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ABSTRACT 

Leprosy is a communicable disease which can cause hideous deformities to the afflicted and social stigmatization to 
them and their families. The continued high endemicity of leprosy in pockets of Sub-Saharan Africa is a source of baf-
flement to researchers. In this paper, we investigate non-compliant behavior by patients on treatment and possible in-
adequacy of the prescribed treatments as the reason for the persistence of the disease in the region. We construct theo-
retical, deterministic mathematical models of the transmission dynamics of leprosy. These models are modified to en-
capsulate non-compliance and inadequate treatment. The models are then analyzed to gain insight into the qualitative 
features of the equilibrium states, which enable us to determine the basic reproduction number. We also employ ana-
lytical and numerical techniques to investigate the impact of non-compliance and inadequate treatment on the transmis-
sion dynamics of the disease. Our results show that, as long as there is treatment, leprosy will eventually be eliminated 
from the region and that the disposition under investigation only serves to slow the rate at which the disease is eradi-
cated. 
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1. Introduction 

Leprosy, under guidelines set by the World Health 
Organization (WHO), has been successfully eliminated 
elsewhere. Most previously highly endemic countries 
have now reached elimination (defined as a registered 
prevalence rate of less than one case per 10,000 po- 
pulations). At the beginning of 2009, pockets of high 
endemicity still remained in Angola, Central African Re- 
public, Democratic Republic of Congo, India, Mada- 
gascar, Mozambique, Nepal, United Republic of Tanza- 
nia, and Brazil. These 9 countries account for 88% of all 
new cases. There were 213,036 new cases recorded from 
121 countries at the beginning of 2009 [1]. Leprosy or 
Hansen’s disease is a chronic disease which has plagued 
mankind for at least 4000 years. It is caused by the pa- 
thogen, Mycobacterium leprae (M. leprae). Leprosy is 
principally a granulomatous disease of the peripheral 
nerves and mucosa of the upper respiratory tract. Skin 
lesions are the primary external sign. Unless properly 
treated, leprosy can be relentlessly progressive, causing 
permanent damage to the skin, nerves, limbs and eyes. 
The victims often die of some other disease and only a 
few live until they succumb to the wasting effects of 
leprosy itself. The age-old social stigma associated with  

the advanced form of leprosy lingers in many areas, and 
remains a major obstacle to self-reporting and early 
treatment. 

Leprosy is a communicable, slow progressing disease 
which is transmitted by contact between infected and 
healthy persons. Nasal secretions of untreated cases are 
the main exit route of the pathogen which is believed to 
gain entrance into the susceptible body through mem- 
branes lining the nose or through breaks in the skin. 
Living in close proximity with an infected individual 
seems necessary for one to contact the disease. Most in- 
dividuals exposed to M. leprae do not develop clinical 
features; the infection quietly dies out. If the infection 
progresses, the disease manifests in two extreme forms; 
tuberculoid and lepromatus leprosy. Effective chemo- 
therapy treatments are available for all manifestations of 
leprosy. When a patient begins treatment, he/she ceases 
to be infective in as little as 72 hours and can gradually 
resume normal life while continuing the chemotherapy 
treatment for periods of 6, 12 or 24 months depending on 
the type of manifestation. Reversal reactions, absen- 
teeism and non-compliance are some factors that com- 
plicate the curing process of any particular disease. If the 
disease is not treated properly, a relapse is imminent and 
the disease can be perilously progressive. A relapse is 
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defined as the recurrence of the disease after completion 
of the treatment [2]. 

2. Transmission and Pathogenesis 

Nasal secretions of untreated lepromatus patients are 
teeming with bacilli and constitute the main source of 
infection, which occurs when the M. leprae invades the 
susceptible body via the nasal mucosa and spreads to the 
peripheral nerve Schwann cells and skin macrophages. M. 
leprae is also suspected to invade the body via broken 
skin. The skin of lepromatous patients is a possible exit 
route for the pathogen: lepromatous cases show large 
numbers of M. leprae deep down in the dermis. The 
pathogen is known to be a stable and hardy organism 
which can survive in the environment for up to 5 months 
[3,4]. Leprosy is not hereditary but in few cases, infec- 
tion actually takes place through the placenta. M. leprae 
can also be transmitted from mother to child via breast 
milk. For one to contract the disease, frequent and close 
contact with an infected person has been shown to be 
necessary. Since a contagious individual may infect close 
contacts rapidly, opportunities to transmit M. leprae may 
decrease with longer duration of the disease. Only small 
minorities of the exposed develop leprosy; the majority 
will have a sub-clinical infection and presumably de- 
velop protective immunity [3]. It is estimated that 95% of 
the exposed are able to clear the infection this way [4]. 

Transmission studies are difficult because of the uni- 
que biology of the M. leprae and long incubation period 
of the disease. In leprosy, both the reference points for 
measuring the incubation period and the times of infec- 
tion and onset of disease are difficult to define; the for- 
mer because of the lack of adequate immunological tools 
and the latter because of the disease’s slow onset. The 
incubation period is estimated to be between 2 - 5 years 
and 8 - 12 years for tuberculoid and lepromatus cases 
respectively [4]. The minimum incubation period report- 
ed is as short as a few weeks and this is based on the very 
occasional occurrence of leprosy among young infants. 
One of the greatest uncertainties in leprosy studies is that 
individuals incubating the disease may already harbor 
many bacilli, and it is possible that these individuals 
already transmit M. leprae to others long before the onset 
of the disease, given its long incubation period. Leprosy 
has an insidious onset and the source of infection in an 
infected individual is rarely identified. Studies detecting 
M. leprae deoxyribonucleic acid (DNA) by polymerase 
chain reaction (PCR) in nasal secretions have shown that 
it is carried by normal individuals and contacts in ende- 
mic countries (in Ethiopia, 6% of the population, in 1998) 
[3]. In leprosy, the clinical features are determined by the 
host’s immune response. In those infected who do de- 
velop the disease, a spectrum of immune responses is 

seen. At one end of the spectrum, characterized by strong 
cell mediated immunity towards M. leprae, is Tuber- 
culoid leprosy. These patients have low bacillary loads. 
At the other pole is lepromatous leprosy, which is cha- 
racterized by the absence of a cell mediated immune 
response and high bacillary loads in its cases. If Tu- 
berculoid leprosy is left untreated it eventually resolves 
spontaneously, or if the patient has a less vigorous cel- 
lular immune response to the M. leprae bacteria, the 
disease may progress to a borderline leprosy. Lepromatus 
leprosy is the most severe; it is relentlessly progressive 
and unlike Tuberculoid leprosy which may or may not be 
infectious, its cases are definitely so. This form of le- 
prosy is responsible for the gross deformities associated 
with the disease. 

Worldwide, 1 - 2 million persons are permanently 
disabled as a result of Hansen’s disease [5]. Between 
these two extremities, there are borderline patients with 
varying immunological responses and bacterial loads. 
Borderline patients are immunologically unstable and 
most progress towards lepromatus leprosy. They are also 
at risk of violent reversal reactions. These are delayed 
hypersensitivity reactions against M. leprae antigens and 
the result is elimination of mycobacteria which is achiev- 
ed at the expense of severe local tissue damage, in par- 
ticular to nerves. Nerve involvement is important in 
leprosy. Peripheral nerve damage occurs across the spec- 
trum and it can occur before, during or after treatment. In 
an Ethiopian study, 55% of patients had some degree of 
nerve function impairment at diagnosis [3]. Reversal 
reactions certainly complicate the nerve conditions and 
may lead to transient paralysis of the nerves. Delay in 
diagnosis may result in permanent nerve damage. In 
Nigeria 68% of patients had delays of more than a year 
before starting treatment. Of these, 37% had consulted 
folk healers who advised them not to seek medical help 
[3]. 

3. Model Formulation 

We propose a deterministic SEIR model with respect to 
paucibacillary leprosy (PB) and an SEI model with re- 
spect to multibacillary leprosy (MB) when no treatment 
and control measures are put in place. The model divides 
the population concerned into the following five, time 
dependent subgroups or compartments: 

 S t —susceptible individuals who are yet to come 
into contact with the infection. 

 E t —individuals who have been infected by leprosy 
but not yet infectious nor showing any symptoms,  P t — 
infectious class of individuals whose infection has 
progressed to paucibacillary leprosy,  M t — infectious 
class of individuals whose infection has progressed to 
multibacillary leprosy, and  R t —non-infectious group 
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of people who have successfully recovered from the 
disease and are immune to re-infections. 

Individuals move from one class to the other as their 
status with the disease evolves. Let  be the total 
number of people in the population at any time , then:  

 N t
t

M

N
 and 

P

N
 

represent the probability that a randomly selected in- 
dividual has multibacillary and paucibacillary leprosy, 
respectively. Let the probability of infecting a susceptible 
during interaction be M  and P  for MB and PB 
cases, respectively. The probability of a susceptible being 
infected by an MB and a PB case is  

M M

N


 and PP

N


, 

correspondingly. The force of infection for the disease 
can be expressed as 

.M PM P
S

N N

   
 

 

Infection is transmitted to the susceptible persons 
through successful contacts with either a paucibacillary 
or multibacillary patient. Class  is increased by 
graduands from the susceptible class and decreases by 
natural death, progression of the infections to either PB 
or MB leprosy and by subsequent recoveries by some of 
its members. For patients who move to class 

 E t

 M t , 
they either die naturally or due to leprosy related com- 
plications or eventually succumb to the wasting effects of 
the disease itself. Once an individual has progressed to 
compartment he/she eventually recovers and 
moves to class  where he/she is immune to rein- 
fections and is non-infectious. Assumptions of the model 
are: 

  ,P t
 R t

 The population is homogenous and each individual is 
equally likely to interact with the other. 

 Transmission follows the mass action principle; if  

 I t  is the number of infectious individuals and 
 N t  and  S t  have their usual meaning, then the  

standard incidence per unit time is of the form i SI

N


, 

for ,i M P . 
 Transmission is only through interactions between the 

susceptible person and either a PB or MB individual. 
 Patients who recover from the disease become im- 

mune to re-infections and are no longer infectious. 
 No individual is naturally or artificially immune to 

the disease, immunity is only acquired through 
recovery from infection. 

 Paucibacillary is not fatal, it is self limiting and all its 
cases eventually recover. 

 Multibacillary is relentlessly progressive and is fatal. 
 MB patients are not isolated thus continue to be 

infectious until they pass away. 
 There is no migration, new recruits enter the 

population through birth and the population decreases 
by natural or disease induced mortality. 

Parameters: M —the probability of an MB case 
infecting a susceptible during interaction. p —the pro- 
bability of an PB case infecting a susceptible during 
interaction. M —the rate of progression from  E t  to 
multibacillary leprosy. p —the rate of progression 
from  E t  to paucibacillary leprosy. E —the recov- 
ery rate for the asymptomatic patients in  E t . p — 
the recovery rate for the PB patients.  —the natural 
death rate,  —disease induced mortality rate for MB 
patients, and  —birth rate. 

The population transfer among compartments is sche- 
matically depicted in the transfer diagram in Figure 1. 

3.1. Model Equations 

The evolution of the number of individuals in each 
compartment is described by the following system of 
ordinary differential equations: 
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Figure 1. Model diagram of the mathematical model for leprosy transmission.   
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  (1) 

Initial conditions of system (1) are  

         0 0 0 00 , 0 , 0 , 0 , 0S S E E M M P P R R     0

N

 

and , where 0 0  and  are 
all greater or equal to zero and  

  00N  0 0 0, , , ,S E M P R 0N

           .N t S t E t M t P t R t      

3.2. Positivity of Solutions 

The variables in (1) represent sub-populations of indi- 
viduals and therefore, should be positive or zero for all 

. If this condition is not met, the model should be 
discarded as it violates a basic aspect of scientific reality. 
Let  be an -dimensional space, for . If 

0t 

n n 1n    
is a subset of , it is said to be positive invariant with 
respect to a system of ordinary differential equations if a 
trajectory that starts in  remains there forever. Posi- 
tive invariance of the non-negative orthant of 5

n


  for 

system (1) is assured if no trajectory can leave by 
crossing through one of its faces. The following theorem 
ensures that system (1) is well posed such that a solution 
with a non-negative initial point remains non-negative 
for . 0t

Theorem 1 The solutions of (1) are strictly positive for 
all  and for all sets of initial conditions  0t 

0 0  and  with strictly positive compo- 
nents. 

0 0, , ,S E M P 0R

Proof. We need to show that if a solution starts from a 
strictly positive point, the solution is strictly positive for 

. To see this strict positivity, we proceed as follows: 0t 
From the first equation, since 0N  , we have 

  ,M PS S       t  

where 

and .M P
M P

M P

N N

 
     

After integrating, we obtain; 

 
 

0

d

0e 0

t

M P t

S t S
   

  .

,

.

 

Similar analysis for the second and third equation 

yields; 

   
0e 0M P E tE t E          

and 

   
0e 0tM t M      

Analyzing the last two equations also shows that the 
variables  P t  and  R t  are also positive. Hence, we 
conclude that solutions        , , ,S t E t M t P t  and 
 R t  are always positive for all . □ 0t 

3.3. Equilibrium States 

The equilibrium states for the basic model are found by 
setting the right hand side of system (1) equal to zero. 
The model admits two equilibrium points, the disease 
free and the endemic equilibrium states. 

3.3.1. Disease Free Equilibrium State 
At this steady state, there are no individuals exposed to 
M. leprae, no one is afflicted or has recovered from the 
disease, hence there is no infection in the population. 
Thus system (1) has a disease free equilibrium (DFE) 

 1 1 1 1 1 1, , , ,

,0,0,0,0 .

S E M P R

N







 
  
 

 

The stability of this steady state can be analyzed through 
the determination of the basic reproduction number, . 0R

3.3.2. Basic Reproduction Number 
The basic reproduction number, 0 , is defined as the 
average number of secondary infections produced by one 
primary infection in a wholly susceptible population 
during his/her entire life as infectious [6]. If 0

R

1R  , then 
on average an infected individual produces less than one 
new infected individual over the course of its infectious 
period, and the infection cannot grow. Conversely, if 

0 , then each infected individual produces, on 
average, more than one new infection, and the disease 
can invade the population [7]. In this study, 0  refers to 
the average number of secondary M. leprae infections 
produced by either a typical multibacillary or a pau- 
cibacillary patient in a totally susceptible population 
during his/her course of infectiousness. To calculate 0 , 
we follow the method outlined by Wartmough, 2008 [8]. 
We find our basic reproduction number to be 

1R 

R

R

0

1
.p pM M

M p E p

R
  

       

 
        

 

We can express  as the sum of two quantities, 0R

0 M pR R R  , where 
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  
M M

M

M p E

R
 

     


   
 

and 

  
.p p

p

M p E p

R
 

     


   
 

The two quantities represent the reproductive numbers 
for the multibacillary and for the paucibacillary, respec- 
tively. On average, in a totally susceptible population, a 
primary MB patient produces MR  new M. leprae in- 
fections whilst a PB index case generates pR  secondary 
M. leprae infections in their lifetimes as infectious. To 
keep leprosy under control, the numerical value of 0  
should be below unity. From the analysis of 0  we can 
make a few general deductions and recommendations 
concerning transmission of leprosy. 

R
R

To assess the effect of the rates of progression from 
latent infection  to either MB or PB, we dif- 
nferentiate 

 E t

MR  with respect to M  and pR  with res- 
pect to p . This gives; 

 
   2

0

M p EM

M M p E

R    

      

 


    



 

and 

 
   2

0.

p p M E

p M p E p

R    
      

  


    



 

We note that rates of progression from latent infection 
to infectious leprosy significantly contributes to trans- 
mission of the disease. An effective control measure 
would be to treat the infection still in the latent stage; 
however, no suitable method for diagnosis of sub-clinical 
leprosy exists, as such this control measure is infeasible 
at present. We also note that the probability of a suc- 
cessful infection during an interaction between an infec- 
tious person ( M  and p ) and a susceptible individual 
has a direct effect on 0 . Hence, education of the 
masses about leprosy transmission would greatly reduce 
this probability. 

R

3.3.3. Endemic Equilibrium State 
When the conditions for the global asymptotic stability 
of the DFE are not met, system (1) admits a unique 
endemic equilibrium state which exists if and only if 

. The endemic equilibrium is given by  0 1R 

 , , , ,e e e e e eS E M P R   

where 

,

,

,
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p p M M
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



 



 
    

 
    

  
        

  (2) 

where  

,p M E pm y            and z    . 

This steady state is subject to the condition that  

p p M M

myz

z y    




 or 

S

N

 . 

It can also be shown that this steady state is bio- 
logically sensible if   . 

3.3.4. Existence of the Endemic Equilibrium 
To show that the endemic equilibrium indeed exists for 
system (1) if 0 , we first express the equilibrium 
point in terms of 

1R 
eM  as follows: 

 

 

 

 

,

,

,

.

e
e e

M

e
e e

M

e
pe e

M

p pe e e
E

M

N mzM
S M

zM
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zM
P M
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R M M

y

 






 


 


 





 
  

 

      (3) 

After substituting the expressions for  and 
 in the second equation of (1), we get 

, ,e e eS E P
eR

 0 1 0.e eM M A A                  (4) 

where 0
0

MN
A

pR


  and 1 0 1A R




  . 

Solving equation (4), we get as one of the solutions 
0eM   which corresponds to the disease free equi- 

librium. The other solution is 0 1
eM A A . This solution 

exists for 1  since it is clear that 0 . Since 0A  0A 
  , then 1 0 1A R   and so 1  if 0 . The 

result of the existence of the endemic equilibrium for 
model system (1) can be summarized by the following 
lemma. 

0A  1R 
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Lemma 1 The model system (1) always has a disease 
free equilibrium for  and a unique endemic equi- 
librium exists if . 

0 1R 
10R

3.3.5. Local Stability of the Endemic Equilibrium 
The standard technique of determining the local stability 
of the endemic equilibrium is by linearization about the 
steady state and subsequent application of the Routh- 
Hurwitz analysis. Such an approach would be mathe- 
matically cumbersome for system (1). We therefore re- 
sort to the Center Manifold Theory as presented in 
Theorem 4.1 [Castillo-Chavez and Song, 2004][9], to 
establish the local asymptotic stability of the endemic 
equilibrium [10]. In order to apply the Center Manifold 
Theory, we make the following changes of variables: 

Let 

     
   

1 2

4 5

, ,

,

S t x E t x M t x

P t x R t x

  

 
3,

 

such that 

 
5

1
i

i

N t x


  . 

We now use the vector notation  

 T

1 2 3 4 5, , , ,X x x x x x  

and model system (1) can now be expressed in the form 
 1 2 3 4 5, , , ,X F f f f f f    such that: 

 

 

 
   

   
 

5
1 41 3

1 1 5 5
1

1 1

1 41 3
2 2 5 5

1 1

2

3 3 2 3

4 4 2 4

5 5 2 4 5

,

,

,

,

.

pM
i

i
i i

i i

pM

i i
i i

E M p

M

p p

E p

x xx x
1x t f x x

x x

x xx x
x t f

x x

x

x t f x x

x t f x x

x t f x x x






   

  

  

  



 

 

      

   

   

    

    

    


 

 
    (5) 

Using the Jacobian matrix of the above system at the 
disease free equilibrium, we obtain the model repro- 
duction number 

0

1
,p pM M

m p E p

R
  

       

 
        

 

which is similar to the one we got previously. We choose 

M  as our bifurcation parameter such that if M   , 
then  and if M0 1R      then . We consi- 
der  and solve for 

0 1R 
0 1R  M  to get: 

     
 

.

M

m p E p p p

M p

 

         

  

 

     




 

We shall denote  1J   by  J    when M   . 

The Jacobian matrix  J   has a simple zero eigen- 
value, hence the Center Manifold Theory can be used to 
analyze the dynamics of system (5) near M   . 

A right eigenvector associated with the zero eigen-  

value exists and is given by  where  T

1 2 3 4 5, , , ,U u u u u u

1 2 2 22

4 2 5 2

, ,

1
,and .

p pM M

p

p p p
E

p p

u u u u u

u u u u

   
     

  


    

 
         

 
      

3 2 ,u

 

The left eigenvector associated with the zero eigen- 
value at M    is given by  

 T

1 2 3 4 5, , , ,V v v v v v  

where 

   1 2 2 3 2 4

5

0, , , ,

and 0.

p

p

v v v v v v v

v


     

 
   

 



2
 

We now use the following theorem whose proof is 
found in [9]. 

Theorem 2 Consider the following general system of 
ordinary differential equations with a parameter   

  2d
, , : and

d
n nx

f x f f
t

         ,  (6) 

where  is an equilibrium of the system, that is 0
 0, 0f    for all   and assume 

A1:    0,0 0,0i
x

j

f
A D f

x

 
    

  is the linearization  

of system (5) around the equilibrium 0 with   eva- 
luated at 0 . Zero is a simple eigenvalue of A  and 
other eigenvalues of A  have negative real parts; 

A2: Matrix A  has a right eigenvector  and a left 
eigenvector  corresponding to the zero eigenvalue. 

u
v

Let kf  be the  component of thk f  and 

 

 

2

, , 1

2

, 1

0,0 ,

0,0 .

n
k

k i j
k i j i j

n
k

k i
k i i

f
a v u u

x x

f
b v u

x 








 




 




          (7) 

The local dynamics of (5) around  are totally go- 0
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verned by  and . a
0,a b

b
1) . When 0 0   with 1  ,  is 

locally asymptotically stable, and there exists a positive 
unstable equilibrium; when 

0

0 1  ,  is unstable 
and there exists a negative and locally asymptotically 
stable equilibrium; 

0

2) . When 0,a b 0 0   with 1  ,  is un- 
stable; when 

0
0 1  ,  is locally asymptotically 

stable, and there exists a positive unstable equilibrium; 
0

3) . When 0, 0a b  0   with 1  ,  is un- 
stable, and there exists a locally asymptotically stable 
negative equilibrium; when 

0

0 1  ,  is stable and 
a positive unstable equilibrium appears; 

0

4) . When 0,a b 0   changes from negative to 
positive,  changes its stability from stable to unstable. 
Correspondingly a negative unstable equilibrium be- 
comes positive and locally asymptotically stable. 

0

3.3.6. Computations of a and b 
For system (5), the associated non-zero partial deriva- 
tives of F  at the disease free equilibrium are given by 

 

2 2
2 2

2 3 3 5 1

2 2
2 2

2 4 4 5 1

2 2
2 2

2
3 4 4 1

2 2
2 2

2
4 33 1 1

,

,

,

22
, .

p

p

p

f f

x x x x x

f f

x x x x x

f f

x x x x

f f

x xx x x





 















 

  
 

   

 
  

   


  

  

 
 

 

 



         (8) 

Since all non-zero partial derivatives of f  are ne- 
gative and all iu  for 0 2,3, 4i   and 5, it follows 
from the above expressions that . 0a 

For the sign of b, it is associated with the following 
non-zero partial derivatives of f , 

2
2

3

1.
f

x  




 
 

We thus have . 2 3 0u b v

Thus,  and . Using Theorem 2, item (4), 
we have established the following result which only 
holds for  but close to 1: 

0



a 

R

0b 

0

Theorem 3 The unique endemic equilibrium guarante- 
ed by Theorem 2 is locally asymptotically stable for  
near 1. 

1

0R

4. Model with Treatment 

The first modern drug used in the chemotherapy of 
leprosy was Dapsone, in 1940, as monotherapy. Dapsone 
is only weakly bactericidal against M. leprae and it was 

considered necessary for patients to take the drug in- 
definitely. Evolving drug resistance and treatment fail- 
ures when Dapsone was used led to the world’s only 
known anti-leprosy drug becoming virtually useless in 
the 1960s. Soon, it became clear that Dapsone resistance 
was on account of use of the drug as monotherapy. 
Worldwide increase in Dapsone resistance and the 
availability of equally effective drugs—Clofazimine and 
Rifampicin and from the experience in the therapy of 
tuberculosis (TB), led to the concept of multi-drug 
therapy (MDT) as a polychemotherapy for leprosy. 
Based on the theoretical considerations, recommenda- 
tions were made to treat leprosy with multi-drug re- 
gimens [4,11]. In 1981, multi-drug therapy (MDT) was 
first recommended by WHO. MDT is comprised of 
Dapsone, clofazimine and rifampicin, which are bacteri- 
cidal drugs [12]. Its characteristics are as follows: 

1) The regimen includes drugs acting by different 
mechanisms, in order to prevent the emergence of drug 
resistance, and to be effective for strains of M. leprae 
resistant to any one of the three drugs. 

2) The duration of MDT is limited in contrast to the 
lifelong duration of Dapsone monotherapy, to improve 
patient’s compliance. To make this possible, only bac- 
tericidal drugs are included as components. 

3) Rifampicin is a key component because of its 
powerful bactericidal effect against M. leprae. It was to 
be administered only once per month under supervision, 
to ensure compliance and because of its high cost. 

Two common regimens of MDT have been adopted, 
based on classification of leprosy into Multibacillary (or 
MB) and Paucibacillary (or PB). MB includes lepro- 
matus cases and borderline cases associated with high 
bacillary loads. PB includes tuberculoid patients and 
borderline cases which are characterized by small bac- 
terial loads. The first is a 24-month treatment for mul- 
tibacillary cases using rifampicin, clofazimine, and 
dapsone. The second is a six-month treatment for pau- 
cibacillary cases, using rifampicin and dapsone. The 
duration of MDT for MB patients was shortened to 12 
months, in 1998 on the recommendation of WHO. MDT 
is safe, effective and easily administered [13]. There are 
virtually no relapses of the disease if treatment is com- 
pleted and no resistance of the bacillus to MDT has been 
detected. WHO estimates that early detection and treat- 
ment with MDT has prevented about four million people 
from being disabled. This suggests great cost-effec- 
tiveness of MDT as a health intervention, considering the 
economic and social loss averted [1]. Reversal reactions 
always complicate the curing process and WHO has 
stated that chemotherapy should not be stopped during a 
reaction. Relapses and persistent infections are not 
uncommon; they serve to complicate the curing process 
and extend the period over which an individual is 
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infectious. 
In this section, we investigate the situation in which 

leprosy patients have access to MDT chemotherapy. 
MDT is very effective and patients are no longer infec- 
tious in as little as 72 hours after beginning treatment. In 
other words, transmission of leprosy is interrupted almost 
immediately. We aim to examine the ideal situation; one 
in which all patients are compliant and are put on MDT 
until completely cured. There are no relapses or recur- 
rences of the disease. Patients with a high initial bacterial 
index are treated until they test negative for M. leprae. 
Individuals who fail to recover from reversal reactions 
are put on lifelong MDT, thus they continue to be 
non-infectious even though the bacterium is persisting 
and can be considered removed. 

4.1. The Model 

This model divides the population into the following five 
time dependent compartments;        , , ,S t E t M t P t  
and  R t





—all of which are still defined as per the last 
section but  now includes recoveries due to MDT 
treatment in addition to natural recoveries. Exposed class, 

 is increased by individuals from the susceptible 
compartment who contact the disease. The majority of 
these naturally recover while other infecteds subse- 
quently progress to either paucibacillary or multibacillary 
leprosy and the rest die of natural causes. MB patients, 
(in 

 R t

E t

M t ) either recover under treatment or pass away 
due to both natural and disease induced mortality. 

4.1.1. Assumptions 
 PB leprosy is not fatal and its cases recover naturally 

or due to the treatment. 
 MB patients recover under treatment; however they 

are still subject to mortality due to disease related 
complications. 

 Patients who recover naturally or under treatment 
become non-infectious and are immune to re-infec- 
tions. 

From the model (1), assumptions about the method of 
transmission and homogenous mixing of the population 
still hold. We also assume that no individual is naturally 
or artificially immune to the disease, immunity is only 
acquired through recovery from infection. Again, there is 
no migration; new recruits enter the population through 
birth and the population decreases by natural or disease 
induced mortality. Only two new parameters are included, 
which are M —the recovery rate for MB patients, 
which is entirely due to treatment, and p —the 
recovery rate for PB patients which includes both natural 
and recoveries under treatment. We retain the rest of the 
parameters from model (1), and maintain their defini- 
tions. 

 

 

 

d
,

d

d
,

d
d

,
d

d
,

d
d

.
d
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M p E
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p p

E M p
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t N N
SP SME
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E M P R
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 


 
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  

   

    

     

   

  

   

   (9) 

Initial conditions for model system (9) are  

     
   

0 0

0 0

0 , 0 , 0

0 , 0

S S E E M M

P P R R

  

 
0 ,

 

and   00N  N ; where  and  are 
all greater than zero and  

0 0 0 0 0, , , ,S E M P R 0N

           .N t S t E t M t P t R t      

4.1.2. Effective Reproductive Number 
To calculate 0T , we follow the method outlined by 
Wartmough [2008][8]. In our model, we can classify the 

R

   ,E t M t  and  P t  as the disease states. Thus, 

0

1
.p pM M

T
M p E M p

R
  

        

 
         

 

0TR
R R

 can be expressed as the sum of two quantities: 

0 0 0T M R P   where 

0

1 M M
M

M p E M

R
 

      
 

       
 

and 

0

1 p p
P

M p E p

R
 

     
 

       
 

are the respective effective reproductive numbers for the 
multibacillary and for the paucibacillary forms of the 
disease when there is treatment. 

4.1.3. Analysis of the Effective Reproductive Number 
From the analysis of 0T  we can make a few general 
deductions and recommendations concerning transmis- 
sion of leprosy with MDT treatment. 

R

 To assess the effect of MDT treatment on the 
transmission of leprosy, we first differentiate 0MR  
with respect to the treatment induced recovery rate of 
MB patients M  and also differentiate 0PR  with 
respect to the recovery rate of PB patients P . This 
gives 

 
0

2
0M M M

M M

R

m

 
   

 
 

  
 

Copyright © 2013 SciRes.                                                                                  AM 



E. T. CHIYAKA  ET  AL. 395

and 

 
0

2
0P P P

P P

R

m

 
  

 
 

 
 . 

We can draw the conclusion that MDT chemotherapy 
has a positive impact on the control of leprosy. 

 The rate of disease progression to the infectious 
classes ( M  and P ) and probability of a successful 
interaction between a susceptible and an infectious 
individual, ( M  and P ) have the same effect on 

0TR  for system (9) as in the analysis of 0R  for 
model system (1). The deductions and recommen- 
dations we made for system (1) still hold for the 
model with MDT treatment. 

 If we remove MDT terms from the expression for 

0TR , i.e. if we let M  tend to zero and let P  to be 
due to natural recoveries only, then 0TR  for system 
(9) tends to the reproduction rate for model system 
(1). 

5. Model with Inadequate Treatment and 
Non-Compliance 

We consider the situation in which leprosy patients have 
access to MDT chemotherapy. In the previous section, 
ideally, patients were adherent, and the treatment re- 
ceived was assumed adequate. We aim to model the 
situation in which some of the patients are non-compliant 
to treatment procedures, some altogether default and for 
some, the treatment received is inadequate. Treatment 
received is deemed inadequate when after completion of 
MDT, there is still bacilli present in the patient’s body, 
predisposing him/her to a relapse or for some other 
reason the disease re-manifests after treatment has been 
completed. We recall that if a patient defaults from 
treatment, a relapse is almost always imminent; the same 
applies to non-compliant patients, to a certain extent [14]. 
Also, when one begins MDT treatment, he/she ceases to 
be infectious, thus transmission is interrupted almost im- 
mediately. When the disease relapses, the patient even- 
tually becomes infectious again. Our study in this section 
is based on the supposition that, at some point in the 
asymptomatic phase of the relapse, the patient must be 
able to communicate the infection. 

5.1. Model Formulation 

The model we propose introduces infectious carrier states 
for MB and PB patients in the asymptomatic phase of a 
relapse, i.e. before leprosy clinically re-manifests. The 
model classifies the population into seven time de- 
pendent classes: , and ; which are still 
defined as per the last section. 

   ,S t E t  R t

 1M t —Infectious class of persons whose infection 
has progressed to multibacillary leprosy (MB),  2M t  

—Infectious MB patients in the asymptomatic phase of a 
relapse,  1P t —Infectious class of persons whose infec- 
tion has progressed to paucibacillary leprosy (PB), 

 2P t —Infectious PB patients in the asymptomatic 
phase of a relapse. 

Infection is transmitted to the susceptible persons 
through successful contacts with either a PB or MB pa- 
tient. These patients must be in the asymptomatic phase 
of a relapse or whose initial infection or relapse has 
progressed to either clinical PB or MB. The force of 
infection can be expressed as 

1 = ,M p    

where 

 1 2M
M

S M M

N

 



   

and 

 1 2p
p

S P P

N

 



 . 

M  and p  represent the probability of an MB or 
PB patient successfully infecting a susceptible during 
interaction, respectively. 

, 1    are modification parameters which model the 
fact that individuals in the asymptomatic phase of a 
relapse are less infectious than those showing symptoms. 
MB patients, in  1M t  either recover under treatment, 
pass away due to both natural and disease induced mor- 
tality or move into a carrier state,  2M t  before the re- 
manifestation of MB leprosy. PB patients in the carrier 
state,  2P t  progress to clinical PB. 

5.1.1. Assumptions 
 Patients in the asymptomatic phase of a relapse (or in 

the carrier state) are able to transmit the disease to 
susceptible individuals. 

 Transmission is only through interactions between the 
susceptible person and either a PB or MB individual 
who is manifesting the disease or in the asymptomatic 
stage of a relapse. 

 Transmission follows the mass action principle. 
 PB leprosy in not fatal and its cases can recover 

naturally or due to the treatment. 
 MB patients can recover under treatment; however 

they are still subject to mortality due to disease re- 
lated complications. 

 A portion of PB and MB patients who have had ac- 
cess to treatment experience a relapse. 

 Patients who recover naturally or under treatment 
become non-infectious and are immune to re-infec- 
tions. 

From model (9), the assumption about the homoge- 
nous mixing of the population still holds. We also as- 
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sume that no individual is naturally or artificially im- 
mune to the disease, immunity is only acquired through 
recovery from infection. Again, there is no migration; 
new recruits enter the population through birth and the 
population decreases by natural or disease induced 
mortality. 

5.1.2. Parameters 

M —rate at which MB patients who have accessed 
treatment move into the asymptomatic phase of a relapse. 

p —rate at which PB patients who have accessed 
treatment move into the asymptomatic phase of a relapse. 

M —rate at which patients in the asymptomatic 
phase of an MB relapse progress to clinical MB. 

p —rate at which patients in the asymptomatic phase 
of a PB relapse progress to clinical PB. 

For this model, we retain the rest of the parameters 
from the model (9) and maintain their definitions. 

5.2. Model Equations 
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   
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 
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 
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(10) 

Initial conditions for system (10) are  

       
       

0 0 1 1,0 2

1 1,0 2 2,0 0 0

0 , 0 , 0 , 0

0 , 0 , 0 , and 0

S S E E M M M M

P P P P R R N

   

  
2,0 ,

N
 

where 0  are all non- 
negative. 

0 1,0 2,0 1,0 2,0 0 0, , , , , , , andS E M M P P R N

For model (10),  

       
       

1

2 1 2 .

N t S t E t M t

M t P t P t R t

  

   
 

5.3. Effective Reproductive Number 

The effective reproduction number is 

 

 

0 1

1

M MM M
C

M M

p pp p

p p
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mp wp
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

  
   

  
  
  

 

We can express  as the sum of two quantities, 0CR

0C MR R RP   where 

 
1  M MM M

M
M M

p
R

mp wp

  


  
   

 

and 

 
1 .

p pp p
p

p p

n
R

mn rn

  


  
  
  

 

MR  and pR  are the respective reproductive numbers 
for the multibacillary and for the paucibacillary forms of 
the disease. 

Analysis of  C

From the analysis of 0C , we can make a few general 
deductions and recommendations concerning transmis- 
sion of leprosy with inadequate MDT treatment and non- 
compliance. 

R0

R

1) To assess the effect of inadequate MDT treatment 
on transmission of leprosy, we first differentiate MR  
with respect to M  the treatment induced progression 
rate of MB patients into the carrier state and then dif- 
ferentiate pR  with respect to p . This gives 

  
 

2

2
0

M M M M MM

M M M

p wR

mp wp

   

 

  
 

 
 

  
 

2

2
0.

p p p p pp

p p p

n rR

mn rn

   

 

  
 

 
 

We can draw the conclusion that inadequate MDT 
chemotherapy has a negative impact on the control of 
leprosy. One way of ensuring that patients receive ade- 
quate treatment is to follow the recommendations of 
Hussain [2007][15] and administer MDT until smear 
negativity. The parameters under test also encapsulate 
non-compliance and defaulting. Patient follow ups and 
accompanied treatment administration have proved to be 
most effective against defaulting and non-compliance 
from experiences in other diseases (TB, for instance). 

2) To assess the effect of adequate MDT treatment on 
transmission of leprosy, we first differentiate MR  with 
respect to the treatment induced recovery rate of MB 
patients M  and also differentiate pR  with respect to 
the recovery rate of PB patients p . This gives 
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and 
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0.

 

We can draw the expected conclusion that adequate 
MDT chemotherapy has a positive impact on the control 
of leprosy. Treatment is deemed adequate when no re- 
lapse has been experienced. The recommendations made 
above can ensure this. 

3) The rate of disease progression to the infectious 
classes, ( M  and p ) and probability of a successful 
interaction between a susceptible and an infectious 
individual, ( M  and p ), respectively, have the same 
effect on 0C  for system (10) as in the analysis of 0  
and 0T  for the prior model systems. The deductions 
and recommendations we made for systems (1) and (9) 
still hold for the model with inadequate MDT treatment. 

R R
R

4) If we let M  and p  tend to zero, i.e. if there is 
no progression into a relapse, 0C  tends to the repro- 
duction rate for the model with adequate treatment and 
compliant patients. 

R

6. Numerical Simulations 

In this Section, we present numerical simulations of the 
three models discussed in the previous sections. We use 
the fourth order Runge-Kutta numerical scheme coded in 
Visual Basic for Applications and we also utilized 
Microsoft Excel. In our simulations we used parameter 
values estimated from the results of various literature and 
surveys done in Sub-Saharan African countries. Where 
relevant data was unavailable, we made do with statistics 
from Indian researches, which happen to be the most 
extensive. The progression rates to clinical infections 
were estimated from the average incubation periods of 5 
and 10 years for PB and MB, which happen to be 
estimates themselves since there is no test for detecting 
sub-clinical infections. Throughout this exercise, we 
considered a hypothetical population of just below 1.1 
million people. We derived the initial conditions of the 
infectious classes from the (worst case) prevalence rate 
of 10 per 1000 population [16,17] in areas still endemic 
for the disease in Sub-Saharan Africa. A study in 
Ethiopia found that 6% of the normal population incu- 
bates the disease [3]. We derived initial value for the 

latent infections from this observation. We first present 
simulations for the basic model to give us a portrait of 
the general behavior of Leprosy in a hypothetical popu- 
lation. We then go on to exhibit simulations for the 
model with adequate treatment and then finally for the 
one with inadequate treatment and non-compliance. 

Numerical values of the parameters are as shown in 
the Table 1 below. 

7. Discussion 

In model (1), we presented a basic deterministic com- 
partmental model for the transmission dynamics of 
leprosy in a community without access to treatment and 
with no other control measures in place (quarantines of 
lepromatus cases, as an example). Conditions for the sta- 
bility of the disease-free equilibrium were established. It 
was shown that the disease-free equilibrium is locally 
asymptotically stable whenever the basic reproduction 
number is less than unity. We also showed that the ende- 
mic equilibrium can exist if the reproduction rate exceeds 
unity. Numerical results in Figure 2 show that the rela- 
tive values of birth rate and mortality rate have a heavy 
bearing on the behavior of model system 1. It was shown 
through numerical simulation that without treatment, the 
disease eventually becomes highly endemic (Figure 3). 

In model (9), we presented a deterministic compart- 
mental model of leprosy in a community with access to 
MDT treatment. We assumed that treatment completely 
cured the patients who were themselves assumed to be 
compliant. Similar conditions for the stability and exist- 
ence of the equilibrium states where established. Numeri- 
cal simulations showed that the disease fails to establish 
itself in the presence of MDT treatment (Figure 4). This 
is consistent with the findings in references [16,18-21]. 
However, according to the simulations, the higher the 
level of treatment, the swifter the disease is eliminated 
from the community (Figure 5). 

In model (10), we presented a theoretical deterministic 
compartmental model of leprosy in a community with  

 
Table 1. Model parameters and their interpretations. 

Description Symbol Value Source 

Natural birth rate   0.02 year  Estimate

Natural mortality rate   0.02 year  Zimstat 

Rate of progression to MB M  0.1 year  Estimate

Rate of progression to PB P  0.2 year  Estimate

Recovery rate for  
asymptomatic infections E  0.56 year  Estimate

Natural recovery rate  
for PB individuals P  0.30 year  15 

Mortality rate for MB  
individuals H  0.05 year  Estimate
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(a)                                           (b) 

Figure 2. (a)Showing the general result if the parameter value for mortality rate is less than the birth rate; (b) Showing the 
general result if the parameter value for mortality rate exceeds the birth rate. We consider general cases for illustration. 
 

      
(a)                                           (b) 

Figure 3. (a) and (b) are graphs of numerical solutions showing the propagation of susceptible population and the infectious 
population respectively. Initial conditions:     0 0 0 01,000,000, 60,000, 5000, 5000.S E M P



E. T. CHIYAKA  ET  AL. 399

      
(a)                                           (b) 

Figure 4. (a) and (b) are graphs of numerical solutions showing the propagation of susceptible population and the infectious 
population respectively. Initial conditions:  We consider general cases for illustration. , 0 01,000,000 70,000.S E

 

 

Figure 5. The graph shows the number of infectives plotted 
against time in years. The arrow shows the direction of 
increase of the level of treatment administered. The graphs 
where obtained for the following pairs of value for M  and 

P , respectively: (0.07, 0.875), (0.125, 0.175), (0.25, 0.35), 

and (0.376, 0.525) Initial conditions:  

 We consider general cases for illustration. 

0 1,000,000,S

 70,000.0E

access to MDT treatment. We assumed that treatment 
fails to completely cure the patients, some of whom 
default or are not compliant with treatment procedures. 
Similar conditions for the stability and existence of the 
equilibrium states where established. Numerical simula- 
tions showed that the disease fails to establish itself in 
the presence of MDT treatment, despite the presence of 
cases of inadequate treatment and non-compliant be- 
havior (Figure 6). This is consistent with the findings in 
reference [13]. Our simulations, however, show that le- 
prosy is eliminated faster if patients are more adherent to 
treatment procedure and if the treatments completely 
cure the patient. Results in Figure 7 show that the infec- 
tious population gradually completely decays to zero but 
the decay rate of progression into a relapse is greater. 

We calculated the basic reproduction rate for all three 
models. Analysis for the basic model showed that in- 
crease in probability of successful infection during an 
interaction directly increased transmission as does the 
increase in rates of progression to clinical infections. 
Under application of MDT, adequate treatment directly 
decreased transmission. If there in non-compliant be- 
havior or if treatment is proving inadequate, such a trend 
tends to increase the reproduction rate of the disease. 

We tried to relate this study to the particular case of 
Sub-Saharan Africa in the model formulation and esti- 
mation of the parameter values and initial points for the 
imulations. As such, our models depict the transmission  s  
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(a)                                           (b) 

Figure 6. (a) and (b) are graphs of numerical solutions showing the propagation of susceptible population and the infectious 
population respectively. Initial conditions:  We consider general cases for illustration. , 0 01,000,000 70,000.S E

 

 

Figure 7. The arrow shows the direction of increase of the 
level of the rate of progression into relapse. The graphs 
where obtained for the following pairs of value for M  

and ,P  respectively: (0.01, 0.02), (0.02, 0.04), (0.04, 0.08) 

and (0.08, 0.16). Initial conditions: S0 = 1,000,000, E0 = 59,000, 
M1,0 = 5000, M2,0 = 500, P1,0 = 5000, P2,0 = 500,. We consider 
general cases for illustration. 

of leprosy in the region. We can therefore present the 
result that without treatment or control, leprosy settles 
into a rather high endemicity in the Sub-Saharan Africa 
(SSA) region. Multi-Drug Therapy (MDT) polychemo- 
therapy can prevent the disease from establishing itself 
by impelling the disease into a disease free state. Since 
the introduction of MDT such a trend (falling prevalent 
rates) has been observed on a global scale. We can also 
emphasize that the higher the level of treatment availed 
to the population, the faster, leprosy is eliminated. If 
there in non-compliant behavior, defaulting or if treat- 
ment is proving inadequate (i.e. if there are relapses), the 
disease again fails to establish itself, but the return to a 
disease free state will be slower depending on the extent 
to which the treatment is proving inadequate for the SSA 
population. 
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