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ABSTRACT

I investigate the ferromagnetic phase transition inside strong quark matter (SQM) with one gluon exchange interaction
between strong quarks. I use a variational method and the Landau-Fermi liquid theory and obtain the thermodynamics
quantities of SQM. In the low temperature limit, the equation of state (EOS) and critical exponents for the second-order
phase transition (ferromagnetic phase transition) in SQM are analytically calculated. The results are in agreement with

the Ginzberg-Landau theory.
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1. Introduction

The properties of Fermi systems have been investigated
in several works [1-20]. One of the important cases is the
study of the magnetic properties of an electron gas [3-20].
Spontaneous magnetization may appear at different den-
sities for different temperatures and the polarization of
the system is a function of the density and temperature.
By assuming a spin-spin interaction inside the system,
we can study its magnetic properties. For gaseous sys-
tems, statistical methods for an imperfect Fermi gas show
that the system can be in its ferromagnetic phase [21-23].
All relations are written in the non-relativistic and low
temperature limit, because in the ultra-relativistic region
(m <k, ), the polarized states have greater energy than
the un-polarized states [24,25]. The low temperature do-
main characteristic is Fermi energy of system. If the Fer-
mi energy of system is greater than thermal energy, then
we can use the low temperature limit. In SQM, the order
of Fermi energy is greater than 20 MeV [25]; and low
temperature means T <« 20 MeV. Therefore, the fer-
romagnetic phase can appear in the non-relativistic re-
gion [25]. Therefore only strange quarks are involved
and the results of the present paper are applicable to
SQM (The reason will be explained in Section II). The
resulting scattering matrix elements in the non-relativis-
tic region automatically have spin-dependent terms and
we do not insert the spin-spin interaction manually [26]. I
use a variational approach [27-35] to obtain the equation
of state of the system. By varying the free energy with
respect to p (the polarization parameter) and the effective
mass at various densities and temperatures, we can mi-
nimize the free energy for a given density and tempera-
ture.
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2. Exchange and Direct Contributions to the
Energy Density

The Landau-Fermi liquid interaction function is related

to the Lorentz invariant matrix element via
2
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If £=¢&" (parallel spins), we have the spin non-flip
interaction and if &=-&" (antiparallel spins), we have
the flip interaction. So the exchange energy density for
the flip and non-flip interactions can be written as
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In the above equations, £ correspond to
n, =n,(1+p)/2,n_=n,(1-p)/2. 4)

where the n, and p are the density of the spin up and
spin down electrons and the polarization parameter, re-
spectively. n(ki) is the Fermi distribution functions. In
the non-relativistic region, we can use the approximation
k; <m and then we have [23]
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Using Equation (5), if we have &=-&" then the Lor-
entz invariant matrix elements vanish, which means that
in the non-relativistic region the spin flip contribution to
the energy density vanishes. The spin non-flip exchange
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and kinetic energy density in the non-relativistic case at
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In the ultra-relativistic region (kf > m), the exchange
energy density is proportional to

4 4
ak{ ((1+ p)s +(1- p)3j [24] and the kinetic energy is

4

4
also proportional to K| ((1 +p)s+(1- p)3j . Therefore,

the un-polarized state is energetically favorable and we
will write all equations in the non-relativistic limit.

3. Equation of State at Low Temperature

To obtain the equation of state at low temperature
(T < Teemi ) » 1 use the variational method with the fol-
lowing approximation to the single particle energy in the
Fermi distribution function [2,27,35]:

1
n(k): a0’
exp T +1
h (M)

Using the above approximation, I use the redefined
kinetic energy instead of the sum of kinetic and potential
energy in the distribution function, and the kinetic energy
in the other parts of the equations remains unchanged [2,
27,33,35]. For a fully polarized state p = 1 and an un-
polarized state p = 0, I can describe the system with a
single effective mass and chemical potential. For par-
tially polarized states 0 < p <1, we must use separate
effective masses and chemical potentials for the spin up
and spin down states. If we use the following relation,
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(where @ is the Lerch Phi function), we can write the
E

kinetic energy as:
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To obtain the kinetic energy at low temperature, we
use the relations
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Here, + refers to spin up and down states. If we use the
low temperature expansion of the chemical potential,

then we have:
2
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In Equation (11), g™ (T) is the kinetic energy
density of the system. Similar to the above, the exchange
energy and entropy density of the system become
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Here, m", ¢, ,and &, are the effective mass of the
electrons, the non-relativistic kinetic and exchange ener-
gies at zero temperature, respectively. Using the results
of Equation (12), it follows that the free energy density is
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By minimizing the free energy, one can find m” as a
function of p:
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For p = 0 and non-interacting systems, Equation (14)
simply yields m* =m. We must notice here that if we
set =0 (non-interacting system), then p = 0. At zero
temperature, minimization of the free energy becomes
simpler, and one obtains

)

0
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The resulting equation from Equation (15) is

k_f[(H o) —(1- p)i:l:%[(l+ o) —(1- p);:|. (16)
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This result is very similar to the well-known results of
the spontaneous magnetization of an imperfect Fermi gas
[21]. But in our calculation, the interaction part of the
Hamiltonian is not independent of the spin alignment,
and this dependence changes the right side of Equation

(16).

4. Critical Exponents

Similar to previous work on a Fermi gas [36], solving
Equation (16) yields Figure 1. Also the results for non-
zero temperature are similar to the results of [36]. Here |
am interested in the density and temperature dependence
of the polarization parameter and the other thermody-
namic quantities. At zero temperature, we can expand the

. o 1 1 d°F
magnetic susceptibility | = =————— as fol-
Nug dp |,
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As k— —a, the first term in Equation (17) becomes
T

zero. So
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V4
The magnetization is proportional to the polarization
(p). The relation between y and the magnetization
(v) and magnetic field (J) is

oy
=Y 19
2 (19)
At 7=0 we have
J=y’. (20)

Using (18) and (19), we find that 6 =3 . At non-zero
temperature and 7 — 0, we have
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Figure 1. The polarization as a function of the Fermi mo-
mentum and coupling constant.
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Expanding  near p=0, we find
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Comparing with Equation (21), we find that S :%. It

2

can be seen that the heat capacity —T 6T_|z does not de-

pendon 7,sowehave a=0.

5. Results and Discussion

I use the variational approach to obtain the critical expo-
nents of quark matter. The method is based on the mini-
mization of the free energy (corresponding to maximum
entropy at equilibrium). Using this method, Fermi sys-
tems, such as an electron gas or quark matter, can be in a
ferromagnetic phase for a specific value of the density
and temperature. For quark matter, this can be happen at
low temperature and high density. For SQM in chemical
equilibrium, the density of the u, d, and s quarks can be
calculated from the weak interactions between quarks
[25]. The up and down quarks are in the ultra-relativistic
region (because of their small mass) and only the s
quarks can be in the ferromagnetic phase [25]. Therefore,
all equations are for strange quarks. This phase transition
is second order [36] and one can calculate the critical
exponents of this phase transition. The results are the
same as for the Landau mean field theory.
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