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ABSTRACT

A multiscale SABR model that describes the dynamics of forward prices/rates is presented. New closed form formulae
for the transition probability density functions of the normal and lognormal SABR and multiscale SABR models and for
the prices of the corresponding European call and put options are deduced. The technique used to obtain these formulae
is rather general and can be used to study other stochastic volatility models. A calibration problem for these models is
formulated and solved. Numerical experiments with real data are presented.
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1. Introduction

In this paper a multiscale SABR model that describes the
time dynamics of forward prices/rates is presented. This
model generalizes the well known SABR model intro-
duced in 2002 by Hagan Kumar, Lesniewski, Woodward
in [1]. Under some hypotheses on the correlation struc-
ture of the model studied when we restrict our attention
to the normal and lognormal multiscale SABR models it
is possible to derive explicit (closed form) formulae to
express the transition probability density functions of the
stochastic processes implicitly defined by the models and
of the prices of the corresponding European call and put
options. Using the technique developed to derive the
transition probability density function of the multiscale
SABR model we deduce new explicit formulae for the
transition probability density function of the normal and
lognormal SABR models presented in [1]. Specifically
we show that the transition probability density functions
of the normal and lognormal SABR models (with no
assumptions on the correlation structure of the models)
can be written as the inverse Fourier transform of ex-
plicitly known kernels. Moreover we show that for the
multiscale models (under some assumptions on the corre-
lation structure of the models) the corresponding mul-
tiscale transition probability density functions can be ex-
pressed as the inverse Fourier transform of the product of
two copies of these kernels. This property is interesting
since it can be used to define easy to solve multiscale
versions of other stochastic volatility models.
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The multiscale SABR model introduced in this paper
is motivated by the behaviour in the financial markets of
equity prices, interest rates and currency exchange rates.
In several circumstances empirical studies have shown
that the dynamics of these quantities is described more
satisfactorily by models that use at least two factors to
describe the volatility dynamics than by models that use
only one factor (see, for example, [2-4] and the reference
therein). In [5-7] it has been shown that a generalized
Heston model, that uses two stochastic volatilities vary-
ing on two different time scales, leads to satisfactory
forecasts of the asset prices and of the corresponding
European option prices. The prices considered in [5-7]
are the S&P 500 index, the associated European call and
put option prices and some spot electric power prices.
These findings motivate the use in the multiscale SABR
model of two factors (i.e. two stochastic volatilities)
varying on two different time scales to describe the vola-
tility of the forward prices/rates variable. We limit our
attention to “normal” and “lognormal” SABR and mul-
tiscale SABR models. In these models the instantaneous
variation of the forward prices/rates depends only on the
volatility or on the volatilities (“normal” models) or on
the volatility or on the volatilities times the prices/rates
itself (“lognormal” models). These models are special
cases of more general SABR models where the variation
of the forward prices/rates depends on the product be-
tween a sufficiently smooth function of the forward
prices/rates and the volatility or the volatilities. Usually
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this function is chosen in the family of functions

|x|ﬂ|ﬂ € [0,1] where x 1is areal variable and £ isa
parameter. That is the SABR models considered depend
on the parameter [, [ e[O,l] , the normal models
correspond to the choice =0 and the lognormal
models correspond to the choice f=1.

Let R and R" be respectively the sets of real and
of positive real numbers and let ¢ be a real variable that
denotes time. Let us define the multiscale SABR model.
To the forward prices/rates described by the stochastic
process x,, t>0, we associate two stochastic vola-

tilities given by the stochastic processes v, ,, v,,, t>0.

The dynamics of the stochastic process x,, v,, Vv,,,
t >0, is defined by the following system of stochastic
differential equations:

dv, =[x,|” (v, dW" +v, )0 >0, (1)

dv, =ew, dW, >0, @)

dv,, = gzvz‘,dW,z, t>0, 3)

where the quantities ¢, i=12, and [ are real
positive constants such that & <&, and S €[0,1]. The
fact that v ,, v,,, £>0, vary on different time scales
is expressed by the condition 0<¢ < ¢,. When the
condition 0<¢ <« ¢, holds it is likely to observe
abrupt changes in the forward rates/prices variable. The
processes W', w**, w', W?, t>0, are standard
Wiener processes such that W,”' =W,> =W, =W, =0,
and dw, dw’, dw', dW’, t>0, are their sto-
chastic differentials. The correlation structure of the
model is defined by the following assumptions:

(dw'dw?)=0,t>0, (4)
(dmdmw)') = pydt,t >0, (5)
(dW,‘”dW,2> =0,t>0, (6)
(dw2dw!)=0,t>0, (7)
(AW 2dw?) = py,dt,t >0, 8)
(dwdw) =0,¢ >0, 9)

where <> denotes the expected value of - and the
quantities p,,,0,, €(~1,1) are constants known as
correlation coefficients. The autocorrelation coefficients
of the previous stochastic differentials are equal to one.
When the model is multiscale (i.e. when 0<¢ <« ¢g,)
the meaning of the assumptions (4)-(9) is that the
stochastic differentials on the right hand side of (1)-(3) as-
sociated to the two (long and short) time scales are in-
dependent.

The Equations (1)-(3) are equipped with the initial
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conditions:
Xy =Xy, (10)
Vio = Vi (11)
V3o = ‘72,0» (12)

where X,, V,,, i=12, are random variables that we
assume to be concentrated in a point with probability one.
For simplicity we identify the random variables X,, v,
i =1,2, with the points where they are concentrated. We
assume V,, >0, i=12.

The stochastic differential Equations (1)-(3), the initial
conditions (10)-(12), the assumptions on the correlation
coefficients (4)-(9) and the conditions on the coefficients
B, >0, i=12, define the multiscale SABR model.
This model generalizes the SABR model introduced in
2002 by Hagan, Kumar, Lesniewski, Woodward [1] that
is defined by the following stochastic differential equa-
tions:

dx, =|x|” v,dw,,t >0, (13)
dv, =¢vdQ,, >0, (14)

where B€[0,1] and &£>0. The coefficients 4 and
g of (13), (14) are known respectively as f -volatility
and as volatility of volatility. Moreover W,, Q,, t>0,
are standard Wiener processes such that W, =Q, =0,
dw,, dQ,, t>0, are their stochastic differentials and
we have:

dwdo,) = pdt,t > 0, (15)
t t

where pe(-1,1) is a constant called correlation co-
efficient. The Equations (13) and (14) are equipped with
the initial conditions:

X, = %) (16)
Vo = T (17)

where X, and v, are random variables that we assume
to be concentrated in a point with probability one and
that, for simplicity, we identify with the points where
they are concentrated. Moreover we assume that v, > 0.

Note that for i=1,2 the assumption ¥ ,>0 with
probability one implies that v,, >0 with probability
one for ¢>0. A similar statement holds for v, and v,,
t>0.

We consider the normal and the lognormal SABR and
multiscale SABR models. These models are obtained
from the previous ones choosing respectively in Equ-
ations (13) and (1) F=0 (normal models) or S =1
(lognormal models). When we consider the lognormal
models we assume that X, > 0. In the lognormal models
the assumption X, >0 with probability one implies that
x, >0 with probability one for ¢>0 . Under the
assumptions (4)-(9) for the normal and lognormal SABR
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and multiscale SABR models the transition probability
den- sity functions associated to the state variables of
these models are expressed via integral formulae with ex-
plicitly known integrands. In this sense the normal and
lognormal models are explicitly solvable. The SABR and
multiscale SABR models with Be(0,1), f#1/2 can
be studied using the following approaches: numerical
methods, series expansions in the parameter S or hy-
brid methods. The last approach combines series ex-
pansions and numerical methods. The SABR models
with S e(0,1), p=0 can be studied using integral
formulae involving hypergeometric functions for their
transition probability density functions [8]. The models
with f=0.5 deserve special attention. These models
will be studied elsewhere.

We begin our analysis with the study of the normal
multiscale SABR model (see Section 2) for three reasons.
The first reason is that under the previous hypotheses on
its correlation structure the normal multiscale SABR
model can be solved explicitly. The second reason is that
the normal multiscale SABR model can be considered as
an improvement not only of the normal SABR model but
also of SABR models with g different from zero,
sufficiently small. In fact the use of two volatilities
makes the normal multiscale model more “flexible” than
the SABR models. For example the normal multiscale
SABR model reproduces both balanced and skewed
probability distributions of prices/rates and can forecast
satisfactorily the option prices even when the options
considered have strike price near to zero and are at the
money. In these circumstances the normal SABR model
fails to explain the observed prices. The third reason is
that in the class of SABR models parametrized by S,
pe [0,1] , the normal models are the simplest ones and
their study is useful to understand the other models. For
example in Section 3 we use the results obtained in the
study of the normal models to study the lognormal
models.

The explicit formulae of the transition probability
density functions associated with the normal and log-
normal models are one (SABR models) or three dimen-
sional (multiscale SABR models) integrals of explicitly
known integrands. The formulae are closed form and
“easy to use” in the sense that their numerical evaluation
can be done with elementary methods. These formulae
are used to derive explicit (closed form) formulae for the
corresponding prices of European call and put options.
The option pricing formulae are integrals of explicitly
known integrands. Due to the special form of the inte-
grands the numerical evaluation of the multi-dimensional
integrals involved in the formulae of the transition
probability density functions and of the option prices can
be done very efficiently with ad hoc quadrature rules.

Moreover from the formula for the normal multiscale
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SABR transition probability density function we derive a
formula for the transition probability density function of
the normal SABR model. This formula is expressed as a
one dimensional integral of a (regular) explicitly known
integrand, is an elementary formula that can used instead
of the formula deduced in [9] (Formula (120) in [9]).
This last formula (Formula (120) in [9]) is based on the
McKean formula for the heat kernel of the Poincaré
plane. In a similar way a new formula for the transition
probability density function of the lognormal SABR
model is deduced. This last formula is a special case of
an explicit, “easy to use” formula for the transition pro-
bability density function of the stochastic process im-
plicitly defined by the Hull and White model [10] when
there is a possibly nonzero correlation between the sto-
chastic differentials appearing on the right hand side of
the forward prices/rates and volatility equations. These
are two interesting formulae since up to now in the case
of nonzero correlation for the transition probability den-
sity functions of the lognormal SABR model and of the
Hull and White model only asymptotic expansions in the
correlation coefficient were known (see for example
[10,11] and the references therein). The results relative to
the Hull and White model will be presented elsewhere.
The formulae presented in this paper are obtained using
the Fourier transform, the method of separation variables
and the results of Yakubovic [12] about the Lebedev
Kontorovich Transform.

A calibration problem for the normal and lognormal
SABR and multiscale SABR models is considered. These
models are calibrated using option price data, the option
pricing formulae mentioned above and the least squares
method. The calibration problem is formulated as a
constrained optimization problem for the least squares
error function. Given the forward prices/rates the cali-
brated models are used to forecast option prices. We dis-
cuss some numerical experiments with real data where
observed and forecast option prices are compared. These
experiments confirm the validity of the procedure used to
forecast option prices, of the calibration procedure and of
the models presented. In particular they make possible a
comparison between SABR and multiscale SABR mo-
dels that shows when the use of the multiscale SABR
models is justified.

The real data used in the calibration problem and in
the forecasting experiments are discrete time observa-
tions of the euro/US dollar (EUR/USD) exchange rate
(futures prices), of the futures prices of the USA five
year interest rate swap and of the prices of the corre-
sponding European put and call options (i.e. European
foreign exchange options on EUR/USD futures prices
and options on USA five year interest rate swap fu-
tures). That is we consider Foreign eXchange (FX) data
and interest rates data. Note that forward/futures prices
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are quantities stated in the contracts stipulated to buy or
to sell currencies in a future date and that they remain
unchanged during the life time of the contracts. For the
convenience of the reader let us recall some facts about
the derivatives mentioned above. A foreign exchange
option is a derivative that gives to the owner the right but
not the obligation to exchange a given quantity of money
denominated in one currency into money denominated in
another currency in a specified date at a pre-agreed ex-
change rate. Exchange rate derivatives are widely traded
and serve different needs, for example, they serve the
needs of firms active in the international trade arena that
want to reduce their exposure to exchange rate variations.
The USA five year interest rate swap exchanges semi-
annual interest rate payments at the fixed rate of 4% per
floating interest rate payments based on 3-month LIBOR
interest rate. These swaps are widely traded. In fact they
are excellent tools for duration management and asset/
liability gap management for bank treasuries, insurers
and financial services companies. Note that the use of
futures prices/rates instead of forward prices/rates in our
numerical experiments is due to the fact that only the
latter ones are over the counter prices. Moreover recall
that when during the time period considered the risk free
interest rates are deterministic forward and futures prices/
rates coincide (see [13], Proposition 3.1 and [14]).

The numerical experiment on the EUR/USD exchange
rate shows that, once calibrated using call and put option
prices relative to a given date, the normal multiscale
SABR model, given the asset price at the time of the
forecast, is able to produce forecasts of call and put
option prices that outperform those obtained with the
normal SABR model. Note that the values of the para-
meters ¢ and ¢, of the normal multiscale model ob-
tained in the calibration differ of approximately a factor
two. This means that the calibrated multiscale model has
really a multiscale behaviour and as a consequence the
interpretation of the data benefits from the presence of
the second time scale.

In the next experiment the lognormal models are used
to interpret interest rate swaps data. In this case the
futures price has abrupt changes so that the improvement
in the data interpretation obtained introducing the mul-
tiscale model is significant. In particular when the log-
normal multiscale SABR model is considered the values
of the parameters ¢ and &, obtained in the cali-
bration differ for about a factor two. The results obtained
on the interest rate swap data with the lognormal models
confirm the findings of the experiments on the EUR/
USD exchange rate data with the normal models. Finally
the stability of the parameter values obtained in the cali-
bration is investigated. It is shown that calibrating the
models daily with the option price data collected in one
day during a period of about two months (that is cali-
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brating the models approximately forty times) the models
parameters obtained remain substantially unchanged dur-
ing the two months period. Recall that there are appro-
ximately twenty trading days in a month.

The website: http://www.econ.univpm.it/recchioni/
finance/w14 contains some auxiliary material including
animations that help the understanding of this paper. A
more general reference to the work of the authors and of
their coauthors in mathematical finance is the website:
http://www.econ.univpm.it/recchioni/finance.

The remainder of the paper is organized as follows. In
Section 2 we study the normal SABR and multiscale
SABR models. In Section 3 we study the lognormal
SABR and multiscale SABR models. In Section 4 we
formulate a calibration problem for these models and we
present a numerical method to solve it. In Section 5 a
procedure that, given the asset prices at the time of the
forecast, forecasts option prices using the calibrated
models is presented. The calibration and forecasting pro-
cedures are applied to study real data. Currency exchange
rates and interest rates derivatives data and the corre-
sponding option price data are studied. The forecast
option prices are compared with the prices actually ob-
served. The comparison shows the relevance of the mul-
tiscale SABR models. Finally in Section 6 some con-
clusions are drawn.

2. TheNormal SABR and Multiscale SABR
Models

Let us consider the normal multiscale SABR model. This
model is obtained choosing =0 in (1), (2), (3) and is
given by the following stochastic differential equations:

dx, =v, AW +v, W2 1>0,  (18)

dv, =ev, AW, >0, (19)
dv,, =&, AW}, 1>0, (20)
with the initial conditions:
Xy =X, 21)
Vio =Vig» (22)
Voo =Vags (23)

where X, V,,, i=12, are random variables that we
assume to be concentrated in a point with probability one.
The quantities &,, i=1,2, are positive constants such
that & <g,. Moreover we assume that conditions (4)-(9)
hold. In a similar way starting from (13), (14), (16), (17)
and choosing f=0 in (13) we can write the normal
SABR model.

Let us consider the transition probability density func-
tion of the stochastic process x,, v, v,,, t>0, im-
plicitly defined by (18)-(23), that is the probability
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density function of having x,=x, v, =v,, v,, =V,
given the fact that x, =x", v, =V, v,, =v,, when
(x,vm ), (v v ) eRxR* xR, ¢, 20, and
t—t'>0 . Note that when =0 we must choose
x'=X%,, V=V, v =",,. This transition probability
density function is denoted with

P (%,v1,v,,8,x v, 05,1,

(x,vl,vz),(x',vl',vé) eRxR"xR" ¢ ¢>0, t-t'>0.
Note that the values x, x' of the forward prices/rates
vary on the real axis, and that they can be negative. We
denote with

P (x,vl,vz,t) = D (x,vl,vz,t,x',vl’,v;,t') s

(x,v.v,) e RxR* xR", ¢>¢">0, the function

P (%0105, 8,x v, 051,

(x,vl,vz),(x',vl',vé) eRxR" xR*, ¢, t'20 t-t'>0,
considered as a function of the variables (x,v;,v,,?).
The function p,,, is the solution of the Fokker Planck
equation:

op -
paA:N (x,vl,vz,t):L(pMN)(x,vl,vz,t), (24)
(x,v,v,) e RxR*xR*,1>1'>0,
with the initial condition:
D (X,vl,vz,t') = é'(x—x')é‘(VI _V{)é‘("z —vé), 25)

(x,v,,vz),(x',v,’,v;)e RxR"xR",

and appropriate boundary conditions. The symbol 5()
denotes the Dirac’s delta and in (25) the operator L(-)
is given by:

L()

Aot ettt et

—
~—

2 ox’ o, o,
, 5 (26)
2 2
+2 oxom, (51/00,1"1 ')+2 oxov, (52/70,2"2 ) )

(x,v,v,) e RxR* xR".

The operator L(-) defined in (26) depends on the
assumptions (4)-(9). The Fokker Planck Equation (24) is
a linear parabolic partial differential equation whose
elliptic part is degenerate on the boundary of its domain
of definition, that is it is degenerate when v, =0 or
v, =0 and ¢>¢">0. Problems (24), (25) are com-
pleted with appropriate boundary conditions. The de-
generacy of the elliptic part of the Fokker Planck
equation implies that boundary conditions must be
specified with care. For simplicity we omit these
boundary conditions. Note that the transition probability
density function
pMN(x,v],vz,t,x',vl',vé,t'), (x,v],vz),
(x',v,v;) e RxR* xR*, ¢, 20, t—1'>0, defined
as the unique solution of (24), (25) with appropriate
boundary conditions is the fundamental solution of the
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Fokker Planck equation with the boundary conditions
omitted.

The main result of this Section is the following for-
mula:

(A AN A
pMN (x,vl,Vz,t,x,Vl,Vz,t)

e R (S
) s\n N e

(x'=x)=pos (i -w1)/e1=pop (v —v2) /e

—tk

R
2w
, 27
A 4! |k| Vi |k|
-t >
7812 51\/1_/05,2 ‘91\/1_,0&2
v, [A] va ||

it 2’ 2

27 52\/1_/70,1 52\/1_/70,1
(x,vl,vz),(x',vl',v;)eRxR*><R+,t,t'20,t—t'>0,

where 7 is the imaginary unit and the function 4, (y,,,)

is the “heat kernel for the Kontorovich-Lebedev trans-
form” (see [12] p. 748). That is:

h (¥, 7)
2
ylnz

r>0,y,>0,j=12,

J.dea)e’""z a)sinh(nw)Km (yl )Km) (yz )’ 28)

where sinh and K, denote respectively the hyperbo-
lic sine and the second type modified Bessel function of
order v (see [15] p. 5). With a simple change of
variables Formula (27) can be rewritten as follows:

’ ! ! ’
Pun (x,v,,vQ,t,x Vs Vy,t )
1 ¢+

_ OCdkefrk(x'f)c)
2w’
gy (t—t',k 1_:05,1"’1"/1’:51::00,1) 29

2
‘&N (t_t"k 1_p0,2>vz’v£’523p0,2)’
()c,vl,vz),()c',vl',vg)G}RXR+ xR*,t,t'>0,t—t' >0,

where

gy (s,k«/l -p’ ,v,v',g,p)

2 ()l
— _ze 8 e &
n vy

.L}““dwe‘”z“’z/zwsmh(nw)K""[@ 1—sz (30)
&

K, (|k|_v' /l—pz}

&

seR" keRv,veR",e>0,pe(-L1).
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Let p,, be the Fourier transform of p,, with re-
spect to the x'—x variable, we have:

P
pMN(xsvlavzstsxavlsvzat)
I (e th(x'-x) '
—7k(x'-x) A rogr
=—1/| dke pMN(k,v,,vz,t,vl,vz,t),
2n 7=
"o RxR*xR*
X, v,V ), (X, v ) e ,

t,t'>0,t—t">0.

G

Using (29), (31) and the properties of the Fourier
transform we have:

pMN (-x9v]sV29tsx’9V|’9v;st’)

+o ~ ’ ’ ’
:Lod.{g,v (t—t X —x—{,vl,v,,g,,poﬂl)
.g’.'N <t_t,’§7V2:V;’825p0,2): (32)
(x,v,,vz),(x',vl',v;)e RxR"xR",
t,t'>0,t—t'>0.

where g, is the Fourier transform of g, with respect
to the k variable, that is:

&y (s,mv.ep)

= ij::dke""”gl\, (s,k\/l -p’ ,v,v’,g,p)

I B (s

NN & Jv
2

~J.O+Ocdu sinh (u) sin [gj 6_2”2

e -3)2
(—77+£(v'—v)j2+ (1 ;0 )(v2+v’2+2vv'cosh(u))
e &

seR",neR,vy eR", &> O,pe(—l,l).

(33)

Note that Formula (27) and similarly Formulae (29),
(32) give the transition probability density function p,,,
as a one dimensional Fourier integral of a known in-
tegrand. The integrand has a special form, in fact it con-
tains the product of two copies of a function evaluated in
two different points. This function, defined in (30) or in
(33), is a one dimensional integral of an explicitly known
integrand. That is Formulae (27), (29), (32) are three
dimensional integrals. However the special form of their
integrands mentioned above implies that the evaluation
of these three dimensional integrals with an elementary
quadrature rule can be done at the computational cost of
a two dimensional integral.

Note that the function g, defined in (33) when
s=t—t', n=x"-x, v,=v and v, =" is the tran-
sition probability density function of the normal SABR

Copyright © 2013 SciRes.

ET AL. 15

model. This can be seen proceeding as done at the end of
this Section to deduce (27) or simply verifying that g,
satisfies the Fokker Planck equation associated to (13),
(14) when g =0 with the appropriate initial and boun-
dary conditions.

Formula (33) for the transition probability density
function of the normal SABR model is a new and useful
formula that can substitute the formula commonly used
in the mathematical finance literature, that is Formula
(120) of [9], that is based on the McKean formula for the
heat kernel of the Poincaré plane. The integral that
appears in (33) is a one dimensional integral of a smooth
function whose numerical evaluation is easier than the
evaluation of the integral of a singular function contained
in Formula (120) of [9]. Moreover Formulae (27) and (33)
are deduced using elementary tools, that is: the Fourier
transform, the method of separation of variables and the
results of [12] on the Kontorovich Lebedev transform.
The McKean formula is derived using the differential
geometry of the Poincaré plane. That is Formula (33) and
its elementary derivation simplify the study of the normal
SABR model.

Formula (27) can be used to deduce some useful con-
sequences. For example from Formula (27) it is possible
to deduce an explicit formula for the marginal probability
distribution M,,, of the forward prices/rates stochastic
process defined by (18)-(23) under the assumptions (4)-
(9), that is:

’ r ’ ’
M,y (x,8,x",v],v5,1")

— +wd +wd ! ’ ’ ’
_IO vlfo vszN(x,vl,vz,t,x,vl,vz,t)

1 +o —7k(x'-x) 2
= [Tdke (t—t',k 1= g2, Ve, )
o N Po1>Vi>€15 Lo (34)

my (t—t’,k 1—,05,2,\/;;52,,00,2),
xeR,(x',vl’,v;)e RxR*xR",
t,t'>0,t—t' >0,

where m,, is given by:

my (s,k l—pz,v',g,p)

2 _Sg2 ikLV’
=—ef e
13

se 5

Y LA 2w
~I0+wdv( ! je kfjo dwe 2 wsinh(nw)  (35)

o~
'Kr(u[wVl_pZ\JKTw(M_V'Vl_sz’
& &

seR+,keR,v'eR+,g>O,pe(—l,l).

The function m, can be rewritten as follows:
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mN(s,kwll P gp)

1[2

BT ()

sE
J~+oo dy —}cosh u) —aV( )efrpkv}/(eax )

B

seR" ,keR,v eR* ,5>0,pe(—1,1).

(36)
where a, is given by:
oo e 2F)
ay (v)=5| 7+ (V) R
201272 2 2\
k 1-
+ y(v)z rLL y2+k2(v’)2( '20) , (37
e &

yeR".

An alternative expression of the marginal probability
distribution (34) can be obtained using Formula (32),
that is:

M,y (x,t,x',v,’,v;,t')

= J.Omdv1 J.(:wdvszN (x, v, vy, 0,x", 0,05, 1")

:Jj:dgth (t_t’7x,_x_é/avl'7gl7p0,l) (38)
my (t_t"é/sv£$gzapo,z),
xeR,(x,v,v)) e RxR" xR",£,t'> 0,1 —1' >0,
where 7, is given by:

rhN (8577,"',3,,0)

(-0

5.2
1 1 e 8‘g engz
2

) m \2ség? g
.v’\/?I(:mdv (%j I;wdu sinh (u ) sin (gj e_ﬁ

[—77+§(v'—v)j2 + (1 _ '202 ) (v2 +v7 4 2vv’cosh(u))

&

-3/2

seR" ., neRV eR",e>0,pe(-11).
(39)
From (27) using the no arbitrage pricing theory for-
mulae to price in the normal multiscale SABR model
European call and put options can be derived. The
assumption that the risk free interest rate is deterministic
during the life time of the priced option implies that the
forward prices/rates coincide with the futures prices/rates.
In fact the forward price is a martingale under the (for-
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ward) measure associated to (18)-(23) and the futures
price is a martingale under the risk-neutral measure.
However if the risk free interest rate is deterministic the
forward measure and the risk neutral measure coincide
(see [13], Proposition 3.1). Hence we can assume that we
are working with futures prices/rates instead of with
forward prices/rates and we can exploit the fact that these
prices/rates are martingales under the risk-neutral meas-
ure. That is the risk neutral measure used to compute the
option prices and the “physical” measure used to des-
cribe the underlying dynamics defined by (18)-(23) are
the same (see [13], Proposition 3.1).

Under the previous assumption on the risk free interest
rate manipulating Formulae (27), (34) and using the
results contained in [12] we obtain formulae to price
European call and put options in the normal multiscale
SABR model. That is the formulae for the prices C,,,
and P, at time ¢t=0 of respectively European call
and put options with strike price K € R and maturity
time 7>0 (ie. time to maturity 7, =7—-0>0
since =0 is assumed to be “today”) when the forward
price of the underlying and the values of the stochastic
volatilities at time ¢=0 (that is today) are respectively
Xo» Vigs Vy, are:

Coy (%9 710:7,0.K.T)

L
~L:mdvl .[;wdvszN (x, v, vy, T, )?0,\71,0,\72’0,0)
1 o (40)
=§Lcd77(77+5c0 —K)+
_E:dkerkq LY (T,k, V102610 Po, )mN (T, k, ‘72,0>529p0,2)
(%9:Bi0- 750 ) € RXR*xR*, K € R,T € R",
Py ()20"71,0"72,03K»T)
= _Jr‘:)dx(K—x)+
-.|'0+Dcdv1 J.(:wdvszN (x, vl,vz,T,fo,ﬁl,o,ﬁzgo,O)
I oo ) (1)
:Ej,md”(K_”_x0)+
j:dkerkq RN (T>ka‘71,0’51ap0,1)mN (T’k’ﬁz,ovgzvpo,z)

(%9:7 070 ) € RxR* xR, K eR, T €R",

where (-), =max(-,0).

Note that since in the normal multiscale SABR model
the forward prices/rates can be negative we have chosen
K eR instead of K e R" as it is done when models
with positive asset prices are considered. Moreover in
(40), (41) we have chosen the discount factor equal to
one, that is we have chosen the risk free interest rate
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equal to zero. This choice is due to the desire of keeping
the expression of Formulae (40), (41) simple and can be
easily removed.

Formulae (40), (41) can be rewritten as follows:

Co (17,0, K. T)
= J'j:dryMN (T,n,ﬁ2’0,52 =/70,z)

',’.j:dé/(g"”fo +77_K)+ M, (T’é/’ﬁo,l’glﬂpo,l)a
(fo,ﬁlyo,ﬁzjo)eRxRJ' <xR*",KeR,TeR",

(42)

Py (3}0:‘71‘0"72,091(»7‘)
= jj:dﬂMN (T,f],ﬁz,o,gz,po’z) )

'jj:dé’(K_(é/'Ffo +77))+ M, (T9§=ﬁ1,09813p0,1)n
(%5.9,0-7,9) e RxR* xR", K e R, T €R",

where M, (s,7,0,a) is given by:

MN (s:nao-agnp)z.[(;wdo-’gN (Saﬂno-,no-ng:p)a
neR,s,o,6>0,pe(-1,1),

(44)

when p =0 Formula (44) reduces to:

MN (5977:0»5»0)

-L)mdue'“z/ *sinh (u gzs) (45)

. T
sm( (_82 ] gcosh(u 82S)
N p|£

’ 2 12 >
\/;sinh(u gzs)—nz n’ +O-—2
seR",neR,0,6>0,

where P} is the Legendre function of the first kind of
parameters x , A (see [15] p. 180). From (45) it
follows that Formulae (40), (41) can be simplified when

Poi1 = Por = 0.
In the case of the normal SABR model Formulae (40)

and (41) reduce respectively to the following for-
mulae:

Cy (%), K,T)

:Jj:dé/(é/+i0_K)+MN(T’§"’/’0’g’p)7 (46)
(io,ﬁo)eRxR+,K eR,TeR",
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PN()EO,ﬁO,K,T)

=[LdS(K~(¢+5%)), My (T.¢.5.6.p),  (47)
()Eo,ﬁo) eRxR*",KeR, T eR",
where 7V, is the stochastic volatility at time =0 (see
(17)). Moreover in (46) the integral with respect to the
¢ variable can be computed explicitly, we have:
Cy (%.7,.K.T)

2

1 ‘%52 (1_'02) ~3/2 e’

= [§] V,
© ore?

N &
+o . . T —u?[(2T&%) p+oo 1
-_[0 dusmh(u)sm(ngje ! )_[0 dvﬁ

Jld(v)+ 5 - K| b (u,v) d(v)+% -K
B*@wv)  \(d(v)+5% -K) b* (u,v)
(%.% ) e RxR",K e R,T e R",
(43)

where

d(v)z

(\70 —v),v,ﬁ0 e RY,

SRS

b’ (u v) = 1_’02 (v2 + 92 + 207 cosh(u))
9 - 2 0 0 B

& (49)

v,V,,u € R,

A formula analogous to (48) can be obtained for the
put option price P, integrating (47) with respect to the
¢ variable.

Note that also the integrals in the ¢ variable appear-
ing in Formulae (40) and (41) can be done explicitly.
However in the case of Formulae (40) and (41) this
integration leads to formulaec computationally useless. In
fact in Formulae (40) and (41) the evaluation of the
functions M, in a point of the ¢ grid implies the
computation of a two dimensional integral, however
these function are independent of 7, K and X, the
value of these functions on a grid in the ¢ variable can
be computed out of the 77, k, x, loops. Note that the
double integral coming from the integration with respect
tothe ¢ variable couples K, 7 and X, variables.

In Formulae (46)-(48) for simplicity the discount
factor has been chosen equal to one. This assumption can
be easily removed.

Let us derive Formula (27). The reader not interested
in this derivation can move to Section 3. We begin de-
ducing Formula (27) when p,, = p,, =0. Under the
assumptions (4)-(9), when
Po1 =Py, =0 let us consider the backward Kolmo-
gorov equation associated to the stochastic differential
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Equations (18)-(20) satisfied by the function p,, as a
function of the variables (x',v],v;,t"), we have:

0 1 0 g ,0
Py =—(V{2+V£2) p,]\;[N + e p']l;[N
os 2 Ox 2 oV,
& 120 Py
+—=, )
ov,

2
x' eR,v) eR",j=12.

,s=t—t'>0, (50)

Equation (50) must be equipped with an initial con-
ditionin s=¢-¢"=0, that is:
Pa (X505, 8,x",9],05,1)
=3(x'=x)8 (=) (v —n), (51)
x,x' eR,v;, v e R*,j=12,
and appropriate boundary conditions.
Let k be the conjugate variable in the Fourier trans-
form of the x'—x wvariable, it is easy to see that the

Fourier transform p,,, of p,, with respectto x'—x
is the solution of the following problem:

P _ K (2 oy s
o 2(2 ‘)

2 2A 2 2 A
5_1v,26pMN +5_2 2 0 Dy

+ s 52
27 a2t o 2)
S€R+,k€R,V}ER+,j=1,2,
with the initial condition:
P (0,6, Vv v, ) =6(v —v, )8 (V) —v, ),
Okl ) =8 -m)3(w).

vieR",j=12,

and the appropriate boundary conditions. To solve Pro-
blem (52) and (53), we proceed by separation of variables,
that is we assume:

}A’MN (S,k,V{,V;,Vl,VZ)
=G, (s, k,v,1) G, (s,k,v3,v, ), (54)
seRkeR,v,,v:eR",j=12,

where G,, i=12, are functions to be determined.
Substituting (54) in (52) we have:

oG 0G, K,

(v

1 2 1”2
~ G, +G, == = (e )G1G2

+G, 51 v 0°G, G & ,0G,
2

+ >
v 2 e
seRﬂkeR,v}eRﬂj:l,Z.

(55

That is the assumption (54) reduces the solution of (52)
and (53) to the solution of the following initial value
problems:

Copyright © 2013 SciRes.

ET AL.
aG k2 r2 812 r2 aQGj J
Os 7 G] 2 j avlz +(_1) qu:O’
j (56)

seR*,keR,vj,v}eR+,j:1,2,
G (0,k,V,v, )=V, -V, ),k eR,
(k) =00 ) -

v, vieR", j=12,

with the appropriate boundary conditions. The constant
q appearing in (56) comes from the separation of vari-
ables.

To solve problems (56) and (57) we assume that the
functions G;, j=12, have the following form:

G, (s.k,v{,v))

2 ’
O (o, kv, v, ), (58)
seR"  keR,v,v eR",

,é_

=e?e¢ ; J. dowe

G, (s,k,vé,vz)

4, &

T N oo ,
=e’e IO do,w,e 0, (@,,k,v),v,,6,), (59)

seR" keR,v,,v, eR",
where Q,, j=1,2, are functions to be determined.
Note that for j=1,2 the function G, depends on ¢,
however the product G,G, does not depend on gq .
Equations (58) and (59) imply that Equation (56) reduce
to the following linear ordinary differential equations satis-
fiedby Q,, j=12:

e’ o O, +| —k*v? +¢&7 g—f+w2 0.=0
JoJ av;z 4 J J > (60)

o, eRY,k eRV e R*, j=12,

with the boundary condition:
th =0,7=1,2. (61)

The boundary condition (61) is derived from the boun-
dary conditions imposed to the solution of (50) (and as a
consequence to the solution of (56)) and follows from the
fact that we are looking for solutions of (56) that are
probability density functions. Imposing the boundary
condition (61) to the general solution of (60) we have:

’
Qj(a)j,k,vj,vj,ej)

= Wie(okv,.¢)kK, {H J (62)

, eRYk eRV,v, eR",j=12,

where for ;=12 the function c(®,,k,v,,&;) is an
“arbitrary constant” of the solution of (60), that is ¢ is

independent of V', that can be determined through (58),
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(59) imposing the initial conditions (57) to the parabolic
Equation (56). In fact we have:

G, (O’k’v;"’j )
= 6(\/]'. -V, )
:J.dea’j‘”ij(“)j’k"’}"’j’gj) (63)

:.[Omd a)j\/_ o kv.¢)K, [Lﬂv;],

J

keRv,v,eR",j=12,

using the inversion formula of the Kontorovich Lebedev
Transform (see Formula (3) of [12] and the references
therein) we have:

c(a)j,k,vj,sj)
_isinh(na)j) M
'S vj\/v_j Koo, {g. Vi) ©4)

J
o, € R*,k eR,v; e R*,gj eR",j=1,2.

Using (63) and (64) we obtain the following formula
for the function p,,, :

’ ’ ’ ’
Pun (x,vl,vz,t,x sV Vy,t )

- +°°dkefik(x’fx)
2n 7

-b(t—t',k,v,,vl',gl)b(t—t',k,vz,vé,gz), (65)
(x,v,v,), (¥, v, v) ) e RxR* xR™,
t,t'>0,t—t'>0,

where

2 W

Wy

-’[(:mda)a)ef%w2 smh(w:a))Km[| | ] [' | ] (66)
£

seR" ,keR,V,veR",&>0.

b(s,k,vv',e)=

When the boundary conditions are chosen appropri-
ately the solution (65) of the backward Kolmogorov
Equation (50) with p,, =p,, =0 in the “past” vari-
ables x', v/, v,, ¢ with the final condition (51) is
the solution of the Fokker Planck Equation (24) with
Pos =P, =0 (also known as forward Kolmogorov
equation) in the “future” variables x, v, v,, ¢ with
the initial condition (25). Formula (65) is deduced assu-
ming that p,, =p,, =0, when p,,p,, €(-1,1) re-
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placing in (65), x, x',k respectively with
Po, Pop r Poy Por Poz

X= Vio~ V2.0 1.0~ 2,0
& 5

\/l_p(il\/l_p(il \/1 1001\/1 p01
k . . .
T We obtain (27) and it is easy to verify
VI=p5; \/1 ~ P,

that (27) satisfies the Fokker Planck Equation (24) with
initial condition (25) and the appropriate boundary con-
ditions.

Note that the change of variables used to go from the
Poy =P, =0 case to the py,, p,,e(-1,1) case
generalizes to the multiscale context the change of vari-
ables used in [9] in the study of the normal SABR model
to go from the p=0 case to the pe(-1,1) case.
Recall that the McKean formula for the heat kernel of the
Poincaré plane gives the transition probability density
function of the normal SABR model when p=0.

Note that (39) can be derived with elementary com-
putations from (30) using the following representation
formulae that can be deduced from Formula (46) p. 35 of
[16], Formula (9) p. 176 of [17], and Formula (1.1) of
[18]:

and

L, ey
_ 1 +oodyK (y)e 2y /e 2(7 a)) (67)
aeC,yeC,Re(a)>0,Re(y)>0,0>0,

oK, (a)
= ajomdu sin (ue)sinh (u) g e (68)
aeC,Re(a)>0,0>0,

where C denotes the set of the complex numbers and
Re(z) denotes the real part of the complex number z.
Formulae (67) and (68) generalize to complex arguments
respectively Formula (15), p. 747 of [12] and Formula (32)
p- 99 of [19].

It is easy to see that Formula (33) for the normal SABR
model can be deduced proceeding as done to deduce
Formula (27) for the normal multiscale SABR model.

3. TheLognormal SABR and Multiscale
SABR Models

Let us consider the lognormal multiscale SABR model,
those are Models (1)-(3) when S =1, we have:

dx, =[x | (v, A, +v,,dW°?),6>0,  (69)

dv,, = glvl‘tthl, t>0, (70)
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dv,, =&, AW}, >0, (71)

with the initial conditions:

Xy =%, (72)
Vio = ‘71,0’ (73)
Vyo =V (74)

where, as already said, X,, V,,, i=1,2, are random
variables that we assume to be concentrated in a point
with probability one. To the assumption 7,,>0,
i=1,2, done previously we add the assumption
X, > 0. Moreover we assume that the quantities ¢,
i=12, are positive constants such that & <&, and
that the conditions (4)-(9) hold. Recall that when X,
is positive with probability one it follows that x,
solution of (69)-(74) is positive with probability one
for +>0. We can conclude that when X, >0 with
probability one the absolute value in (69) can be
dropped.

Let us derive a formula for the transition probability
density function of the stochastic process defined im-
plicitly by (69)-(74).

Let 7,20 be a constant such that x, is positive
with probability one, we define the variable
& = ln(xt/xtﬂ ) , t>t,. Using the variable &, t>1,,
the stochastic differential Equations (69)-(71) for ¢>¢,
can be rewritten as follows:

dé = —%(vit + vzz’t )d[

(75)

+(v1‘tth0’1 +v,, AW ), t>t,,
dvl,t = glvl,thVt]’ >, (76)
dv,, =&y, AW}, (>4, (77)

Let us choose ¢, =0 the previous change of variables
transforms the Equations (69)-(71) into the Equations
(75)-(77) for ¢ >0 and the initial conditions (72)-(74)
into the initial conditions:

& =0, (78)
Vio =Vios (79
Voo = ‘72‘0~ (80)

The variable &, >0, is called log-return of the
forward prices/rates. Note that the differential Equation
(75) in the log return variable &, ¢>0, of the log-
normal multiscale SABR model differs from the corre-
sponding equation (18) in the forward prices/rates vari-
able x,, >0, of the normal multiscale SABR model
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only for the presence of the drift term —%(Vﬁ, +v22q,)dt

that appears in (75) and is absent in (18). For this reason
under the previous assumptions it is possible to derive a
formula for the transition probability density function
P, associated to the process (f,,vly,,vl,) , t>0,
implicitly defined by (75)-(77) when t, =0 with the
initial conditions (78)-(80) arguing as done in Section 2
to study the normal multiscale SABR model. Proceeding
in this way we obtain the following formula:
Pur (é:,V],Vz,t,f',V]',Vé,t')
1 400 — £
= — [ dke 5)gL (t—t’,k,vl,vl',gl,pm)
2m 7 ’
‘8L (t_t"k’vz’vésgz’po,z)’

(g‘”,vl,vz),(f',v{,v;)e RxR*xR*,z,¢t'>0,—¢">0,

81

where & =&, & =&, ¢, 20, t—¢'>0, and the
remaining notation is the one used in Section 2. The
function g, 1is given by:

gL (Sakavav':gap)

s ’ P(V"V)
2 —gsz (\/v_ ]erk

2

v
-J.;wda)e’wz‘”z/za)sinh (ro)K,, (v(k)v)K,, (v(k)v'),
seR" keR vV eR",e6>0,pe (—1,1),

T (82)

where
v? (k) =£(1—p2)—ri, keR,e>0,pe(-11). (83)
82 6‘2

Note that when ¢ =0 in (81) we must choose
&'=0, v=v,, v,=7,,. From (81) and the pro-
perties of the Fourier transform we have:

Py (‘gavl’vzatag’»v{:vést')

1 oo s
=— [Tt )gL(t—t',k,vl,vl',gl,po,l)

g, (t—[”k,vz,vé,gz,poﬁz)

=[Tang, (1-1.&~c-nmlep,) (84
g, (t—t”ﬂ,vz,v;,é‘z,po,z),
(égavpvz)a(é’,vl',v;)ERXR+ XR+,
t,t'>0,t—t">0,

where g, is the Fourier transform with respect to the
n=¢&"-¢& variable of g, and k is the conjugate
variable in the Fourier transform of the 7 variable.
Using Formulae (67) and (68) an elementary compu-
tation gives:
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~ ' 1 (e —zkr, '
93 (S,?],V,V,&',p)zg'[iwdke ksz (S’kavavsgsp)
e (1) (W) et o) “sinh () sin| 2™ o
—m@e 52 T -€ J.O u s (u)sm ? €
! =) :
_m (—17+p(v'—v)/g) + e (v’ +v +2vv'cosh(u))
! V(20-#7))
. R (1_p2) 7t p 5 (1—,02)
[(—7]+p(v'—v)] + (v2 +v'? +2vv'c0sh(u))} (_77+(V'_V)) T (V2 +v"? +2VV'COSh(“))
s c £ £
seR ,neR, vy eR",e>0,pe(-11).
(85)

Note that Formula (81) gives the transition probability
density function p, of the lognormal multiscale SABR
model using the log-return of the forward prices/rates
variable, that is:

pL (é:av’t’grav”t’)
1

rd DL R

:gL (t_t,ag'_éﬂvrv"grp),
(&v).(E'V)eRXRY,1,'>20,6—1'>0,

t_t’sks 5 ” 5
( v,v,€,p) (36)

where we assume & =&, v, =v, & =&, v, =V,
t,t'>0, t—t'>0. Note that when ¢ =0 we must
choose &'=0, v'=7,. Note that Formula (86) holds
when pe(-1,1). This (closed form) formula when
p#0 is anew formula, in fact up to now when p#0
only series expansions in powers of p with base point
p =0 have been known for p, (see, for example, [10],
[11] and the references therein).

Note that the lognormal SABR model is a special case
of the Hull and White stochastic volatility model. It is
easy to see that the analysis presented here for the
lognormal SABR model can be extended to the study of
the Hull and White model in presence of a nonzero
correlation coefficient between the stochastic differen-
tials of the Wiener processes of the model. In this way it
is possible to obtain new (closed form) formulae for the
transition probability density function of the Hull and
White model and for the corresponding European call
and put option prices. These formulae will be presented
elsewhere.

The previous formulae for the transition probability
density functions p,, and p, written using the log-
return variable & =In(x,/x,), ¢>0, can be easily re-
written in the original forward prices/rates variable x,,
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t>0.

Finally starting from (84) and proceeding as done in
Section 2 we obtain the following formulae for the prices
C,, and P, in the lognormal multiscale SABR
model at time =0 of respectively European call and
put options with strike price K >0, maturity time
T >0 when the price of the underlying and the values of
the stochastic volatilities at time z=0 (that is today)
are given respectively by %, ¥, V,:

CML (560’ ‘71,0 H ‘72,0 > K’ T)
=L dg(Ref -K),
~J‘0+Oodv1 J;wdvszL (f,vl,vz ,T,0, ‘71,0"72,0’0)

_ (e -K).

+:>od
2m ™ d

J‘j:dkerkf Ty (T7k"71,0’gl’p0,l)mL (Tskaﬁz,oagzapo,z);
(%).7,0-%) e R xR* xR*, K € R",T € R",
87
B ()?0,\71)0,172’0,](,7’)
= [Tdg (K -%,e%).
J.(:wdvl J.(:wdvszL (ég’vl V. T,0, ‘71,0"72,0’0)
I (e -
peBCHUSEEY

J.j:dkerkg my (T’k"jl,O’gl’pO,l)mL (T’k7‘72,03527p0,2)’
(%5,7,0-%) e R xR*xR*, K e R*,T € R",

(8%)

where the function m, is given by:
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m; (s,k l—p2,v',g,p)

2

_2 2 ,zg Tk\rrwdv(

7'[

s
&
vf}
2

L
~.[0+wda)e > wsinh(nw)K, (v(k)v)Km (v(k)v'),
seR" keRVeR ,e>0,pe (—1,1),
(39)
and v (k), keR, is given by (83). Formula (89) can
be rewritten as follows:

m, (S,k 1—p2,v',g,p)

2

\/_ 5.2 TkLV’ e2s52
— e 8 e ¢
VT 2s¢’

.| dusinh ()sin [“—”) o /) (90)

2
S&

>

rw dy o reosh(u) - (3)

s eR*,k eRVeR", ¢ >0,pe(—1,1),

~2 . . .
where a; 1is given by:

~2 | .2 "2 2(1_'02) V' v
aL(y)—{y +(v) k —a +rkg(2 p——j 1)

yeR".

The numerical experience presented in Section 5 has
shown that in the evaluation of Formula (90) the complex
square root that defines @, (y) must be computed very
accurately. For this purpose in the numerical experiments
we have found useful to exploit the results of [20].

Note that the integrands of the integrals appearing in
Formulae (87) and (88) have the same special form of the
integrands of Formulae (40) and (41). This implies that
evaluating Formulae (87) and (88) has the same com-
putational cost than evaluating Formulae (40) and (41).
This last cost has been discussed in Section 2.

In the case of the lognormal SABR model Formulae (87)
and (88) reduce respectively to the following formulae:

C, (%.%.K.T)

= [Tag(5ef —K) [ dke™m, (T, k.55, p), (92)
(%,,7%,)eR* xR*,K e R*,T e R,

P, (%,,7,K,T)

= [ dg(K -5e?), -
(%,.7,) e R* xR*,K e R*, T e R",

j:dkeTkémL (T,k,ﬁoa‘S"p)s (93)
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where C,, P, are respectively the prices at time ¢ =0
of European call and put options in the lognormal SABR
model when the initial conditions (16) and (17) hold and
m, is given by (90). In the option pricing formulae (87),
(88), (92), (93) the risk free interest rate has been chosen
equal to zero and as a consequence the discount factor
has been chosen equal to one. This choice is made to
simplify the formulae and can be removed easily.

4. A Calibration Problem for the Normal
and Lognormal SABR and Multiscale
SABR Models

Let u# be a positive integer and R* be the u -
dimensional real Euclidean space. We formulate a cali-
bration problem for the models studied in Section 2 and
3.

Under the assumptions (4)-(9) the normal and log-
normal multiscale SABR models (18)-(20) and (69)-(71)
together with the associated option pricing Formulae (40),
(41) and (87), (88) are parameterized by six real quan-
tities, that is: the parameters ¢, i=1,2, the cor-
relation coefficients p,;, i=1,2, and the initial sto-
chastic volatilities v,,, i=1,2. These quantities are the
unknowns that must be determined in the calibration
problem. In this Section and in the numerical expe-
riments presented in Section 5 we consider as a para-
meter that must be determined in the calibration problem
also the risk free interest rate r. The risk free interest
rate » appears in the option pricing formulae when we
consider the discount factor that, for simplicity, has been
omitted in Formulae (40), (41), (87), (88). That is all
together when we consider the normal and lognormal
multiscale SABR models there are seven real parameters
that must be determined in the calibration problem. We
introduce the vector @ e R’ and the set M™ <R’
defined as follows:

M**
:{@:<51apo,la‘71,03527/00,25‘;2,0”’)GR7 le; >0, (94)
—1<py; <L¥,20,i=126 <&,r=0}

In the calibration problem for the (normal and log-
normal) multiscale SABR models the vector ® e R is
the unknown that must be determined and M™ defines
the set of the “feasible” vectors of the calibration pro-
blem. That is M"™ is the set of vectors that satisfy the
“physical” constraints that follow from the meaning of
the parameters in the model equations.

Similarly when we consider the (normal and log-
normal) SABR models the unknown of the calibration
problem is the vector © =(&,p,7,,r)eR* and the set
M" cR* of the “feasible” vectors of the calibration
problem is defined as follows:
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s

g

@ =(e,p.7.r) R >0,-1< p<1,7, 20,1 zo}.

95)

To keep the notation simple in the formulation of the
calibration problems for the SABR and multiscale SABR
models we denote with the same symbol ® a vector
belonging to M" orto M™

The calibration problems considered use as data a set
of option prices observed at a given observation time.
The option price data are fitted in the least squares sense
with the option pricing formulae deduced in Sections 2
and 3 (completed with the discount factors) imposing the
constraints defined in (94) or (95). That is the calibration
problem is formulated as a nonlinear constrained least
squares problem.

Let n,, n. be positive integers, 7 >0 be the ob-
servation time and X; be the forward prices/rates ob-
served at time =7 .Let C' (TCI,KCJ.,)E;),
i=12,n0, P(T,,.K,.%), i=12.n,, be re-

spectively the observed prices at time ¢=7 of the
European call options having maturity time 7., and
strike price K.,, i=1,2,~--,n., and of the European
put options having maturity time 7, and strike price
K., i=1,2,---,n,. Note that the values T.;, K.,
i=1,2,-,n., and T,,, K,,, i=1,2,--,n,, are not
necessarily distinct. For example options having the
same maturity time and several strike prices can be con-
sidered, in this case in the previous sets some of the
maturity times are repeated. Moreover let ® € M™ and
let Cpo (Te, Kep% )y Ci?(TesKes%: ),
i=1,2,n., PA;A(?(TPI,KP,, ) PA’f(TPl,KP,, )

i=1,2,---,n,, be the prices as a function of © ¢ M"™
of the European call and put options obtained evaluating,
respectively, Formulae (40), (41) and (87), (88) com-
pleted with the discount factors when 7., =T., -7 (ie.
the maturity time), i=12,---,n., or 7,,=T,, 1,
i=1,2,---,n,, and X, =X%; . Note that when r=0
Formulae (40), (41) and (87), (88) give the option prices
at time ¢=0 and that we are computing the prices at
time ¢=7 . Some obvious changes in the interpretation
of the formulae derived in Sections 2 and 3 are necessary
to handle this situation. For example the initial stochastic
volatilities v,,, V,, that in (40), (41) and (87), (88)
denote the volatilities at time ¢=0 must be interpreted
as the volatilities at time ¢=7 . Similarly when the

SABR models are considered let C° (TC,.,KC,.,)E),
CE’@(TCNKC,:N‘)’ i:1323'“9

Pt G’(TPI,K,,,, ), i=12,---,n,, be the corresponding
prices of the European call and put options obtained
using Formulae (40), (41) and (87), (88) completed with

ne, PPO(T,. K, %),

P>
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the discount factors. Note that when we consider
Ct@(TcnK Civ :) si=12,mc Pt@(TPvipn r) >

i=1,2,---,n,, and CZR@(TCNKC:’ )’ i=1,2,-,n.

Pt@(TmeP;! )’ i:1,2,"’,

vector belonging to M* < R*. In general n. and n,
are functions of the observation time 7, however, to
simplify the notation, we omit this dependence. For
notational convenience we define the following sets
M = M= M, MY = M= M

The calibration problem considered is formulated as
follows:

np, the vector © is a

mlnL ( ),Q=MN,ML,N,L, 96)

0eM?
where the objective function L; ,(®) is given by:
L;o(©)
~ 2

_Z[Cte( Ci» Cl’N) CE(TC,NKC,,'»S;)}
7

)1P
Z_:[ Q TPt’KPl’ t) Pt (TPz’KPz’ 1)]2’
{>0,0e M?% Q0=MN,ML,N,L.

Problem (96) is a nonlinear constrained least squares
problem. Note that when in (97) we choose O =MN or
Q=ML we calibrate respectively the normal and
lognormal multiscale SABR model and when we choose
O=N or Q=L we calibrate respectively the normal
and lognormal SABR model. The solution of the cali-
bration problem is the vector ® that solves problem
(96). Problem (96) is only a formulation of the cali-
bration problem between many other possible formu-
lations.

In the numerical experiments presented in Section 5
Problem (96) is solved with a local minimization method
that is explained below. For Q=MN ML ,N,L we
choose the initial guess of the minimization procedure
used to solve Problem (96) exploring the feasible region
M? . This is done taking a set of random points
belonging to M and evaluating the objective function
on this set of points. The initial guess of the minimization
method is chosen among these points using a heuristic
rule. The minimization method used is a variable metric
steepest descent method (see [21]). This method is an
iterative procedure that, given an initial vector
@ e M?, generates a sequence {Qk}, k=0,1,---, of
vectors, @ e M?, k=0,1,---, obtained making a step
in the direction of minus the gradient with respect to ©
of L;, computed in a suitable metric that depends on
the constramts defined in M. The procedure stops
when the following criterion is satisfied:
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L;!Q (@) <e

o> OF k> 1

(98)

max >

where e, n, are given positive constants. Details of
the implementation of the variable metric steepest des-
cent method used to solve the calibration problem can be

found in [6].

5. Some Numerical Experiments Using Real
Data

In the numerical experiments presented in this Section
the option prices computed evaluating with numerical
quadratures the integrals contained in Formulae (40), (41),
(46), (47), (87), (88), (92), (93) and completing the
results obtained with the appropriate discount factors are
compared with the option prices actually observed. The
numerical quadratures are performed using the composite
midpoint quadrature rule with 1000 nodes in each co-
ordinate direction. These choices guarantee approximate-
ly six significant digits correct in the option prices.

We present two numerical experiments based on the
calibration problem of Section 4. The stopping para-
meters of the minimization algorithm introduced in (98)
have been chosen as follows: e,, =5x107*,

n,, =1000.

max

In the first experiment we consider the daily values of

L.FATONE ET AL.

the futures price on the EUR/USD currency’s exchange
rate having maturity September 16th, 2011, (the third
Friday of September 2011) and the daily prices of the
corresponding European call and put options with expiry
date September 9th, 2011 and strike prices

K., =K, =K, =1375+0.005*(i-1) , i=12,---,18.
The strike prices K, i=1,2,---,18, are expressed in
USD. These prices are observed in the time period that
goes from September 27th, 2010, to July 19th, 2011. The
observations are made daily and the prices considered are
the closing prices of the day. Recall that a year is made
of about 250 - 260 trading days and a month is made of
about 21 trading days. Figure 1 shows the futures price
EUR/USD (ticker YTU1 Curncy) (blue line) and the
EUR/USD currency’s exchange rate (pink line) as a
function of time. Figures 2 and 3 show respectively the
prices (in USD) of the corresponding call and put options
with maturity time September 9th, 2011 and strike price
K,, i=1,2,---,18, as a function of time.

The computation of thirty-six option prices using the
midpoint quadrature rule as specified previously requires
three and half seconds on the Intel CORE Duo CPU
T6400 2 GHz processor.

In the first experiment we use the normal SABR and
multiscale SABR models to interpret these data. In par-

g
OTATAN
MMN

— YTU1 Curncy

— EUR/USD Curncy

AT

27/09/2010

27/10/2010 -
27/11/2010 A
27/12/2010 -
27/01/2011
27/02/2011

27/03/2011 A

27/04/2011 A
27/05/2011 A
27/06/2011 A

Figure 1. YTUL (blueline) and EUR/USD currency’s exchangerate (pink ling) versustime.

——YTU1C 1.3750 COMB Curncy

—— YTU1C 1.3800 COMB Curncy

YTU1C 1.3850 COMB Curncy

ﬁ ——YTU1C 1.3900 COMB Curncy

= —— YTU1C 1.3950 COMB Curncy

.qVF —— YTU1C 1.4000 COMB Curncy

\ ——YTU1C 1.4050 COMB Curncy

J 1/ \F‘ —YTU1C 1.4100 COMB Curncy

N MY —— YTU1C 1.4150 COMB Curncy

A YTU1C 1.4200 COMB Curncy

; \S] YTU1C 1.4250 COMB Curncy
0 g - s g s . L . s YTU1C 1.4300 COMB Curncy
¥ EEEEEEE: YTUIG 1.4400 GOMB Gurncy
= = = = = = = = = = : urncy
& &8 &8 &8 &8 &8 8 & & € —— YTU1C 1.4450 COMB Curncy
g g = 9 5 a4 B p: 4 0 = YTU1C 1.4500 COMB Curncy
NN INEN N N N N N — YTU1C 1.4550 COMB Curncy
L T - . L ——YTU1C 1.4600 COMB Curncy

Figure 2. Call option prices on YTU1 with strike price
September 9th, 2011 versustime.
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K; =1375+0.005% (i -1), i=12.,18, and expiry date T =
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27/05/2011 A
27/06/2011 1

Figure 3. Put option prices on YTUL with strike price K, :1.375+0.005><(i—1), i

September 9th, 2011 versustime.

ticular for these models we solve the calibration problem
posed in Section 4. We solve Problem (96) when
n.=n,=18, Q=MN and Q=N for 7=t,
j=L2,where ¢ =September 27th,2010,

t, = November 4th,2010 , using as data the futures
prices (YTUI ticker of Figure 1) and the prices of the
previously mentioned eighteen call and eighteen put op-
tions available at 7=¢,, j=1,2, (Figures 2 and 3).
The choice of the dates 7 =¢ ;» J =12, exploits the fact
that the formulae deduced in Sections 2 and 3 are closed
form formulae that have no limitations. In particular they
can be used when the products &*(7-7), & (T-7),
i=1,2, are not small. This is the case when we consider
the dates chosen previously. Recall that the option
pricing formulae for the SABR models contained in [1],
[9] are asymptotic formulae that hold when &”(T —¢) is
small.

Tables 1 and 2 show respectively the parameter values
obtained as solution of the calibration problems (96) for
the normal SABR and multiscale SABR models when we
consider the data relative to 7 = t, j=12.

The calibrated models, that is those with the parameter
values given in Tables 1 and 2, are used to forecast
option prices one day ahead of the current date, that is
ahead of the observation day of the prices used to cali-
brate the model. The forecasts are made evaluating for-
mulae (40) and (41) when Q =MN and evaluating for-
mulae (46) and (47) when Q=N multiplied by the
appropriate discount factors. These formulae are eva-
luated using as futures price the futures price observed
the day of the forecast. The volatilities v, and V,, ob-
tained from the calibration problem are taken as proxies
of the volatilities the day of the forecast.

Let us define the moneyness of an option a given day
as the ratio between the strike price of the option and the
futures price on the EUR/USD exchange rate of that day.
Figures 4 and 5 show the forecast option prices one day
in the future (i.e. at time ¢t=7+A¢ with Ar equal one
day) the observed option prices and the relative errors of

Copyright © 2013 SciRes.

=12,---,18, and expiry date T =

Table 1. Solution of the calibration problem: Normal SABR
model (FX experiment).

f September 27th, 2010 November 4th, 2010
£ 0.514 0.844

A 0.161 0.181

P —0.415 —0.267

r 0.0 0.019

Table 2. Solution of the calibration problem: Normal mul-
tiscale SABR model (FX experiment).

f September 27th, 2010 November 4th, 2010
g 0.514 0.507

Vio 0.143 0.158

Lo, —0.0164 —0.084

r 0.0069 0.0112

&, 0.8842 0.894

7, 0.083 0.087

Poa —0.558 —0.561

the forecast option prices one day in the future compared
with the observed prices as a function of the moneyness
of the day of the forecast (i.e. t=7+At). We consider
the relative error obtained using the normal SABR model
(Figures 4(a) and 5(a)) and the normal multiscale SABR
model (Figures 4(b) and 5(b)) calibrated using the
option prices of 7 =¢ (Figure 4), and 7 =¢, (Figure
5). The futures prices used in the forecasts are

X, .o =1.3536 and % ., =1.3971 where

At =1/260(years) = one day .

Figures 4 and 5 show that in this experiment the
normal multiscale SABR model outperforms the normal
SABR model. This is probably due to the fact that the
use of two volatilities in the multiscale SABR model
captures efficiently the “smile” effect contained in the
option prices. In fact the values of the constants & and
&, resulting from the solution of the calibration problem
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Figure 4. Relative errors obtained using the normal SABR (a) and multiscale SABR (b) models calibrated at f=t, =

September 27th, 2010 ver sus moneyness (FX experiment).
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Figure 5. Relative errors obtained using the normal SABR (a) and multiscale SABR (b) models calibrated at f=t, =

November 4th, 2010 ver sus moneyness (FX experiment).

shown in Table 2 differ approximately of a factor two
showing that the presence of the second volatility is
really useful to interpret the data. Note that the values of
g and &, shown in Table 2 do not differ of one or
more orders of magnitude as found for similar constants
in previous studies [6,7]. In [6] and [7] a multiscale
Heston model has been used to study electric power
prices. Electric power prices show severe spikes and
abrupt changes that justify the huge difference in the ¢,
&, values (two orders of magnitude) while the futures
price of EUR/USD currency’s exchange rate is a much
more well behaved quantity. However also the factor two
that separates approximately the values of ¢ and ¢,
shown in Table 2 corresponds to a relevant difference in
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the forecasting ability of the normal SABR and mul-
tiscale SABR models as shown in Figures 4 and 5.

In the second experiment we consider the daily ob-
served values of the USA five-year interest rate swap
(see Figure 6(a)), the corresponding futures prices hav-
ing maturity September 30th, 2011 (the ticker DSUI in
Figure 6(b)) and the prices of the corresponding Euro-
pean call and put options with expiry date September
19th, 2011 and strike prices
K, =106+0.5x(i—1), i=1,2,---,18. These prices are
observed in the period going from September 14th, 2010,
to July 20th, 2011. The strike prices K,, i=1,2,---,18,
are expressed in hundreds of base points that is, for ex-
ample, K, =106 corresponds to an interest rate 106 —
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Figure 6. Observed USA five-year interest rate swap (@) and the corresponding futures price DSU1 having maturity

September, 2011 (b) versustime.

100 = 6 that is 600 base points, this corresponds to an
interest rate of 6% per year (see Figures7 and 8).

We consider two dates 7 =# = October 12th,2010
and f :f2 = November 15th,2010 , where the values of
the corresponding futures prices (ticker DSU1 Figure
6(b)) are )chl =112.093 and )th-z f107-875~ That is we
consider two dates the first one ¢# selected in a period
where the oscillations of the futures price are small and
the second one 7, selected at the beginning of the fall of
the futures price (see Figure 6(b)). Note that from Novem-
ber 12th, 2010 to December 15th, 2010 the futures price
goes from the value of 110 to the value of 104. Recall
that these futures prices are expressed in hundreds of
base points.

Tables 3 and 4 show the parameter values obtained
calibrating the lognormal SABR and multiscale SABR
models on the data discussed above relative to the USA
five-year interest rate swap futures price and its options
observed at =%, i=1,2. In particular Table 4 shows
that the values of the parameters & and &, of the log-
normal multiscale model resulting from the calibration
differ of approximately a factor two.

Figures 9(a), 10(a), 11(a) and 12(a) show the ob-
served option prices and the forecast option prices as a
function of the moneyness at the date ¢=7 (Figures
9(a) and 10(a)) and ¢=7, (Figures 11(a) and 12(a)).
The forecast option prices are obtained using the log-
normal SABR model (see Figures 9(a) and 11(a)) and the
multiscale SABR models (see Figures 10(a) and 12(a)).

Figures 9(b), 10(b), 11(b) and 12(b) show the the
relative errors committed on the forecast option prices
one day ahead of the current day as a function of the
moneyness. In particular we use the values of the model
parameters obtained calibrating the model using the data
at t=1, to forecast the option prices at ¢ =% +At (see
Figures 9 and 10), and the values of the parameters ob-
tained calibrating the model using the data at =%, to
forecast the option prices at ¢ =17, + At (see Figures 11
and 12), where At = one day .

Figures9(b), 10(b), 11(b) and 12(b) show that the use of
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Table 3. Solution of the calibration problem: Lognormal
SABR modél (interest rate swap experiment).

October 12th, 2010 November 15th, 2010

~

3 0.7926 0.7827
v, 0.2424 0.2426
P —0.0502 —0.0435
r 0.0103 0.0107

Table 4. Solution of the calibration problem: Lognormal
multiscale SABR model (interest rate swap experiment).

October 12th, 2010 November 15th, 2010

~

£ 04332 05333
%, 0.000013 0.000013
Pos 0.000046 0.0244
r 0.0103 0.0103
Px 0.7926 0.8776
o 0.2425 024154
Do ~0.0502 ~0.0879

the lognormal multiscale SABR model really improves
the results of the forecasting experiment in comparison
with the results obtained with the lognormal SABR
model. In fact the relative errors on the forecast option
prices of the multiscale SABR model (see Figures 10(b)
and 12(b)) are smaller than the corresponding relative
errors of the SABR model (see Figures 9(b) and 11(b)).
In particular the lognormal multiscale SABR model im-
proves substantially the lognormal SABR model in the
forecasting of the prices of at the money options (see
Figures 9(b), 10(b) and 11(b), 12(b)).

This numerical experiment shows that the use of two
volatilities is justified when the forward/futures prices
present significant changes in their behaviour. Note that
the calibration done using the data of October 12th, 2010
(see Table 4), that is a date before the beginning of the
futures price fall, already provides two volatilities of
volatilities significantly different (i.e. &,/¢ ~1.8) and
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Figure 7. Call option prices on DSU1 with strike price K, =106+ O.5><(i —1) , 1=12,--,18, and expiry date T = September

19th, 2011 ver sustime.
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Figure 8. Put option prices on DSU1 with strike price K, =106+ 0.5><(i —1) , 1=12,---,18, and expiry date T = September

19th, 2011 ver sustime.
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Figure 9. Observed and forecast prices one day in the future of call and put options (a) and relative errors (b) obtained using
thelognormal SABR model calibrated at { =, = October 12th, 2010 versus moneyness (interest rate swap experiment).

this remains true for the parameter values obtained with
the data of November 15th, 2010 (see Table 4). However
we observe that on November 15th, 2010 the calibration
provides values of & and &, greater than the values
provided on October 12th, 2010.

Copyright © 2013 SciRes.

Finally we calibrate the lognormal models every day
for approximately two months, that is we calibrate the
models in the period going from September 14th, 2010 to
November 15th, 2010. The parameter values obtained in
the calibration of the lognormal models are shown in
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Figure 10. Observed and forecast prices oneday in the future of call and put options (a) and relative errors (b) obtained using
the lognormal multiscale SABR model calibrated at f =1{, = October 10th, 2010 versus moneyness (interest rate swap

experiment).
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Figure 11. Observed and forecast prices oneday in the future of call and put options (a) and relative errors (b) obtained using
thelognormal SABR model calibrated at f =, = November 15th, 2010 versus moneyness (interest rate swap experiment).

Figure 13. We can see that the values of the para- meters
remain substantially unchanged in the two months period
except for the values of the parameters ¢ and &, that
show a significant change at the end of October 2010 and
during the first fifteen days of November 2010. This is
probably due to the deep fall in the futures price in the
same period (see Figure 6). This experiment suggests
that the lognormal models really interpret the data, in fact
the values of the parameters found depend on the
dynamics of the futures price and the presence of a sig-
nificant changes in the values of the volatilities of
volatilities ¢, &, & may imply abrupt changes in the
forward prices/rates variable. Finally Figure 14 shows
the relative errors on the forecast option prices one day

Copyright © 2013 SciRes.

ahead of the current day obtained using the parameter
values shown in Figure 13. We can see that the log-
normal multiscale SABR model gives more accurate
forecast option prices than the lognormal SABR model.
The average and the worst case of the relative errors are
respectively 0.0037, 0.028 for the lognormal SABR
model and 0.0025, 0.025 for the multiscale SABR model.
That is as shown in Figures 9-12 the lognormal mul-
tiscale SABR model improves substantially the log-
normal SABR model especially in forecasting option
prices and in particular prices of at the money options.

6. Conclusion

The closed form formulae for the transition probability
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Figure 12. Observed and forecast prices oneday in the future of call and put options (a) and relative errors (b) obtained using
the lognormal multiscale SABR model calibrated at f =t, = November 15th, 2010 versus moneyness (interest rate swap
experiment).
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Figure 13. Parameter values obtained calibrating the lognormal SABR and multiscale SABR models every day for two
monthsin the period going from September 14th, 2010 to November 15th, 2010 ver sustime (interest rate swap experiment).
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Figure 14. Relative errors on the forecast prices one day in the future of call and put options obtained using lognormal SABR
model (a) and lognormal multiscale SABR model; (b) versustime to maturity expressed in days. The period considered goes
from September 14th, 2010, to November 15th, 2010 (interest rate swap experiment).

density function of the normal and lognormal SABR and
multiscale SABR models derived in this paper are a
practical tool to price derivatives on forward prices and
rates. In fact using these formulae “easy to use” formulae
for the price of European options on futures prices/rates
have been deduced and have been used to study the
prices of European call and put options on the Eurodollar
futures price and on the USA five year interest rate swap
futures price. Using these option pricing formulae a
calibration problem based on the least squares method is
formulated and solved numerically. The models are used
to study real data time series. The numerical experiments
compare the performance of the SABR and multiscale
SABR models in forecasting option prices. The com-
parison suggests that in the circumstances studied in Sec-
tion 5 the lognormal SABR model outperforms the nor-
mal SABR model and the SABR multiscale models
outperform the corresponding SABR models. In general
we could say that the multiscale SABR models out-
perform the corresponding SABR models when the
change in time of the data interpreted by the models is
sufficiently big. Finally let us point out that the potential
of the technique used to derive these formulae can be
exploited in other circumstances. In fact the idea of
expressing the transition probability density function of a
two factor volatility model as a kind of convolution of
two copies of the kernel of the corresponding one factor
volatility model can be exploited to study the multiscale
generalization of other stochastic volatility models.
Moreover the closed form formulae for the transition
probability density functions of the normal and log-
normal SABR and multiscale SABR models presented in
this paper deserve further investigation and can be ex-
ploited, for example, to price exotic derivatives or to

Copyright © 2013 SciRes.

solve new calibration problems.
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