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ABSTRACT 

The ability to decipher the genetic code of different 
species would lead to significant future scientific achi- 
evements in important areas, including medicine and 
agriculture. The importance of DNA sequencing ne- 
cessitated a need for efficient automation of identi- 
fication of base sequences from traces generated by 
existing sequencing machines, a process referred to as 
DNA base-calling. In this paper, a pattern recognition 
technique was adopted to minimize the inaccuracy in 
DNA base-calling. Two new frameworks using Artifi- 
cial Neural Networks and Polynomial Classifiers are 
proposed to model electropherogram traces belonging 
to Homo sapiens, Saccharomyces mikatae and Dro- 
sophila melanogaster. De-correlation, de-convolution 
and normalization were implemented as part of the 
pre-processing stage employed to minimize data im- 
perfections attributed to the nature of the chemical 
reactions involved in DNA sequencing. Discriminative 
features that characterize each chromatogram trace 
were subsequently extracted and subjected to the 
chosen classifiers to categorize the events to their re- 
spective base classes. The models are trained such 
that they are not restricted to a specific species or to a 
specific chemical procedure of sequencing. The base- 
calling accuracy achieved is compared with the exist- 
ing standards, PHRED (Phil’s Read Editor) and ABI 
(Applied Biosystems, version 2.1.1) KB base-callers in 
terms of deletion, insertion and substitution errors. 
Experimental evidence indicates that the proposed 
models achieve a higher base-calling accuracy when 
compared to PHRED and a comparable performance 
when compared to ABI. The results obtained demon- 
strate the potential of the proposed models for effi- 
cient and accurate DNA base-calling. 
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1. INTRODUCTION 

Until the last decade, the complete human genome se- 
quence was not identified. However, a massive research 
effort resulted in deciphering nearly three billion con- 
stituents of the human genome. The human genome re- 
fers to the heredity information encoded in the DNA of 
Homo sapiens stored in 23 pairs of chromosomes located 
in the cell nucleus. A DNA, or deoxyribonucleic acid, 
strand consists of four nucleotide bases: Adenine (A), 
Cytosine (C), Thymine (T) and Guanine (G). A DNA 
molecule has a double helical structure consisting of two 
intertwined chains made up of complementary nucleotide 
strands in which A bonds with T and C pairs up with G 
[1]. The process of determining the ordered sequence of 
these nucleotide bases in a DNA molecule is referred to 
as DNA sequencing. Information derived from the ge- 
nomic sequence is likely to contribute enormously to 
medical advances such as more accurate diagnosis of 
genetic diseases, improved drug design to target specific 
genes causing certain diseases and gene therapy by re- 
placement of defective genes. The ability to decode the 
genetic material is also very important to researchers 
trying to improve the resistance of crops to parasites, 
detect bacteria that may pollute air or water, determine 
pedigree for seed or livestock breeds, explore species 
origin and ancestry, and determine the cause of migration 
of different populations and various other evolutionary 
studies. DNA sequencing also has potential benefits in 
applied fields such as DNA forensics in which crime 
suspects can be identified by matching their DNA with 
evidence left at crime scenes, establishing paternity and 
identifying crime and catastrophe victims. 

One of the first DNA sequencing techniques was de- 
veloped in 1976 by Maxam and Gilbert based on chemi- 
cal modification of the DNA molecule which breaks a 
terminally labeled DNA template partially at each base. 
The reaction of dimethyl sulphate, piperidine, formic 
acid, hydrazine and sodium chloride, individually or in 
combinations, causes the cleavage of the four bases. The  
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lengths of the labeled fragments then identify the posi- 
tions of each base. This method allowed the sequencing 
of at least 100 bases [2]. 

Chain Termination Method, also referred to as the 
Sanger Method, is currently the most widely used tech- 
nique for DNA sequencing [3]. The Sanger Method in- 
volves the decomposition of a DNA strand into smaller 
fragments using restriction enzymes followed by frag- 
ment amplification using the Polymerase Chain Reaction 
(PCR) technique generating many copies of the DNA 
template. PCR involves denaturation; breaking of the 
hydrogen bonds between the complementary DNA strands, 
annealing; attachment of the DNA strands with primers, 
and primer extension; binding of the polymerase with the 
primers resulting in the elongation of the DNA template. 
The DNA template to be sequenced is then divided into 
four sequencing reactions, each containing a primer to 
act as a starting point for DNA replication, deoxynucleo- 
tides (dATP, dGTP, dCTP and dTTP) and a DNA poly- 
merase. To each sequencing reaction, only one of the 
four dideoxynucleotides (ddATP, ddGTP, ddCTP and 
ddTTP) is added to serve as a radioactive fluorescent 
chain terminator resulting in various DNA fragments of 
different lengths. Electrophoresis is then performed on 
the synthesized DNA fragments to separate the DNA 
fragments based on their length resulting in an electro- 
pherogram trace [3]. Figure 1 shows a small portion of a 
human DNA electropherogram. 

The electropherogram produced as a result of the 
Sanger Method undergoes base-calling, a process by 
which the ordered sequence of nucleotides in a DNA 
strand is identified. DNA base-calling involves translat- 
ing Figure 1 to a string of A, T, C and G sequence—e.g. 
GGAGCGTTAGCAATGTC. 

Several systems were designed in the past couple of 
decades to facilitate and automate DNA base-calling. 
Giddings et al. [4] proposed an object oriented modular 
algorithm for the determination of a DNA sequence. The 
system undergoes noise filtering, manual mobility shift 
correction, normalization and baseline correction as pre- 

 

 
Figure 1. Segment of an electropherogram trace. 

processing. Identification of peaks in the chromatogram 
trace is then performed. A confidence value is assigned 
to each peak based on the following features: height, 
spacing and width. Post processing is then carried out by 
inserting bases in appropriate locations where no bases 
were called. 

In 1996, a graph theoretic approach was introduced by 
Berno for base-calling [5]. The approach involved low 
pass-filtering of the data to reduce the noise, followed by 
channel separation to eliminate cross-talk between the 
four channels. Mobility shift correction, baseline removal 
and de-convolution were also carried out prior to assign- 
ing a scoring function to assess the confidence of each 
peak occurrence. Berno’s method proved to generate less 
insertion and mismatch errors compared to the ABI base- 
caller. However, it produced double the deletion errors 
when compared to ABI. 

In 2000, Brady et al. [6] proposed an automated base- 
calling algorithm known as the Maximum Likelihood 
Base-Caller. Pre-processing involved a soft-caller and a 
hard-caller. The soft caller was used to compute a set of 
tentative call amplitudes and their locations for each base 
producing a set of soft calls. The hard caller combines 
the tentative calls for all four bases and produces the 
final sequence estimate using a computationally expen- 
sive dynamic programming approach. On testing the 
method, the base-caller resulted in 40% fewer errors than 
ABI and its performance was comparable to that of 
PHRED base-caller. 

In 2006, Eltoukhy et al. [7] proposed to perform DNA 
base-calling by using Sequencing-by-Synthesis methods 
such as pyrosequencing. Given a test sequence and the 
expected noisy output DNA sequence, system parameters 
were proposed to be determined by finding the DNA 
sequence that minimizes the probability of decoding er- 
rors. The pre-processing stage consisted of baseline cor- 
rection and normalization. Iterative partial maximum like- 
lihood sequence detection was applied to five pyrose- 
quencing datasets. Of the two longest datasets, a total of 
170 out of 208 bases, and 205 out of 224 bases were ob- 
served to be correctly decoded while the other shorter 
datasets resulted in no errors in base-calling. 

Another approach to perform DNA base-calling was 
proposed by Thornley et al. [8] using Neuro-Fuzzy clas- 
sifiers. A Self Adaptive Neuro-Fuzzy Inference System 
(SANFIS) classifier was chosen as a Neuro-Fuzzy net- 
work due to its immunity to the problem of dimensional- 
ity. Using four SANFIS classifiers, bases were attempted 
to be recognized. In case of failure to call a base, a Neu- 
ral Network was used as a classifier. On testing the 
model, an average accuracy rate of approximately 69% 
was obtained. 

Heuristic base-callers [4,5] are not built on a strong  
theoretical basis. They depend on a large number of pa- 
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rameters that needs to be optimized to a specific type of 
chemistry or to a certain type of sequencing technology. 
Statistical base-callers [6] are either poorly tested or slow, 
due to the high computational complexity of the imple- 
mented algorithms. In this paper, a well-established pat- 
tern recognition framework is used to build our base- 
caller. Artificial Neural Networks (ANN) and Polynomial 
Classifiers (PC) are proposed as base-calling classifiers 
such that the base-caller designed is not restricted to a 
specific chemistry or sequencing machine. Success achie- 
ved in our approach indicates the potential of our models. 
The rest of the paper is organized as follows. In section II, 
we briefly describe the method adopted for data acquisi- 
tion, pre-processing and feature extraction. In section III, 
we describe the proposed system models: Artificial Neu- 
ral Network (ANN) and Polynomial Classifier (PC), fol- 
lowed by a brief description of the testing results ob- 
tained using the trained models in Section 4. Finally, 
Section 5 summarizes our conclusions. 

2. DATA ACQUISITION,  
PREPROCESSING AND FEATURE 
EXTRACTION 

The approach adopted in this paper to solve the problem 
of base-calling is based on designing a pattern recogni- 
tion classifier. The data to be classified are acquired from 
sequencing machines; hence a pre-processing stage is 
needed to achieve noise removal prior to feature extrac- 
tion. The success in the implementation of any approach 
depends on the effectiveness of the features extracted to 
represent a DNA pattern. In this section, the main com- 
ponents of any pattern recognition model are: data ac- 
quisition (or sensing), pre-processing and feature extrac- 
tion, are discussed. 

2.1. Data Acquisition/Sensing 

One of the main considerations in designing a pattern 
recognition classifier is the presence of an adequate size 
of data to train and test the model. Performance of the 
classifier model increases as the amount of data used 
increases. The training data are chosen such that every 
possible case scenario is seen and learnt by the model. 
However, over-fitting needs to be prevented so that the 
generalization of the classifier model to novel data is not  

affected. 
The needed chromatogram traces for training and test- 

ing the classifier models were obtained from the Sorenson 
Molecular Genealogy Foundation (SMGF) along with 
their respective consensus sequences, i.e. DNA sequences 
obtained from the sequencing of overlapping fragments 
of a gene several times. Moreover, data obtained from the 
National Center for Biotechnology Information (NCBI) 
trace archive [9] were labeled using commercially avail- 
able PHRED base-calling software, CodonCode Aligner. 
PHRED is used since it demonstrates high accuracy 
when tested over a wide variety of sequencing methods 
and has proven to have a higher system performance 
compared to other existing base-callers [10]. The NCBI 
Basic Local Alignment Search Tool (BLAST) is then run 
on each PHRED generated sequence to locate the corre- 
sponding consensus sequence for each DNA fragment 
being tested. The determined consensus sequences were 
used to label the chromatogram traces for accurate train- 
ing of the classifier. 

To evaluate the performance of the designed classifier 
models based on noise contamination, chromatogram 
source and read length of the electropherograms, the 
traces obtained from the SMGF and from the NCBI trace 
archive were categorized into three main data sets as 
shown in Table 1. 

For the analysis of classifier performance, the DNA 
sequence obtained using PHRED and ABI base-callers 
on the above three data sets are needed. CodonCode 
Aligner and Bioedit were used to obtain the DNA se- 
quence called by PHRED and ABI base-callers. 

2.2. Pre-Processing 

Electropherograms obtained after the implementation of 
electrophoresis may be contaminated by noise introduced 
at various stages of DNA sequencing. Noise contamina- 
tion occurs as a result of the imperfections in the chemis- 
try involved and the electronics of electrophoresis. Noise 
superimposed on a DNA trace may appear in the form of 
overlapping spectra, presence of one or more large peaks 
at the beginning of the trace, a drift in the DC value of 
the signal, variations in the dynamic range, or low peak 
resolution. The data chosen for both training and testing 
the designed models are hence subjected to several stages 

 
Table 1. Distribution of data acquired into three data sets. 

Data Set No. Data Source No. of Traces Specie Characteristics 

1 NCBI 6 Homo sapiens chromosome: 5, 6, 11, 12, 13. 
Noisy trace, belongs to one species, consists 
of 600 - 700 bases. 

2 NCBI & SMGF 11 
Homo sapiens mitochondrian D-loop, 
Saccharomyces mikatae, Drosophila melanogaster.

Noisy trace, belongs to three species, 
consists of 675 - 775 bases. 

3 SMGF 5 Homo sapiens mitochondrian D-loop. 
Lower noise level, trace belongs to only one 
species, consists of 800 - 900 bases. 
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of pre-processing to condition the signals without losing 
useful information. Therefore, this stage involves three 
main processing functions: color correction, peak sharp- 
ening, and windowed normalization. 

2.2.1. Color Correction 
During DNA sequencing, the four-base traces in their 
respective channels undergo interference resulting in the 
detection of false peaks or peaks with erroneous excita- 
tion wavelengths, a process known as cross-talk. This 
process causes signal distortion which affects the per- 
formance of any base-caller. Hence, de-correlation, also 
referred to as color correction, is implemented to reduce 
such interference. 

Using the noisy raw chromatogram traces (Figure 2 
(a)), a 4 × 4 correlation matrix, M, is needed to remove 
the cross-talk between the four lanes. Each column of the 
cross correlation matrix also referred to as the mixing 
matrix, represents the relative signal intensity of each 
dye compared to the other three dyes. However, M is not 
known initially and needs to be determined. One com- 
mon practice uses the manufacturer’s provided mixing 
matrix to implement the linear transformation. If the 
manufacturer is not known, the components of M can be 
determined by identifying a clear known peak in each 
lane of the raw data. For each of the identified peaks, the 
corresponding relative signal intensities are obtained and 
are placed as a single row in the matrix [4,11]. 

Since the data were acquired mainly from public da- 
tabases, the matrix M provided by the respective man- 
ufacturers could not be found. Instead, the matrix M was 
initially estimated by the identification of four clear peaks 
in the chromatogram trace and the relative signal intensi- 
ties were obtained. However, it was observed that the 
data did not achieve sufficient de-correlation. Hence, M 
was re-estimated by taking into consideration the entire 
trace, not only four clear peaks. The correlation coeffi- 
cients were calculated from a raw input trace, XR, of size 
n × 4, whose rows represent the observation samples and 
the columns represent the bases (the variables). A linear 
transformation, using the matrix M, is then implemented 
to obtain the desired color corrected signal, XCC, as fol- 
lows: 

CC RX MX .              (1) 

where: 

, , , ,R R A R C R T R GX x x x x     and 

, , , ,R cc A cc C cc T cc GX x x x x     

Figure 2(b) shows the trace data obtained after the 
implementation of the above de-correlation routine. On 
comparing Figures 2(a) and (b), it can be clearly ob- 
served how the noisy interference represented in the 
form of background ripples or overlapping peaks have 

 
(a) 

 
(b) 

Figure 2. Part of an electropherogram trace (a) before and (b) 
after color correction. 

 
been either removed or highly reduced as a result of 
color correction. 

2.2.2. Peak Sharpening 
In an ideal electropherogram trace, each peak is repre- 
sented by a single clear peak. However, this does not 
happen in a real trace. During electrophoresis, based on 
the length of the DNA fragments, the time needed for a 
fragment to reach the photo-detector depends on its 
length. Short DNA fragments travel faster than longer 
ones and hence, are located in the early segments of a 
chromatogram trace. Typically, a certain range of short 
fragments arrive at the photo detector at approximately 
the same time resulting in sharp and easy-to-distinguish 
peaks. But as time passes and the slower “longer” DNA 
fragments reach the detector, the resolution of successive 
peaks is observed to deteriorate gradually as a result of 
electrophoretic diffusion. This occurs due to the variation 
in the arrival time of various similar long DNA frag- 
ments resulting in wider, flatter and more distorted peaks 
[12]. Figure 3 illustrates the initial and final segments of 
a DNA trace obtained after the process of electrophoresis. 
It is clearly shown in Figure 3(a) that peaks in the first 
part of the trace are sharp and of a higher resolution 
compared to peaks in the last segments of the chroma- 
togram trace (Figure 3(b)) which are of a much lower 
resolution and are not easily identifiable. 

Low resolution peaks result in inaccurate peak detec- 
tion and hence, need to be resolved. A non-linear itera- 
tive de-convolution algorithm [13] is employed to re- 
cover the high resolution base peaks. Chromatogram 
traces obtained from electrophoresis ideally represent a  
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(a) 

 
(b) 

Figure 3. (a) High resolution peaks at the initial parts of a trace; 
(b) Low resolution peaks at the last part of a trace. 

 
linear system. A high resolution trace, ,D ix , is assumed 
to be a sparse pulse train corresponding to the occurrence 
of each base. 

   , .D i
k

x a k p n k            (2) 

where, k represents the position of each base peak, p(n) 
is a pulse of a narrow width, and a(k) corresponds to the 
pulse amplitude. The observed low resolution trace, ,cc ix , 
can be obtained, mathematically, by the convolution of 
the high resolution trace, ,D ix , with a point spread func- 
tion, h. That is, 

, , .cc i D ix x  h               (3) 

Thus, to reconstruct the high resolution trace, iterative 
de-convolution is adopted. The following outlines the 
general procedure to obtain the de-convolved DNA trace: 

- Color corrected data, ,cc ix , of size n × 1 is treated as 
the observed signal. Note that i represents the four bases: 
A, C, T and G. 

- ,cc ix  is initially normalized by its maximum obser- 
vation to obtain ,CN ix , 

,
,

,

For ,  ,   and 
max( )

cc i
CN i

cc i

x
x i A C T G

x
    (4) 

- A normalized point spread Gaussian function, h, is 
chosen and de-convoluted data, ,D ix , of size n × 1 is 
used to represent the desired signal. 

- The first iteration, y = 0, is initialized as follows to 
obtain , yD ix , 

0 .CN ix x ,

0

                (5) 

0, .D ix x                 (6) 

- The initial assumption is convoluted with the point 
spread function and ,D ix  is updated as follows, 

 1, , , ,y y yD i D i D i CN i D ix Fx x x h x

     , y

,

   (7) 

where, F is an operator and λ is the relaxation constant. 
- When y is sufficiently large, converges to the 

underlying pulse train, 
1, yD ix


,lim
yD i D

y
ix x


              (8) 

By performing iterative de-convolution, peak sharp- 
ening and enhancement of signal quality are achieved. 
Figure 4(a) shows part of a chromatogram trace prior to 
de-convolution, while Figure 4(b) shows the same trace 
after de-convolution. By comparing the two figures, the 
low resolution peaks sharpened to a higher resolution as 
a result of de-convolution can be observed. 

2.2.3. Normalization 
Peak amplitudes in a chromatogram trace are observed to 
decay with time due to several factors including elec- 
tropherogram source imperfections and variations in de- 
tector sensitivity. Due to the difference in the dynamic 
range of a trace, it is vital to normalize the signals before 
base-calling is initiated. Normalization can be achieved 
using many different techniques. Giddings et al. [11] 
proposed segmentation of the observation points into 
consecutive windows. A scaling factor was then deter- 
mined such that the amplitudes of the segmented data are 
normalized to the [0,1] range. Another method adopted 
[12] involves also the segmentation of the observation 
points into windows. However, for each window the av- 
erage peak height is calculated and the segmented data 
are normalized according to it. 

 

 
(a) 

 
(b) 

Figure 4. Chromatogram trace (a) before and (b) after de- 
convolution. 
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In this paper, a simple windowed normalization tech- 
nique is adopted to obtain a normalized chromatogram 
trace. The pre-processed trace obtained from the previous 
stage is initially divided into non-overlapping consecu- 
tive windows. Each segment is then normalized by its 
maximum amplitude. Figure 5(a) illustrates the trace 
signal prior to normalization while Figure 5(b) illus- 
trates the same trace after normalization. The decay in 
the amplitude is evident in Figure 5(a) while the uni- 
formity of the signal height after normalization is seen in 
Figure 5(b). 

2.3. Feature Extraction 

Feature extraction is the main stage which has a direct 
effect on the performance of a pattern recognition model. 
Feature extraction can be thought of as a form of dimen- 
sionality reduction. It is the process in which the pre- 
processed input data is transformed into a set of repre- 
sentative, discriminative and unique set of features to 
characterize each chromatogram trace. These features are 
then used to train and test the proposed classifier model 
in a much more efficient way.  

In our approach, the features chosen to represent each 
observation point in a chromatogram trace are as fol- 
lows: 

 A C T GF F F F F             (9) 

where 

for , ,  and iF g x g i A C T G       (10) 

and, 
- F1 represents the set of feature vectors of base i. It is 

a matrix of size n × 3 where, n is the number of sample  
 

 
(a) 

 
(b) 

Figure 5. Part of an electropherogram trace (a) before and (b) 
after normalization. 

points in the chromatogram trace. 
- x is a vector of size n × 1. It represents the signal 

strength of base i at each observation point, 

 1 2, , , nx x x x             (11) 

- g   is a vector of size n × 1. It consists of the gra- 
dient values for each observation point calculated using 
the signal strength of the prior three sample points for 
each observation. 

1 2, , , ng g g g                    (12) 

where 

3 for 4,  5 n 3
3

z z
z

x x
g z 

          (13) 

- g   is a vector of size n × 1. It consists of the gra- 
dient values for each observation point calculated using 
the signal strength of the subsequent three sample points 
for each observation. 

1 2, , , ng g g g                  (14) 

where 

3 for 4,  5 n 3
3

z z
z

x x
g z  

        (15) 

From the chromatogram trace, it is observed that the 
positive ascent of a peak to the apex and the negative 
descent of a peak to the subsequent valley are defined by 
using a minimum of three sample points respectively. 
Hence, for the calculation of positive (Eq. 15) and ne- 
gative (Eq. 13) gradient values, three samples are adop- 
ted. 

3. SYSTEM MODELS 

Using features extracted in the previous section, the 
DNA base-calling problem can now be tackled. In this 
paper, two pattern recognition models are used to solve 
the problem of base-calling: Artificial Neural Networks 
(ANNs) and Polynomial Classifiers (PCs). 

3.1. Artificial Neural Network 

Artificial Neural Network (ANN) is a computational 
approach conceived as an imitation of the human’s brain 
neural network. Based on the training data, ANNs are 
capable of adapting its structure accordingly. The basic 
building block of an ANN is an information processing 
unit, referred to as neuron, consisting mainly of weights 
equal to the size of the data set, an adder to sum up the 
weighted inputs, and an activation function for limiting 
the output of the neuron [14]. ANN’s quality as universal 
function estimators renders them attractive as pattern 
classifiers. ANN’s ability to model both linear and non- 
linear data is another advantage. However, this property 
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makes an ANN prone to over-fitting, the tendency of a 
model to adapt itself to the minute details of a training 
data set. 

Figure 6 illustrates a single hidden layer feed forward 
neural network consisting of an input layer, a hidden 
layer, and an output layer. Multiple neurons group to- 
gether to form a layer and are connected to the neurons 
in the preceding and subsequent layers through biases 
and weights. The features extracted from the acquired 
data, represented as the input layer, constitute the input 
signals applied to the neurons comprised in the first hid- 
den layer. Hence, the number of neurons in the input 
layer is equal to the dimensionality of the input feature 
vector, i.e. 12 (three features for each of the four bases). 
As a rule of thumb, a neural network with one hidden 
layer has the same expressive power as a network built 
from several hidden layers. Moreover, as a practice, the 
number of neurons in a hidden layer is twice that of the 
input layer [15]. The outputs of the hidden layer are then 
used as inputs to the output layer. The number of neurons 
in the output layer represents the number of classes the 
input data can be classified into [16]. For the proposed 
base-calling problem, classification involves recognition 
of the four bases, A, C, T and G, referred to as classes. 
Hence, five neurons are used to form the output layer: 
four of which represent the presence of each of the four 
nucleotides, while the fifth neuron represents the absence 
of all the four bases, represented as N. 

In the learning stage, a target matrix, T, is needed for 
labeling the ANN input data classes. 

1, 1, 1, 1, 1,
1

2, 2, 2, 2, 2,2

, , , , ,

A C T G N

A C T G N

n
n A n C n T n G n N

t t t t t
t

t t t t tt
T

t
t t t t t


  
  
   
  
  
  

     









     (16) 

 
 

Bias  

Z1

Zm

Input Layer d 

features 
Hidden Layer 

Output Layer M 

classes 

X(1) 

X(2) 

X(d) 

 

Figure 6. A single hidden layer feedforward neural network. 

The values assigned to the elements of T are as fol- 
lows: 

-  , 1z i Bt    while  , ,,z i B z Nt t  0  for sample point 
z and  , , ,C TB A G , if base i has a positive feature 

zg , indicating a positive slope for the three sample 
points prior to z, and a negative feature zg , indicating a 
negative slope for the three sample points subsequent to 
z. 

-  , 0.05z Nt   while  , 0z it   for sample point z 
and  G, , ,B A C T  if the above condition is not satis- 
fied. 

The prior probabilities indicating presence and ab- 
sence of a base are imbalanced due to the large availabil- 
ity of class N in a chromatogram trace compared to the 
other bases. Since it is difficult to balance the amount of 
data belonging to each class, the weight given for class N 
is reduced by assigning it a target value of 0.05 [17]. 

Using the MATLAB R2009b Neural Network toolbox, 
the neural network model was trained and tested using a 
single hidden layer, an output layer consisting of five 
neurons to represent each of the five previously men- 
tioned classes, and hyperbolic tangent sigmoid transfer 
functions. To avoid the problem of over-fitting, a valida- 
tion data set is used in addition to the training and testing 
data sets. The validation data ensures that the training 
process is terminated prior to over-fitting the training 
data to the model. 

3.2. Polynomial Classifier 

Polynomial Classifiers (PCs) [18] represent non-linear 
system identifications providing an efficient method to 
describe non-linear input/output relationships. PCs are a 
single layer neural network that adopts the polynomial 
terms of the pattern features as inputs. A PC uses 
k:d-dimensional feature vectors, X, which can be catego- 
rized into non-linearly separable classes. A mapping 
function between each input and its respective class then 
needs to be determined. A Kth order polynomial classifier 
uses a Kth order polynomial expansion function to map a 
d-dimensional feature vector, x, to a higher dimensional 
vector space, p(x) For example, if x is a 2-dimensional 
feature vector represented as  1 2x x x , the mapping of 
x to a higher dimensional space of K = 2 produces, 

  2 2
1 2 1 2 1 21p x x x x x x x          (17) 

Similarly, the sequence of N:d-dimensional feature 
vectors,  1 2, , , nX x x x   is expanded into their Kth 
order polynomial expansion, M, where, 

     1 2 NM p x p x p x          (18) 

Using the expanded feature vectors, M, the polynomial 
classifier is trained to determine the optimum set of 
weights, , that minimizes the difference between the optw
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model output and the desired targets, tx such that, itself k times. 
The trained models were tested by comparing the re- 

sults obtained in terms of bases called to the consensus 
sequence of each chromatogram trace and to the DNA 
sequences obtained from ABI and PHRED base-callers. 
The performance of the neural network model and the 
polynomial classifier model in terms of correct bases 
obtained was measured based upon three types of errors 
that can occur in DNA base-calling: deletion errors, in- 
sertion errors, and substitution errors. A deletion error 
represents the loss of one or more bases by the base- 
caller. For example, when the base sequence of a DNA 
template is TACGGT and the base-caller calls TCGGT, a 
deletion error has occurred. An insertion error, on the 
other hand, involves the addition of one or more bases by 
the base-caller. For example, when the base sequence of 
a DNA template is TACGGT and the base-caller calls 
TATCGGT, an insertion error has occurred. A substitu- 
tion error occurs when the base-called replaces the actual 
base. For example, when the base sequence of a DNA 
template is TACGGT and the base-caller calls TACCGT, 
a substitution error has occurred. 

2
arg minopt x

w
w MW t

T

        (19) 

m

T
opt XM Mw M t           (20) 

Using the parameters obtained from the training stage, 
an unknown feature vector, z, is expanded to its polyno- 
mial terms, p(z), to test the trained model. The target 
vector, tz, is obtained as follows, 

 z optt w p z              (21) 

On employing a 2nd order polynomial expansion on the 
features extracted from the data acquired, the data are 
still observed to be non-linearly separable. Hence, a 3rd 
order polynomial classifier using a 3rd order polynomial 
expansion function is implemented in this work to train 
the PC. The trained model is then tested using novel data 
from the three data sets and a set of scores are obtained, 
followed by post-processing to attain the final DNA se- 
quence. 

4. MODEL TESTING AND RESULTS 
The performance of the trained model is shown in Ta- 

bles 2-4 for the three data sets. In the three cases shown, 
an overall base-calling average of 98.4% and 98.64% are 
achieved by ANN and PC, respectively, indicating the 
flexibility of the designed topologies [19,20]. Moreover, 
in comparison to ABI and PHRED, the currently most 
widely used base-calling software, in terms of deletion, 
insertion and substitution errors, both proposed models 
achieved a higher accuracy than PHRED and a compara- 
ble performance to that of ABI. However, ABI and 
PHRED base-callers were designed using thousands of 
chromatogram traces while the models designed in this 
paper used a discrete number of traces for its training and 
testing. This indicates the high potential of the proposed 
classifiers as more efficient alternative base-callers. 

Data acquired were divided into three sets based on the 
extent of noise contamination, source of the data, the 
organism the trace belongs to, and the read length. In 
light of the limitation in the number of bases, round robin 
strategy is used in training and testing the proposed 
models to increase the statistical significance of the 
results. The available traces are divided into k disjoint sets, 
such that k models are trained using the data in the (k − 1) 
sets and tested on the remaining non-trained data set. In 
the case where k is equal to the number of traces in the 
data set, i.e. k = 6, leave-one-out method is implemented, 
i.e. out of the six available traces, traces 2 to 6 are used 
for training while the first trace is used for testing. The 
next round uses traces 1, 3 to 6 for training and the 
second trace is spared for testing, and the cycle repeats  

 
Table 2. Performance measure of trained ANN and PC compared to PHRED and ABI for data set 1. 

Correct 
Recognition (%) 

Deletion 
Errors (%) 

Insertion 
Errors (%) 

Substitution 
Errors (%) Chromatogram 

Traces 
ANN PC PHRED ABI ANN PC PHRED ABI ANN PC PHRED ABI ANN PC PHRED ABI

Trace 1—639 Bases 97.65 98.6 61.19 99.21 1.56 0.63 18.47 0.16 0.16 0 0.78 0.63 0.63 0.78 19.56 0 

Trace 2—623 Bases 96.15 95.83 71.43 97.75 1.12 0.64 4.01 0.16 1.61 1.12 0.32 0.16 1.12 2.41 24.24 1.93

Trace 3—632 Bases 97.63 98.1 97.63 99.68 0.79 0.79 0.16 0 0.95 0.32 0.16 0 0.63 0.79 2.06 0.32

Trace 4—632 Bases 97.47 98.26 98.73 99.37 1.11 0.47 0 0.16 0.16 0.32 0 0.32 1.27 0.95 1.27 0.16

Trace 5—722 Bases 97.23 98.06 97.51 98.75 0.83 0.83 0.14 0.55 0.83 0.42 0.69 0.14 1.11 0.69 1.66 0.55

Trace 6—722 Bases 98.20 98.34 88.92 99.45 0.28 0.28 8.73 0.14 0.83 0.55 0.69 0.28 0.69 0.83 1.66 0.14
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Table 3. Performance measure of trained ANN and PC compared to PHRED and ABI for data set 2. 

Correct 
Recognition (%) 

Deletion 
Errors (%) 

Insertion 
Errors (%) 

Substitution 
Errors (%) Chromatogram 

Traces 
ANN PC PHRED ABI ANN PC PHRED ABI ANN PC PHRED ABI ANN PC PHRED ABI

Homo  
sapiens—639 Bases 

97.81 98.12 61.19 99.21 0.47 0.63 18.47 0.16 0.94 0.94 0.78 0.63 0.78 0.31 19.56 0 

Saccharomyces  
mikatae—674 Bases 

99.41 98.81 99.41 99.41 0.59 0.59 0.15 0.15 0 0.59 0.15 0.15 0 0 0.30 0.30

Drosophila  
melanogaster—744 Bases 

97.58 98.66 99.33 97.45 2.15 0.81 0.67 1.75 0 0.27 0 0.27 0.27 0.27 0 0.54

 
Table 4. Performance measure of trained ANN and PC compared to PHRED and ABI for data set 3. 

Correct 
Recognition (%) 

Deletion 
Errors (%) 

Insertion 
Errors (%) 

Substitution 
Errors (%) Chromatogram 

Traces 
ANN PC PHRED ABI ANN PC PHRED ABI ANN PC PHRED ABI ANN PC PHRED ABI

Trace 1—759 
Bases 

99.87 99.74 100 100 0.13 0.13 0 0 0 0.13 0 0 0 0 0 0 

Trace 2—882 
Bases 

99.66 99.55 99.89 100 0.23 0.23 0 0 0 0.11 0 0 0.11 0.11 0.11 0 

Trace 3—866 
Bases 

99.31 99.53 99.53 100 0.46 0.35 0.12 0 0.23 0.12 0 0 0 0 0.35 0 

Trace 4—740 
Bases 

99.19 98.78 99.73 99.86 0.68 0.68 0.27 0.14 0.14 0.27 0 0 0 0.27 0 0 

Trace 5—710 
Bases 

99.72 99.86 100 100 0.14 0.14 0 0 0 0 0 0 0.14 0 0 0 

 
5. CONCLUSIONS 

Efficiently deciphering the human genome through DNA 
sequencing has been anticipated widely for the contribu- 
tion it is bound to make in a range of applications such as 
understanding the causation of genetic diseases and hu- 
man evolution. However, the relatively high cost of the 
chemistry involved in DNA sequencing results in high 
operational cost in genome research centers. This fact 
has triggered research initiatives to improve the accuracy 
of base reads in noisy electropherograms so that re-se- 
quencing of the required DNA fragment is not needed, 
thereby, reducing sequencing expenses. 

A simple neural network and a polynomial classifier 
model that matches the performance of existing base- 
callers was proposed in this paper. An average accuracy 
of 98.4% and 98.64% is achieved by ANN and PC, re- 
spectively, and the ability of the classifiers to result in 
negligible substitution errors compared to ABI and PHRED 
was proven. PHRED is currently the most widely used 
base-caller software due to its high base-calling accuracy 
which exceeds that of ABI [21]. The ABI base-calling 
software was improved by developing the KB base-caller 
which incorporates base-specific quality scores similar to 
PHRED. ABI KB was calibrated using more than 20 
million base-calls and tested on more than 10 million 
bases [22]. Hence, justifying the high accuracy of ABI 
compared to the proposed models and PHRED. However, 

it should be noted that PHRED results in high error rates 
in some traces which already have their quality scores 
assigned. In such cases, PHRED makes obvious errors in 
perfectly clear sequences. 

The proposed models do not depend on the spacing 
between adjacent peaks that varies dynamically as we 
progress through the trace. In addition, the models were 
designed not to assign an “N” to a peak. The base with 
the highest score is assigned to a peak irrespective of the 
noise. Moreover, the ANN and PC models have not been 
trained and tested in this paper using thousands of chro- 
matogram traces. In fact, discrete number of traces were 
utilized and a performance that exceeds the accuracy of 
PHRED and comparable to ABI was obtained. Therefore, 
the potential and suitability of a neural network and 
polynomial classifier model as a base-calling tool were 
demonstrated. Yet, further research is needed to improve 
the recognition rate. 
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