily returns 1/08/1993-31/12/1997). 

Firms β_MV β(ν = 2) β(ν = 4) β(ν = 6) β(ν = 8) β(ν = 10)
Max β(ν

Ackerstein 1.041 1.   072 1.108 1.11 1.108 1.105 1.103 1.101 1.099 1.097 1.095 

  2.875 7.295 5.248 3.835 2.959 2.376 1.962 1.653 1.411 1.217 7.295 98.53 

Africa 1.068 1.056 1.082 1.096 1.105 1.11 1.115 1.118 1.122 1.124 1.126   

  0.565 0.362 1.08 1.437 1.602 1.689 1.74 1.77 1.783 1.78 1.783 130.5 

Africa 1 0.992 0.978 1.02 1.041 1.05 1.053 1.054 1.053 1.051 1.049 1.047   

  0.71 1.682 3.42 3.725 3.462 3.046 2.626 2.247 1.917 1.633 3.725 41874 

Agan 0.976 0.989 0.983 0.972 0.964 0.957 0.953 0.95 0.947 0.946 0.945   

  1.37 0.237 0.052 0.428 0.795 1.046 1.195 1.269 1.293 1.284 1.37 284.4 

Agis 1.048 1.038 1.077 1.092 1.101 1.108 1.113 1.118 1.122 1.126 1.129   

  0.428 1.953 3.078 3.437 3.609 3.722 3.804 3.861 3.897 3.912 3.912 135.7 

Ahshar eshuv 

 

BankHapoalim 

0  

Calcalit Yam 

5

C s 

5  

Discou tments 1

  5.449 2.04 0.395 0.056 0.001 0.005 0.019 0.031 0.04 0.044 5.449 205.5 

at Hay 1.114 1.114 1.163 1.18 1.186 1.188 1.187 1.186 1.184 1.182 1.179   

  1E−05 4.735 5.734 5.328 4.657 3.994 3.405 2.898 2.469 2.106 5.734 480.8 

Azorim 0.954 0.953 0.978 0.983 0.981 0.977 0.971 0.965 0.959 0.953 0.946   

  0.013 1.85 1.835 1.255 0.734 0.363 0.135 0.023 0.002 0.051 1.85 190.5 

0.918 0.91 0.899 0.9 0.902 0.906 0.909 0.912 0.915 0.918 0.921   

  0.562 1.86 1.264 0.697 0.348 0.152 0.052 0.009 3E−04 0.013 1.86 87.33 

Benleumi 0.895 0.864 0.877 .891 0.902 0.911 0.918 0.924 0.93 0.934 0.938   

  7.757 1.453 0.047 0.122 0.503 0.919 1.298 1.621 1.888 2.101 7.757 281.6 

Benleumi 5 0.869 0.836 0.852 0.867 0.876 0.882 0.886 0.889 0.891 0.892 0.893   

  9.607 1.291 0.014 0.12 0.343 0.513 0.621 0.678 0.697 0.688 9.607 117.1 

Bezeq 1.011 1.004 0.987 0.983 0.983 0.985 0.988 0.99 0.991 0.992 0.993   

  0.375 2.929 2.735 2.024 1.437 1.031 0.764 0.59 0.476 0.402 9.607 731.5 

0.994 1.009 1.06 1.072 1.074 1.074 1.074 1.073 1.073 1.072 1.071   

  0.952 10.87 10.24 8.503 7.099 6.059 5.282 4.683 4.205 3.814 10.87 1839 

Clal Insurance 0.872 0.867 0.877 0.878 0.879 0.88 0.882 0.884 0.886 0.888 0.889   

  0.112 0.079 0.075 0.076 0.089 0.109 0.133 0.16 0.188 0.217 0.217 160.9 

Clal Israel 1.017 1.028 1.041 1.041 1.04 1.039 1.038 1.037 1.037 1.036 1.036   

  1.98 4.918 3.38 2.376 1.8 1.445 1.207 1.033 0.898 0.786 4.918 21382 

Clal Sahar 0.852 0.904 0.937 0.942 0.946 0.95 0.953 0.956 0.957 0.958 0.958   

  6.305 9.038 7.016 5.919 .311 4.894 4.552 4.239 3.938 3.643 9.038 259.6 

lal Industrie 1.034 1.058 1.057 1.046 1.035 1.026 1.018 1.011 1.005 0.999 0.994   

  8.703 4.389 0.787 0.005 0.246 0.825 1.489 2.144 2.751 3.3 8.703 82.42 

Delek 0.86 0.833 0.861 0.884 0.9 0.911 0.919 0.924 0.927 0.929 0.93   

  5.57 0.003 1.605 3.481 4.694 5.321 5.547 5.524 5.358 .113 5.57 140.6 

nt Inves 1.081 1.102 1.098 1.09 .085 1.081 1.079 1.078 1.077 1.076 1.076   
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Continue  

 5 1 7 83 89 4   

d

EIL 0.916 0.898 0.934 0.9 0.96 0.9 0.977 0.9  0.9 0.99 0.998  

  0.941 0.481 5 6 09 86 3   

1.068 1.07 1.082 1.086 1.084 1.08 1.075 1.069 1.064 1.06 1.056   

0. 48.

Elco Holdings 0.

 0. 2651 

Elite 0.965 

 0 18. 172.3

El 1.

0. 295.4

FI I 1.

0. 157.3

For ula 1.

4. 626.2

Formula Vision 1.

2. 457.4

Hanal 1. 5 

2. 8.

Israel p 1.  

8. 271.4

Israel Corp 5 0.  

 0. 193.1

IDB Holdings 1.

0  1. 586.8

Isra co 1.

1. 11148

Joel 1.

6. 210.4

Kar an 1.

6.  12 

K r 0.

3. 192 

Kitan 0.

1. 174.1

Koor 1.

2. 468.9

Makhteshim 1.

4. 104 

1.19 1.61 1.9  2.126 2.2  2.405 2.49 2.56 2.56 239.9

Elbit 

  0.015 0.372 0.397 0.256 0.114 0.029 5E−04 0.01 0.041 0.08 397 15

899 0.89 0.899 0.9 0.897 0.895 0.893 0.892 0.892 0.892 0.893   

  0.418 1E−04 0.001 0.003 0.02 0.037 0.044 0.041 0.032 0.02 418

0.902 0.932 0.961 0.983 0.999 1.011 1.021 1.03 1.037 1.044   

  18.43 2.74 .024 0.431 1.297 2.099 2.765 3.306 3.751 4.122 43

ron 108 1.056 1.114 1.113 1.11 1.107 1.106 1.105 1.105 1.105 1.106   

  0.027 0.113 0.043 0.004 6E−04 0.005 0.009 0.009 0.007 0.004 113

B 081 1.079 1.093 1.097 1.095 1.092 1.089 1.086 1.082 1.08 1.077   

  0.056 0.734 0.902 0.595 0.308 0.128 0.036 0.003 0.004 0.025 902

m 322 1.288 1.353 1.381 1.397 1.409 1.417 1.423 1.428 1.432 1.435   

  2.693 1.255 3.091 3.934 4.328 4.49 4.523 4.484 4.407 4.312 523

149 1.139 1.192 1.209 1.217 1.223 1.229 1.233 1.237 1.241 1.243   

  0.149 1.781 2.363 2.376 2.339 2.314 2.292 2.266 2.231 2.186 376

01 0.945 0.99 1.043 1.079 1.103 1.119 1.13 1.138 1.143 1.147   

  2.609 0.18 0.147 0.608 0.959 1.164 1.264 1.299 1.297 1.274 609 649

Cor 05 1.02 1.052 1.071 1.087 1.101 1.113 1.125 1.135 1.144 1.152   

  5.616 0.006 1.002 2.351 3.709 4.996 6.169 7.207 8.111 8.887 887

89 0.876 0.891 0.886 0.884 0.885 0.888 0.892 0.896 0.9 0.904   

  0.683 0.002 0.015 0.032 0.017 0.002 0.003 0.022 0.057 0.103 683

024 1.035 1.035 1.03 1.026 1.023 1.021 1.019 1.017 1.016 1.015   

  1.355 0.787 0.136 0.008 0.005 0.031 0.061 0.091 .117 0.137 355

m 226 1.079 1.104 1.132 1.147 1.153 1.153 1.151 1.147 1.142 1.137   

  1.336 0.128 0.024 0.117 0.15 0.136 0.103 0.069 0.04 0.02 336

139 1.107 1.19 1.248 1.284 1.307 1.32 1.327 1.329 1.327 1.324   

  0.987 1.407 4.354 5.993 6.62 6.643 6.325 5.83 5.258 4.669 643

d 359 1.349 1.409 1.434 1.45 1.462 1.471 1.479 1.484 1.489 1.492   

  0.255 3.223 5.05 5.796 6.152 6.301 6.32 6.252 6.125 5.96 32

iru 933 0.913 0.96 0.979 0.988 0.993 0.997 0.999 1.001 1.002 1.003   

  1.824 1.679 3.405 3.823 3.814 3.675 3.499 3.316 3.137 2.967 823

836 0.833 0.82 0.815 0.812 0.808 0.804 0.799 0.795 0.791 0.786   

  0.042 0.558 0.629 0.661 0.733 0.839 0.965 1.098 1.229 1.355 355

074 1.067 1.053 1.051 1.051 1.051 1.051 1.051 1.051 1.05 1.05   

  0.503 2.196 1.852 1.486 1.246 1.082 0.962 0.872 0.804 0.753 196

048 1.072 1.065 1.055 1.046 1.039 1.033 1.029 1.025 1.021 1.018   

  4.671 1.272 0.141 0.008 0.157 0.368 0.573 0.752 0.902 1.025 671
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Continue  d

Malibu 1.024 1.046 1.06 1.057 1.054 1.051 1.048 1.046 1.043 1.041 1.039   

  1.137 1.619 0.962 0.609 0.405 0.279 0.198 0.142 0.104 0.076 1.619 235.2

Mivtach Shamir 1.121 1.094 1.128 1.149 1.164 1.176 1.186 1.194 1.2 1.206 1.211   

3. 238.3

Mul ock 0. 6 

0 7. 189 

Neto 1. 2 

6. 168.9

Paper ills 0.  

2 2. 200.4

Noga I ance 0.

0.  30 6

Ofer Development 0. 6 

7. 446.6

Ormat 1. 2 

2. 69.

Osem 0. 8 

16. 408.7

Per ass 0. 4 

3. 340.3

Petrochimia 0. 6 

3. 25.

Polar Investments 1.

4. 57.

Polgat 0. 1 

2. 312.3

Sapanut 1. 8 

5. 340.4

Supersol 0. 1 

21. 249.7

T 5 

0 1. 411.7

Ur n 0. 9 

0. 169.2

Dead Sea Works 1. 5 

0.  23 3

Yetzu 1. 6 

3. 107.7

Ytong 0. 4 

16. 213.1

  2.213 0.078 0.853 1.572 2.133 2.558 2.87 3.095 3.252 3.356 356

til 84 0.87 0.913 0.918 0.914 0.908 0.901 0.895 0.889 0.883 0.878   

  1.75 7.182 5.763 4.012 2.754 1.896 1.309 .903 0.62 0.421 182

47 1.478 1.544 1.579 1.6 1.614 1.623 1.629 1.633 1.635 1.636   

  0.051 3.757 5.636 6.303 6.439 6.31 6.047 5.718 5.365 5.009 439

 M 92 0.907 0.938 0.951 0.956 0.958 0.958 0.958 0.958 0.959 0.959   

  1.087 1.108 2.265 .391 2.193 1.944 1.725 1.553 1.426 1.335 391

nsur 984 0.952 0.986 1.01 1.024 1.033 1.04 1.047 1.054 1.06 1.066   

  0.72 0.001 0.187 0.327 0.405 0.465 0.521 0.574 0.623 0.666 72 4.

82 0.781 0.805 0.823 0.833 0.84 0.845 0.849 0.852 0.855 0.858   

  7.859 0.89 0.013 0.06 0.185 0.29 0.374 0.444 0.506 0.563 859

25 1.24 1.273 1.283 1.29 1.297 1.305 1.312 1.319 1.326 1.332   

  0.44 0.742 1.111 1.289 1.498 1.744 2.008 2.269 2.513 2.732 732 42

86 0.818 0.82 0.836 0.85 0.862 0.873 0.881 0.888 0.894 0.9   

  16.82 8.191 2.485 0.57 0.042 0.034 0.219 0.468 0.725 0.97 82

icl 94 0.919 0.93 0.935 0.939 0.942 0.945 0.949 0.952 0.955 0.958   

  3.069 0.513 0.131 0.034 0.003 0.003 0.021 0.052 0.089 0.13 069

93 0.917 0.942 0.961 0.976 0.988 0.997 1.005 1.012 1.017 1.021   

  1.224 0.071 0.804 1.616 2.269 2.751 3.096 3.334 3.489 3.579 579 74

116 1.082 1.123 1.15 1.165 1.175 1.18 1.184 1.186 1.187 1.187   

  4.858 0.111 1.674 2.806 3.325 3.467 3.407 3.248 3.046 2.83 858 89

92 0.894 0.88 0.873 0.869 0.869 0.871 0.874 0.877 0.881 0.884   

  1.873 2.245 2.166 1.924 1.611 1.299 1.024 0.796 0.613 0.47 245

26 1.234 1.283 1.316 1.338 1.352 1.363 1.37 1.375 1.378 1.381   

  3.159 0.291 2.245 3.688 4.493 4.881 5.014 4.99 4.87 4.691 014

93 0.886 0.89 0.9 0.906 0.909 0.911 0.912 0.913 0.914 0.916   

  21.08 9.288 3.676 1.897 1.204 0.871 0.677 0.544 0.44 0.352 08

eva 0.88 0.889 0.879 0.868 0.859 0.852 0.847 0.844 0.842 0.841 0.841   

  0.069 0.086 .487 0.902 1.187 1.336 1.381 1.358 1.295 1.211 381

da 96 0.966 0.972 0.973 0.974 0.974 0.972 0.969 0.965 0.96 0.955   

  0.038 0.007 0.015 0.017 0.012 0.004 1E−04 0.01 0.038 0.087 087

0 1.044 1.042 1.044 1.044 1.042 1.04 1.037 1.034 1.032 1.029   

  0.263 0.28 0.115 0.093 0.118 0.165 0.226 0.293 0.363 0.43 43 1.

05 1.058 1.09 1.104 1.114 1.122 1.128 1.133 1.137 1.14 1.142   

  0.016 2.162 2.98 3.369 3.587 3.698 3.736 3.723 3.673 3.595 736

75 0.787 0.824 0.833 0.832 0.827 0.82 0.813 0.805 0.797 0.79   

  6.217 16.36 14.32 10.9 7.938 5.638 3.921 2.662 1.752 1.103 36
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the MEG beta is statistically different from the MV beta. 
We can see from the maximum Hausman statistic, only 
33 stocks from a total of 57 have at least one MEG beta 
that significantly differs from the MV hedge ratio. The 
Hausman statistic is not as large as one would expect for 
non-normally distributed stock returns. Indeed, as shown 
by the Jarque-Bera statistic being greater than 10, the 
hypothesis that all stock returns follow a normal distribu- 
tion is rejected. Nevertheless, using MEG betas instead 
of the MV beta allows us to account for specific risk 
aversion. 

The next step is to estimate delta Δ as the rate of 
change of the put option price with respect to the stock 
market index as shown in Equations (5) and (17). To 
account for changes in the exercise index price and the 
maturity date, we include these variables in the regres- 
sion. The regression results are shown in the top three 
rows (Equation A) of Table 2. The index put option delta, 
Δ, estimated for the entire period, is −0.425. As shown in 
Equation (5), the hedge ratios are obtained by dividing 
the systematic risk by delta. In the MEG model, the 
hedge ratios as shown in Equation (17) must account for 
the differentiated risk aversion, ν. Hence, we estimate 
(ν) as follows. First, we account for the changes in ex- 
ercise price as well as in the exercise date by running a 
regression model of the put option price over these vari- 
ables (see the bottom rows (Equation B) of Table 2). 
Then, we use the regression residuals of Equation B to 
calculate Δ(ν) as 

 
  
  

1

1

cov , 1

cov , 1

P  G I

I  G I










  
 

  
      (19) 
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-extended Gini hedge ratios versus 
the standard mean-variance hedge ratios. Since these 
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and that they all are greater than the  implied by MV. 
This is an expected result for the stock market index. 

Now we can calculate the hedge coefficients for each 
security and for each coefficient of risk aversion  by 
dividing the betas with the appropriate (ν) following 
Equation (17). The hedge ratios presented in Table 4 
show how investors can evade the two types of risks in- 
curred by holding a stock portfolio, namely the standard 
systematic risk and the basis risk of hedging the portfolio. 
By analyzing Table 4 we see why this approach is dif- 
ferent from what we have ever seen in hedge ratios. For 
most securities, increasing risk aversion as expressed by 
 reduces the size of the ratio, implying that a smaller 
number of put options is needed to hedge each and every 
security. This is an unexpected result that can be attri- 
buted to the combination of the two risks factors (system- 
atic risk and basis risk) and taking into account the risk 
aversion parameter. 

6. Conclusion 

As calculated in our paper, we have shown the advan- 
tages of using mean

ratios combine sy
wide range of risk aversion coefficients, our results indi- 
cate that the hedge coefficients can accurately measure 
the number of stock index options needed to hedge secu- 
rities in a diversified portfolio. The standard meanvari- 
ance hedge ratios consider only systematic risk and are 
insensitive to the investor risk aversion differentials. We 
have presented a procedure to obtain optimal MEG hedge 

ex regression equation. 

ex Strike Price Days to Strike R Square t TA 25 

Equation A Coefficient 9.202 −0.425 0.4317 −0.00017 0.7656 

 Standard Error 0.0013  

 t-Statistic 37.464 −196.29 215.985 −0.133  

Equation B Coefficient 

r 0.

−

0.246 0.0022 0.002 

−9.122  0.0866 0.0017 0.1357 

 Standard Erro 4362  0.0018 0.0025  

 t-Statistic 20.91  47.43 0.681  

Dependent variable: Put pric bservation 9. 

 
 3. Estim  Δ(ν) computed with the residuals of Equation 

 MV ν = 4 ν = 8 ν = 10 ν ν = 14 ν = 18 

e. Number of o s: 14,33

Table ates of B. 

ν = 2 ν = 6 = 12 ν = 16 ν = 20 

Δ −0.9626 −1.056 −1.211 −1.284 −1.3166 −1.3314 −1.3384 −1.3420 −1.3444 −1.3469 −1.3498
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Table 4. MEG and MV hedge coefficients δ for each stock and for each risk aversion coefficient. 

Firms δ(MV) δ  = 16) δ(ν = 18) δ(ν = 20)(ν = 2) δ(ν = 4) δ(ν = 6) δ(ν = 8) δ(ν = 10) δ(ν = 12) δ(ν = 14) δ(ν

Ackerstein 1.0816 1.015 .9148 86422 41258 134 96 98 1 1 09 19 0 63 0. 9 0.8 0.830 0.8240 0.8202 0.81733 0.81438 .811224

Africa 09 00 53 96 987 35 2 6 

Africa 1 59 0.775596

Ahsharat 
H  

BankHapoalim 

B i 

B  

0  

0

C e 

Clal Sahar 

Elco Holdings 

0  

Form

0.895279 0.

Israel Corp 

Is

 

0.

M  

 

Mivtach 
Sha

Multilock 0.8793 0.8242 0.6943

1  

 1.1 75 1. 016 0.893023 0.8 59 0.838 4 0.833 0.8329 0.8334 0.83424 0.834657 0.834494

1.03006 0.926191 0.842226 0.81046 0.797258 0.790942 0.787253 0.784516 0.781925 0.7789

Agan 1.01435 0.936256 0.811929 0.757391 0.731936 0.719048 0.711946 0.707663 0.704708 0.702203 0.699864

Agis 1.08876 0.983076 0.889456 0.850717 0.836344 0.832026 0.831829 0.833204 0.834885 0.836127 0.836776

ayeshuv
1.15766 1.05542 0.960639 0.918715 0.900608 0.892008 0.887164 0.883756 0.880653 0.877214 0.873381

Azorim 0.991167 0.902227 0.8074 0.765329 0.745033 0.733523 0.725603 0.719166 0.713224 0.707216 0.701076

0.953252 0.8621 0.74267 0.700558 0.685373 0.680325 0.679303 0.679858 0.680838 0.681593 0.681994

enleum 0.929769 0.818665 0.724085 0.693979 0.685217 0.684238 0.68609 0.688802 0.691437 0.693449 0.694773

enleumi 5 0.902502 0.791361 0.703628 0.674981 0.665109 0.662168 0.661757 0.662113 0.662403 0.662146 0.661301

Bezeq 1.04985 0.95116 .814714 0.765332 0.746888 0.740124 0.73791 0.73739 0.737243 0.736747 0.735772

Calcalit Yam 1.03295 .955204 0.875403 0.834587 0.81592 0.80703 0.802473 0.799851 0.79791 0.795902 0.793658

lal Insuranc 0.90547 0.820951 0.72418 0.68381 0.667597 0.661218 0.659002 0.658577 0.658791 0.65897 0.658955

Clal Israel 1.05624 0.973549 0.859458 0.810701 0.789731 0.780179 0.775516 0.772981 0.771206 0.769396 0.767358

0.885615 0.856274 0.773581 0.733929 0.718628 0.713441 0.712131 0.712072 0.712031 0.711327 0.709846

Clal Industries 1.07432 1.0022 0.873157 0.814712 0.786275 0.770482 0.760423 0.753159 0.747233 0.74179 0.736583

Delek 0.89329 0.788649 0.710732 0.68841 0.683611 0.684304 0.686308 0.688176 0.689348 0.689551 0.688899

Discount 
Investments 

1.12262 1.04319 0.906663 0.848832 0.823773 0.812145 0.806314 0.803085 0.8009 0.798894 0.796829

EIL 0.951827 0.850334 0.771317 0.74016 0.730103 0.728528 0.730164 0.732837 0.735525 0.737655 0.739171

Elbit 1.10972 1.0136 0.893477 0.845421 0.823318 0.811018 0.802847 0.796669 0.791476 0.786629 0.78199

0.933763 0.842624 0.741993 0.700648 0.681584 0.672042 0.667093 0.664573 0.663301 0.6625 0.661887

Elite 1.00218 0.854682 0.769506 0.748424 0.746252 0.750047 0.755492 0.761051 .766074 0.770161 0.773374

Elron 1.15087 1. 0.919924 0.86648 0.842746 0.831576 0.826076 0.823271 0.821668 0.820358 0.819092

IBI 1.12318 1.02172 0.902262 0.854097 0.832029 0.820527 0.813651 0.808942 0.805155 0.801529 0.797889

Formula 1.37316 1.22023 1.11707 1.07535 1.06126 1.05805 1.05877 1.06065 1.0624 1.06333 1.06342

ula Vision 1.1932 1.07905 0.984171 0.94155 0.92454 0.918875 0.918007 0.918987 0.920292 0.921056 0.921099

Hanal 1.05493 0.817708 812243 0.819444 0.828354 0.836133 0.842168 0.846422 0.848927 0.850052

1.0913 0.96636 0.868458 0.83447 0.825566 0.826761 0.831799 0.838025 0.844139 0.849425 0.853764

rael Corp 5 0.924116 0.829618 0.735348 0.690181 0.671483 0.664807 0.663446 0.664393 0.666173 0.667959 0.669515

IDB Holdings 1.06392 0.979903 0.854678 0.801908 0.778984 0.768199 0.762567 0.759203 0.756747 0.754414 0.75203

Isramco 1.27343 1.0219 0.911717 0.881729 0.87094 0.865638 0.861686 0.857712 0.853236 0.847999 0.842206

Joel 1.18324 1.04883 0.982875 972142 0.975535 0.981486 0.986163 0.988472 0.988218 0.985411 0.980545

Kardan 1.41165 1.27721 1.16304 1.11687 1.10152 1.09827 1.09942 1.10186 1.10409 1.10531 1.10545

Kirur 0.96918 0.864307 0.792275 0.762233 0.750389 0.74604 0.744688 0.744434 0.744332 0.743812 0.742806

Kitan 0.868299 0.78852 0.676876 0.634896 0.616624 0.606963 0.600646 0.595722 0.591335 0.587004 0.582654

Koor 1.11538 1.01011 0.869837 0.818715 0.79817 0.789207 0.785027 0.782891 0.781449 0.779932 0.778138

akhteshim 1.089 1.01538 0.879581 0.821737 0.794774 0.780592 0.772153 0.766483 0.762102 0.758133 0.754312

Malibu 1.06409 0.990719 0.875072 0.823505 0.800661 0.789417 0.783166 0.77918 0.776101 0.773131 0.770062

mir 
1.16454 1.03594 0.931352 0.894688 0.883951 0.883085 0.885774 0.889434 0.892889 0.895464 0.897133

21 62 0.753464 0.714943 38 0.682015 0.673527 0.666916 0.661191 0.655747 0.650442

Neto .52888 1.39963 1.27474 1.22937 1.21513 1.21217 1.21279 1.21406 1.21469 1.21398 1.212 
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Co  

P  

ntinued

aper Mills 0.95569 0.858909 0.774413 0.740625 0.726188 0.71951 0.716128 0.714232 0.712928 0.711661 0.710327

Nog 0.96918 0.864307 0.792275 0.762233 0.750389 0.74604 0.744688 0.744434 0.744332 0.743812 0.742806

Dev ent 
0. 0. 0. 0. 0. 0. 0. 0.

1.30032 1.17405 1.05108 0.999338 0.97991 0.974305 0.974709 0.977608 0.981204 0.984416 0.986954

Petr ia 0. 0.

In ts 
0. 0.

0 0.

1.00717 0.914818 0.802285 0.757956 0.739713 0.731223 0.726168 0.722066 0.717854 0.713015 0.70757

Dead Sea 

a Insurance 

Ofer 
elopm

0.85763 0.739219 664592 640584 632647 630727 631118 632365 633762 0.63487 635631

Ormat 

Osem 0.901281 0.774374 0.677102 0.651033 0.645889 0.647785 0.65191 0.656459 0.660642 0.664033 0.66664

Periclass 0.98034 0.869887 0.767594 0.72828 0.713007 0.707594 0.706358 0.706873 0.707939 0.708857 0.709467

ochim

Polar 

971973 0.868455 0.777605 0.748065 0.741044 0.741845 0.745175 0.749024 0.752477 755023 0.756623

vestmen
1.15963 1.02466 927545 0.895249 884923 0.882229 0.881934 0.882116 0.881947 0.880964 0.879219

Polgat 0.956512 0.846351 0.726846 0.679682 0.660321 0.652809 0.650681 0.651043 0.652392 0.653838 0.65508

Sapanut 1.31765 1.16878 1.059 1.02493 1.01599 1.01571 1.01804 1.0207 1.02268 1.02339 1.02291

Supersol 0.967501 0.839196 0.735171 0.701072 0.688087 0.682832 0.680659 0.679787 0.679375 0.678912 0.678312

Teva 

Urdan 

.919899 842385 0.726138 0.676047 0.652102 0.639602 0.632658 0.628643 0.626151 0.624303 0.622763

Works 
1.09119 0.988967 0.860168 0.81285 0.792602 0.78259 0.776778 0.772757 0.769392 0.766033 0.76255

Yetzu 1.09673 1.00186 0.899835 0.85986 0.846149 0.842557 0.842738 0.844136 0.845552 0.846306 0.846311

Ytong 0.78359 0.744925 0.680159 0.648636 0.631969 0.621245 0.61294 0.605686 0.598838 0.592006 0.58516

 
ra t, the analyst needs to establish the relevant 
ris n p r f o  m
age  us e d o d
aversi para  b . 
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tios. Firs
k aversio aramete or investors and p rtfolios an- 
rs to be ed for th extende  Gini. F r a mil  risk 

on, a 
her risk

meter of 
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eters of 

e used
 greater

For 
than hig

4 is deemed appropriate and for extremely high risk- 
averse investors a parameter of  that are greater than 16 
are necessary. Second, for each risk aversion  and for 
each stock the MEG systematic risk is to be estimated. 
Finally, for each risk aversion parameter  the delta op- 
tion parameter Δ expressed as the rate of change of the 
put option price with respect to the stock market index is 
estimated. The MEG hedge ratios are thus individually 
tailored for each stock and for each type of investors. For 
most analyzed securities of the Tel Aviv Stock Exchange, 
increasing risk aversion reduces the hedge ratio entailing 
that less put options are needed to circumvent systematic 
risk and basis risk for a given the risk aversion. 
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