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ABSTRACT 

I investigate the ferromagnetic phase transition inside strong quark matter (SQM) with one gluon exchange interaction 
between strong quarks. I use a variational method and the Landau-Fermi liquid theory and obtain the thermodynamics 
quantities of SQM. In the low temperature limit, the equation of state (EOS) and critical exponents for the second-order 
phase transition (ferromagnetic phase transition) in SQM are analytically calculated. The results are in agreement with 
the Ginzberg-Landau theory. 
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1. Introduction 

The properties of Fermi systems have been investigated 
in several works [1-20]. One of the important cases is the 
study of the magnetic properties of an electron gas [3-20]. 
Spontaneous magnetization may appear at different den- 
sities for different temperatures and the polarization of 
the system is a function of the density and temperature. 
By assuming a spin-spin interaction inside the system, 
we can study its magnetic properties. For gaseous sys- 
tems, statistical methods for an imperfect Fermi gas show 
that the system can be in its ferromagnetic phase [21-23]. 
All relations are written in the non-relativistic and low 
temperature limit, because in the ultra-relativistic region 

2. Exchange and Direct Contributions to the 
Energy Density  

The Landau-Fermi liquid interaction function is related 
to the Lorentz invariant matrix element via 

 fm k

20

, the polarized states have greater energy than 
the un-polarized states [24,25]. The low temperature do- 
main characteristic is Fermi energy of system. If the Fer- 
mi energy of system is greater than thermal energy, then 
we can use the low temperature limit. In SQM, the order 
of Fermi energy is greater than 20 MeV [25]; and low 
temperature means T  MeV. Therefore, the fer- 
romagnetic phase can appear in the non-relativistic re- 
gion [25]. Therefore only strange quarks are involved 
and the results of the present paper are applicable to 
SQM (The reason will be explained in Section II). The 
resulting scattering matrix elements in the non-relativis- 
tic region automatically have spin-dependent terms and 
we do not insert the spin-spin interaction manually [26]. I 
use a variational approach [27-35] to obtain the equation 
of state of the system. By varying the free energy with 
respect to p (the polarization parameter) and the effective 
mass at various densities and temperatures, we can mi- 
nimize the free energy for a given density and tempera- 
ture. 

2

, , ,s
k q k q

k q

m
f M

E E                 (1) 

If     (parallel spins), we have the spin non-flip 
interaction and if    

 

 (antiparallel spins), we have 
the flip interaction. So the exchange energy density for 
the flip and non-flip interactions can be written as 
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  correspond to In the above equations, 
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where the   and p are the density of the spin up and 
spin down electrons and the polarization parameter, re- 
spectively.  in k

fk m

 is the Fermi distribution functions. In 
the non-relativistic region, we can use the approximation 

 and then we have [23] 
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Using Equation (5), if we have      then the Lor- 
entz invariant matrix elements vanish, which means that 
in the non-relativistic region the spin flip contribution to 
the energy density vanishes. The spin non-flip exchange 

Copyright © 2013 SciRes.                                                                                 JMP 



H. GHOLIZADE 281

 and kinetic energy density in the non-relativistic case at  

zero temperature is 
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In the ultra-relativistic region , the exchange 
energy density is proportional to  

   
4 4

3 31 p
    
 

4 1fk p  [24] and the kinetic energy is 

also proportional to    
4 4

3 31 p
    
 

 

4 1fk p . Therefore,  

the un-polarized state is energetically favorable and we 
will write all equations in the non-relativistic limit. 

3. Equation of State at Low Temperature 

To obtain the equation of state at low temperature 

Fermi , I use the variational method with the fol- 
lowing approximation to the single particle energy in the 
Fermi distribution function [2,27,35]:  

T T

 

 
2

1
,

exp 1

.

E

T

k

m n T










0 1p 

2

n k

E 

             (7) 

Using the above approximation, I use the redefined 
kinetic energy instead of the sum of kinetic and potential 
energy in the distribution function, and the kinetic energy 
in the other parts of the equations remains unchanged [2, 
27,33,35]. For a fully polarized state p = 1 and an un- 
polarized state p = 0, I can describe the system with a 
single effective mass and chemical potential. For par-
tially polarized states , we must use separate 
effective masses and chemical potentials for the spin up 
and spin down states. If we use the following relation, 

   d
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(where  is the Lerch Phi function), we can write the 
kinetic energy as: 
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To obtain the kinetic energy at low temperature, we 
use the relations  
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Here, ± refers to spin up and down states. If we use the 
low temperature expansion of the chemical potential, 
then we have: 
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In Equation (11), kin  is the kinetic energy 
density of the system. Similar to the above, the exchange 
energy and entropy density of the system become 
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Here,  , kin
0 , and ex

0  are the effective mass of the 
electrons, the non-relativistic kinetic and exchange ener- 
gies at zero temperature, respectively. Using the results 
of Equation (12), it follows that the free energy density is 
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mBy minimizing the free energy, one can find   as a 
function of p: 
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For p = 0 and non-interacting systems, Equation (14) 
simply yields  . We must notice here that if we 
set 0   (non-interacting system), then p = 0. At zero 
temperature, minimization of the free energy becomes 
simpler, and one obtains 

0 0 0.ex kinp p
  

            (15)  
 

The resulting equation from Equation (15) is 
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This result is very similar to the well-known results of 
the spontaneous magnetization of an imperfect Fermi gas 
[21]. But in our calculation, the interaction part of the 
Hamiltonian is not independent of the spin alignment, 
and this dependence changes the right side of Equation 
(16). 

 

4. Critical Exponents  

Similar to previous work on a Fermi gas [36], solving 
Equation (16) yields Figure 1. Also the results for non- 
zero temperature are similar to the results of [36]. Here I 
am interested in the density and temperature dependence 
of the polarization parameter and the other thermody- 
namic quantities. At zero temperature, we can expand the  

magnetic susceptibility 
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 , the first term in Equation (17) becomes 

zero. So 
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The magnetization is proportional to the polarization 
(p). The relation between   and the magnetization 
   and magnetic field (J) is  

.
J

 



0

                (19) 

At  

.J

 we have 


3

                (20) 

Using (18) and (19), we find that  
 

. At non-zero 
temperature and , we have 0
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Figure 1. The polarization as a function of the Fermi mo- 
mentum and coupling constant. 
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So 2 2
cT T   cT T  . As , we have 

1
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Comparing with Equation (21), we find that 
1

2
  . It 

can be seen that the heat capacity 
2

2

F
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 does not de- 

pend on  , so we have 0 . 

5. Results and Discussion 

I use the variational approach to obtain the critical expo- 
nents of quark matter. The method is based on the mini- 
mization of the free energy (corresponding to maximum 
entropy at equilibrium). Using this method, Fermi sys- 
tems, such as an electron gas or quark matter, can be in a 
ferromagnetic phase for a specific value of the density 
and temperature. For quark matter, this can be happen at 
low temperature and high density. For SQM in chemical 
equilibrium, the density of the u, d, and s quarks can be 
calculated from the weak interactions between quarks 
[25]. The up and down quarks are in the ultra-relativistic 
region (because of their small mass) and only the s 
quarks can be in the ferromagnetic phase [25]. Therefore, 
all equations are for strange quarks. This phase transition 
is second order [36] and one can calculate the critical 
exponents of this phase transition. The results are the 
same as for the Landau mean field theory. 
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