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ABSTRACT 

A multiscale SABR model that describes the dynamics of forward prices/rates is presented. New closed form formulae 
for the transition probability density functions of the normal and lognormal SABR and multiscale SABR models and for 
the prices of the corresponding European call and put options are deduced. The technique used to obtain these formulae 
is rather general and can be used to study other stochastic volatility models. A calibration problem for these models is 
formulated and solved. Numerical experiments with real data are presented. 
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1. Introduction 

In this paper a multiscale SABR model that describes the 
time dynamics of forward prices/rates is presented. This 
model generalizes the well known SABR model intro- 
duced in 2002 by Hagan Kumar, Lesniewski, Woodward 
in [1]. Under some hypotheses on the correlation struc- 
ture of the model studied when we restrict our attention 
to the normal and lognormal multiscale SABR models it 
is possible to derive explicit (closed form) formulae to 
express the transition probability density functions of the 
stochastic processes implicitly defined by the models and 
of the prices of the corresponding European call and put 
options. Using the technique developed to derive the 
transition probability density function of the multiscale 
SABR model we deduce new explicit formulae for the 
transition probability density function of the normal and 
lognormal SABR models presented in [1]. Specifically 
we show that the transition probability density functions 
of the normal and lognormal SABR models (with no 
assumptions on the correlation structure of the models) 
can be written as the inverse Fourier transform of ex- 
plicitly known kernels. Moreover we show that for the 
multiscale models (under some assumptions on the corre- 
lation structure of the models) the corresponding mul- 
tiscale transition probability density functions can be ex- 
pressed as the inverse Fourier transform of the product of 
two copies of these kernels. This property is interesting 
since it can be used to define easy to solve multiscale 
versions of other stochastic volatility models. 

The multiscale SABR model introduced in this paper 
is motivated by the behaviour in the financial markets of 
equity prices, interest rates and currency exchange rates. 
In several circumstances empirical studies have shown 
that the dynamics of these quantities is described more 
satisfactorily by models that use at least two factors to 
describe the volatility dynamics than by models that use 
only one factor (see, for example, [2-4] and the reference 
therein). In [5-7] it has been shown that a generalized 
Heston model, that uses two stochastic volatilities vary- 
ing on two different time scales, leads to satisfactory 
forecasts of the asset prices and of the corresponding 
European option prices. The prices considered in [5-7] 
are the S&P 500 index, the associated European call and 
put option prices and some spot electric power prices. 
These findings motivate the use in the multiscale SABR 
model of two factors (i.e. two stochastic volatilities) 
varying on two different time scales to describe the vola- 
tility of the forward prices/rates variable. We limit our 
attention to “normal” and “lognormal” SABR and mul- 
tiscale SABR models. In these models the instantaneous 
variation of the forward prices/rates depends only on the 
volatility or on the volatilities (“normal” models) or on 
the volatility or on the volatilities times the prices/rates 
itself (“lognormal” models). These models are special 
cases of more general SABR models where the variation 
of the forward prices/rates depends on the product be- 
tween a sufficiently smooth function of the forward 
prices/rates and the volatility or the volatilities. Usually  
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this function is chosen in the family of functions 
  0,1x

    where x  is a real variable and   is a 
parameter. That is the SABR models considered depend 
on the parameter  ,  0,1

0
 , the normal models 

correspond to the choice    and the lognormal 
models correspond to the choice 1  . 

Let  and  be respectively the sets of real and 
of positive real numbers and let  be a real variable that 
denotes time. Let us define the multiscale SABR model. 
To the forward prices/rates described by the stochastic 
process t

 
t

x , , we associate two stochastic vola- 
tilities given by the stochastic processes 1, , , . 
The dynamics of the stochastic process t

0t

tv 2,tv 0t 
x , 1,t , 2,t , 

, is defined by the following system of stochastic 
differential equations: 

v v
0t 

 0,1 0,2
1, 2,d d d ,t t t t t tx x v W v W t

   0,

0,

0,

  (1) 

1
1, 1 1,d d ,t t tv v W t

2

            (2) 

2, 2 2,d d ,t t tv v W t            (3) 

where the quantities i , 1,2i  , and   are real 
positive constants such that 1 2   and  0,1 

2

. The 
fact that , , , vary on different time scales 
is expressed by the condition 0

1,tv 2,tv 0t 
1   . When the 

condition 1 20  

t

d

 

,

d tW

 holds it is likely to observe 
abrupt changes in the forward rates/prices variable. The 
processes 0,1  0,2 , 1 , 2 , , are standard 
Wiener processes such that 1 2 , 
and 0,1 , 0,2 , 1 , , , are their sto- 
chastic differentials. The correlation structure of the 
model is defined by the following assumptions: 

tW W tW

tW

tW
0,1W W

2d tW t

0t 
0,2

0 0 
0

0 W 0 0W
d tW

1 2d d 0, 0,t tW W t            (4) 

0,1 1
0,1d d d , 0t tW W t t  ,       (5) 

0,1 2d d 0, 0t tW W t  ,          (6) 

0,2 1d d 0, 0t tW W t  ,          (7) 

0,2 2
0,2d d d , 0t tW W t t  ,      (8) 

0,1 0,2d d 0, 0t tW W t  ,         (9) 

where   denotes the expected value of   and the 
quantities  are constants known as 
correlation coefficients. The autocorrelation coefficients 
of the previous stochastic differentials are equal to one. 
When the model is multiscale (i.e. when 

0,1 0,2,    1,1

1 20   ) 
the meaning of the assumptions (4)-(9) is that the 
stochastic differentials on the right hand side of (1)-(3) as- 
sociated to the two (long and short) time scales are in- 
dependent. 

The Equations (1)-(3) are equipped with the initial 

conditions: 

0 0 ,x x                  (10) 

where 

1,0 1,0v v  ,                (11) 

2,0 2,0 ,v v                (12) 

0x , ,0iv , 1, 2i  , are random variables that we 
assume  b nc d in a point with probability one. 
For simplicity we identify the random variables 0

 to e co entrate
x , ,0iv , 

1, 2i  , with the points where they are concentr d.  
 ,0 0iv  , 1, 2i

ate  We
assume  . 

The st c differential ochasti Equations (1)-
co

(3), the initial 
nditions (10)-(12), the assumptions on the correlation 

coefficients (4)-(9) and the conditions on the coefficients 
 , 0i  , 1,2i  , define the multiscale SABR model. 

izes the SABR model introduced in 
2002 by Hagan, Kumar, Lesniewski, Woodward [1] that 
is defined by the following stochastic differential equa- 
tions: 

This model general

d d ,t t t tx x v W t


0,           (13) 

0,d d ,t t tv v Q t           (14) 

where  0,1   and 0  . The coefficients   and 
  of ( are known espectively as 13), (14)  r  -volatility 

d as volatility of volatility. Moreover tW , tQ , 0t  , 
are standard Wiener processes such tha W Q
an

t 0 0 0, 
nd

 
d tW , d tQ , 0t  , are their stochastic diff  erentials a
we have: 

d d d , 0,t tW Q t t           (15) 

where  1,1    
t. The Equa

is a constant called correlation co- 
efficien tions (13) and (14) are equipped with 
the initial conditions:  

0 0 ,x x                 (16) 

where 

0 0 ,v v                 (17) 

0x  and  are random va0v riables that we assume 
to be concentrated in a point with probability one and 
that, for simplicity, we identify with the points where 
they are concentrated. Moreover we assume that 0 0v  . 

Note that for 1, 2i   the assumption ,0iv  0  with 
probability one im

We consider the normal and the lognormal SABR and 
m

plies that , 0i tv   with ability 
one for 0t  . A similar statement holds for 0v  and tv , 

0t  . 

 prob

ultiscale SABR models. These models are obtained 
from the previous ones choosing respectively in Equ- 
ations (13) and (1) 0   (normal models) or 1   
(lognormal models).  we consider the logn  
models we assume that 0 0x  . In the lognormal models 
the assumption 0 0x   obability one implies that 

0tx   with probability one for 0t  . Under the 
tions (4)-(9) for the normal an ormal SABR 

When

with 

ormal

pr

assump d logn
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and multiscale SABR models the transition probability 
den- sity functions associated to the state variables of 
these models are expressed via integral formulae with ex- 
plicitly known integrands. In this sense the normal and 
lognormal models are explicitly solvable. The SABR and 
multiscale SABR models with  0,1  , 1 2   can 
be studied using the following es erical 
methods, series expansions in the parameter 

approach : num
  or hy- 

brid methods. The last approach combines series ex- 
pansions and numerical methods. The SABR models 
with  0,1  , 0   can be studied using integral 
formulae inv in ergeometric functions for their 
transition probability density functions [8]. The models 
with 0.5

olv g hyp

   deserve special attention. These models 
will b  elsewhere. 

We begin our analysis 
e studied

with of ormal 
m

 the study the n
ultiscale SABR model (see Section 2) for three reasons. 

The first reason is that under the previous hypotheses on 
its correlation structure the normal multiscale SABR 
model can be solved explicitly. The second reason is that 
the normal multiscale SABR model can be considered as 
an improvement not only of the normal SABR model but 
also of SABR models with   different from zero, 
sufficiently small. In fact the use of two volatilities 
makes the normal multiscale model more “flexible” than 
the SABR models. For example the normal multiscale 
SABR model reproduces both balanced and skewed 
probability distributions of prices/rates and can forecast 
satisfactorily the option prices even when the options 
considered have strike price near to zero and are at the 
money. In these circumstances the normal SABR model 
fails to explain the observed prices. The third reason is 
that in the class of SABR models parametrized by  , 

 0,1  , the normal models are the simplest ones a  
y is useful to understand the other models. For 

example in Section 3 we use the results obtained in the 
study of the normal models to study the lognormal 
models. 

The e

nd
their stud

xplicit formulae of the transition probability 
de

ale 

SA

 for the normal and lognormal 
SA

d in the calibration problem and in 
th

nsity functions associated with the normal and log- 
normal models are one (SABR models) or three dimen- 
sional (multiscale SABR models) integrals of explicitly 
known integrands. The formulae are closed form and 
“easy to use” in the sense that their numerical evaluation 
can be done with elementary methods. These formulae 
are used to derive explicit (closed form) formulae for the 
corresponding prices of European call and put options. 
The option pricing formulae are integrals of explicitly 
known integrands. Due to the special form of the inte- 
grands the numerical evaluation of the multi-dimensional 
integrals involved in the formulae of the transition 
probability density functions and of the option prices can 
be done very efficiently with ad hoc quadrature rules. 

Moreover from the formula for the normal multisc

BR transition probability density function we derive a 
formula for the transition probability density function of 
the normal SABR model. This formula is expressed as a 
one dimensional integral of a (regular) explicitly known 
integrand, is an elementary formula that can used instead 
of the formula deduced in [9] (Formula (120) in [9]). 
This last formula (Formula (120) in [9]) is based on the 
McKean formula for the heat kernel of the Poincaré 
plane. In a similar way a new formula for the transition 
probability density function of the lognormal SABR 
model is deduced. This last formula is a special case of 
an explicit, “easy to use” formula for the transition pro- 
bability density function of the stochastic process im- 
plicitly defined by the Hull and White model [10] when 
there is a possibly nonzero correlation between the sto- 
chastic differentials appearing on the right hand side of 
the forward prices/rates and volatility equations. These 
are two interesting formulae since up to now in the case 
of nonzero correlation for the transition probability den- 
sity functions of the lognormal SABR model and of the 
Hull and White model only asymptotic expansions in the 
correlation coefficient were known (see for example 
[10,11] and the references therein). The results relative to 
the Hull and White model will be presented elsewhere. 
The formulae presented in this paper are obtained using 
the Fourier transform, the method of separation variables 
and the results of Yakubovic [12] about the Lebedev 
Kontorovich Transform. 

A calibration problem
BR and multiscale SABR models is considered. These 

models are calibrated using option price data, the option 
pricing formulae mentioned above and the least squares 
method. The calibration problem is formulated as a 
constrained optimization problem for the least squares 
error function. Given the forward prices/rates the cali- 
brated models are used to forecast option prices. We dis- 
cuss some numerical experiments with real data where 
observed and forecast option prices are compared. These 
experiments confirm the validity of the procedure used to 
forecast option prices, of the calibration procedure and of 
the models presented. In particular they make possible a 
comparison between SABR and multiscale SABR mo- 
dels that shows when the use of the multiscale SABR 
models is justified. 

The real data use
e forecasting experiments are discrete time observa- 

tions of the euro/US dollar (EUR/USD) exchange rate 
(futures prices), of the futures prices of the USA five 
year interest rate swap and of the prices of the corre- 
sponding European put and call options (i.e. European 
foreign exchange options on EUR/USD futures prices 
and options on USA five year interest rate swap fu- 
tures). That is we consider Foreign eXchange (FX) data 
and interest rates data. Note that forward/futures prices 
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are quantities stated in the contracts stipulated to buy or 
to sell currencies in a future date and that they remain 
unchanged during the life time of the contracts. For the 
convenience of the reader let us recall some facts about 
the derivatives mentioned above. A foreign exchange 
option is a derivative that gives to the owner the right but 
not the obligation to exchange a given quantity of money 
denominated in one currency into money denominated in 
another currency in a specified date at a pre-agreed ex- 
change rate. Exchange rate derivatives are widely traded 
and serve different needs, for example, they serve the 
needs of firms active in the international trade arena that 
want to reduce their exposure to exchange rate variations. 
The USA five year interest rate swap exchanges semi- 
annual interest rate payments at the fixed rate of 4% per 
floating interest rate payments based on 3-month LIBOR 
interest rate. These swaps are widely traded. In fact they 
are excellent tools for duration management and asset/ 
liability gap management for bank treasuries, insurers 
and financial services companies. Note that the use of 
futures prices/rates instead of forward prices/rates in our 
numerical experiments is due to the fact that only the 
latter ones are over the counter prices. Moreover recall 
that when during the time period considered the risk free 
interest rates are deterministic forward and futures prices/ 
rates coincide (see [13], Proposition 3.1 and [14]). 

The numerical experiment on the EUR/USD exchange 
rate shows that, once calibrated using call and put option 
prices relative to a given date, the normal multiscale 
SABR model, given the asset price at the time of the 
forecast, is able to produce forecasts of call and put 
option prices that outperform those obtained with the 
normal SABR model. Note that the values of the para- 
meters 1  and 2  of the normal multiscale model ob- 
tained in the calibration differ of approximately a factor 
two. This means that the calibrated multiscale model has 
really a multiscale behaviour and as a consequence the 
interpretation of the data benefits from the presence of 
the second time scale. 

In the next experiment the lognormal models are used 
to interpret interest rate swaps data. In this case the 
futures price has abrupt changes so that the improvement 
in the data interpretation obtained introducing the mul- 
tiscale model is significant. In particular when the log- 
normal multiscale SABR model is considered the values 
of the parameters 1  and 2  obtained in the cali- 
bration differ for abou a factor wo. The results obtained 
on the interest rate swap data with the lognormal models 
confirm the findings of the experiments on the EUR/ 
USD exchange rate data with the normal models. Finally 
the stability of the parameter values obtained in the cali- 
bration is investigated. It is shown that calibrating the 
models daily with the option price data collected in one 
day during a period of about two months (that is cali- 

brating the models approximately forty times) the models 

t  t

parameters obtained remain substantially unchanged dur- 
ing the two months period. Recall that there are appro- 
ximately twenty trading days in a month. 

The website: http://www.econ.univpm.it/recchioni/ 
fin

ollows. In 
Se

2. The Normal SABR and Multiscale SABR 

Le normal multiscale SABR model. This 

ance/w14 contains some auxiliary material including 
animations that help the understanding of this paper. A 
more general reference to the work of the authors and of 
their coauthors in mathematical finance is the website: 
http://www.econ.univpm.it/recchioni/finance. 

The remainder of the paper is organized as f
ction 2 we study the normal SABR and multiscale 

SABR models. In Section 3 we study the lognormal 
SABR and multiscale SABR models. In Section 4 we 
formulate a calibration problem for these models and we 
present a numerical method to solve it. In Section 5 a 
procedure that, given the asset prices at the time of the 
forecast, forecasts option prices using the calibrated 
models is presented. The calibration and forecasting pro- 
cedures are applied to study real data. Currency exchange 
rates and interest rates derivatives data and the corre- 
sponding option price data are studied. The forecast 
option prices are compared with the prices actually ob- 
served. The comparison shows the relevance of the mul- 
tiscale SABR models. Finally in Section 6 some con- 
clusions are drawn. 

Models 

t us consider the 
model is obtained choosing 0   in (1), (2), (3) and is 
given by the following stocha ifferential equations: 

0,1 0,2d d d , 0,x v W v W t

stic d

1, 2,t t t t t       (18) 

0,1
1, 1 1,d d ,t t tv v W t         

0

  (19) 

2
2, 2 2,d d ,t t tv v W t ,          (20) 

with the initial conditions:  

0 0 ,x x                  (21) 

where 

1,0 1,0v v  ,                (22) 

2,0 2,0v v  ,               (23) 

0x , ,0iv , 1, 2i  , are random variables that we 
assume  b nc d in a point with probability one. 
The quantities i

 to e co entrate
 , 1,2i  , are positive constants such 

that 1 2  . Mo o  assume that conditions (4)-(9) 
hold. milar way starting from (13), (14), (16), (17) 
and choosing 0

re ver we
 In a si

   in (13) we can write the normal 
SABR model. 

Let us consider the transition probability density func- 
tion of the stochastic process tx , 1,tv , 2,tv , 0t  , im- 
plicitly defined by (18)-(23), that is the probability 
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density function of having tx x 1, 1tv v 2, 2t , ,  v v  
given the fact that tx x  , 1, 1tv v  , 2, 2tv v  , when 
   1 2 1 2, , , , ,x v v x v v          

0t t  . Note tha w choose 
 , 

0t 
t , t 

 e mu
  
s
0 , and
t t when 

0x x   , 1 1,0v v   , 
density fu

 , , ,p x v t x

2 2,v v  

, , ,v t 

0

  


 t

. This transition p

   0t  , 

rob

0t t

ability 
nction is denoted with

1 2 1 2, ,MN v v   
   1 2 1 2, , , , ,x v v x v v            . 
Note that the values x , x

 
denote with  

   1 2 1 2 1 2, , , , , , , , , ,MN MNp x v v t p x v v t x v v t    ,  
 1 2, ,x v v   

 of the 
at they 

>   0t t

forward pr
an be 

ices/rates 
negative. Wevary on the real axis,



 and th

 , 

c

 


 

, the function  

0t
 1 2, , , , ,MNp x v v t x 

  1 2 1 2, , , , ,x v v x v v  
1 2, , ,v v t   
   ,  ,t    0t   t   , 

 1 2, , ,considered as a function of the variables x v v t . 
The function MNp  is the solution of the Fokker Planck 
equation: 

 1 2, , ,   p

 

1 2, , ,

>   0,1 2, ,

MN ,

,

MNx v v t 

  
  


1 2v

 

 
boundary

L p

t 





 1x v
 

 conditions. The 

x v v

t 

1 2

,

v v

sym

t



t

x v v



with the initial condition:

 
, ,x v


   (24) 

2 ,v
 (25) 

bol 


   

1 2, , ,MNp x v v t x  

    



1 2, ,x v v

and appropriate 

,

    
denotes the Dirac’s delta and in (25) the operator  L   
is given by: 

 

      

   
1 2

2 2
2

 





 

1 0

1 2

x v

v

 
 

 

rator 

2

L 
2

2

0,2v v

 
2

2 2
2 22

,

v
v








 (26) 

2 2
1 2

1

v v

 

2
1 12 2

2 2

2
1 2

v

x v


,

, ,

12 2

.

x v

 

 
 

 

 
 





1

2

x v


 



The ope  L   define
). The Fok

d in (
ker Planck

26) depend
 Equation

s on the 
 (24) is assump

a 
tions (4)-(9

linear parabolic partial differential equation whose 
elliptic part is degenerate on the boundary of its domain 
of definition, that is it is degenerate when 1 0v   or 

2 0v   and > 0t t  . Problems (24), (25) are com- 
pleted with appropriate boundary conditions. Th de- 

y of tic part of the Fokker Planck 
equation implies that boundary conditions must be 
specified with care. For simplicity we omit these 
boundary conditions. Note that the transition probability 
density function 
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where τ is the imaginary unit and the function  1 2,h y y  
ebedev trans- is the “heat kernel for the Kontorovich-L

form” (see [12] p. 748). That is: 
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where  and 
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sinh K  denote respectively the h
lic sine a he sec  type modified Bessel function of 
order 
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  (see [  5). With a simple change of 15] p.
variables Formula (27) can be rewritten as follows:  
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ˆMNp  be the Fourier transform of MNpLet  with re- 
spect to the x x   variable, we have:  

 
  

   

1 2 1 2

1 2 1 2

1 2 1 2

, , , , , , ,

1
ˆd e , , , , , , ,

2π

, , , , , ,

, 0, 0.

MN

k x x
MN

p x v v t x v v t

k p k v v t v v

x v v x v v

t t t t

  



 

   

  

     

   


  

t
    

Using (29), (31) and the properties of the Fourier 
transform we have: 
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  (32) 

where Ng  is the Fourier transform of Ng  with respect 
to the k  variable, that is:  
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(33) 

Note that Formula (27) and similarly Formulae (29), 
(32) give the transition probability density function 
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1
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MNp  
n in-as a one dimensional Fourier integral of a know

tegrand. The integrand has a special form, in fact it con
tains the product of two copies of a function evaluated in 
two different points. This function, defined in (30) or in 
(33), is a one dimensional integral of an explicitly known 
integrand. That is Formulae (27), (29), (32) are three 
dimensional integrals. However the special form of their 
integrands mentioned above implies that the evaluation 
of these three dimensional integrals with an elemen
quadrature rule can be done at the computational co
a 

 
- 

tary 
st of 

two dimensional integral. 
Note that the function Ng  defined in (33)  when

s t t  , x x   , tv v  and tv v   is the tran- 
sition probability density function of the normal SABR 

model. This can be seen proceeding as done at the end of 
this Section to deduce (27) or simply verifying that Ng  
satisfies the Fokker Planck equation associated to (13), 
(14) when 0   with the appropriate initial and boun- 
dary conditions. 

Formula (33) for the transition probability density 
function of the normal SABR model is a new and useful 
formula that can substitute the formula commonly used 
in the mathematical finance literature, that is Form
(1 the
heat ke ré

ula 

ned

20) of [9], that is based on  McKean formula for the 
 plane. The integral that 

appears in (33) is a one dimensional integral of a smooth 
function whose numerical evaluation is easier than the 
evaluation of the integral of a singular function contai  
in Formula (120) of [9]. Moreover Formulae (27) and (33) 
are deduced using elementary tools, that is: the Fourier 
transform, the me

rnel of the Poinca

thod of separation of variables and the 
results of [12] on the Kontorovich Lebedev transform. 
The McKean formula is derived using the differential 
geometry of the Poincaré plane. That is Formula (33) and 
its elementary derivation simplify the study of the normal 
SABR model. 

Formula (27) can be used to deduce some useful con- 
sequences. For example from Formula (27) it is possible 
to deduce an explicit formula for the marginal probability 
distribution MNM  of the forward prices/rates stochastic 
process defined by (18)-(23) under the assumptions (4)- 
(9), that is: 
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Nm  is given by: 
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The function 
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  (35) 

Nm  can be rewritten as follows: 
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Na  is given by:  
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An alternative expression of the marginal probability 
distribution (34) can be obtained using Formula (32), 
that is: 
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(39) 

From (27) using the no arbitrage pricing theory for- 
mulae to price in the normal multiscale SABR model 
European call and put options can be derived. The 
assumption that the risk free interest rate is deterministic 
during the life time of the priced option implies that the 
forward prices/rates coincide with the futures prices/rates. 
In fact the forward price is a martingale under the (for- 

ward) measure associated to (18)-(23) and the futures 
price is a martingale under the risk-neutral measure. 
However if the risk free interest rate is deterministic the 
forward measure and the risk neutral measure coincide 
(see [13], Proposition 3.1). Hence we can assume that we 
are working with futures prices/rates instead of with 
forward prices/rates and we can exploit the fact that these
prices/rates are martingales under the risk-neutral meas- 
ure. That is the risk neutral measure used to compute the 
option prices and the “physical” measure used to des- 
cribe the underlying dynamics defined by (18)-(23) are 
the same (see [13], Proposition 3.1). 
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erest 
te manipulating Formulae (27), (34) and using the 

results contained in [12] we obtain formulae to price 
European call and put options in the normal multiscale 
SABR model. That is the formulae for the prices MNC  
and MNP  at time 0t   of respectively European call 
and put options with strike price K   and maturity 
time 0T   (i.e. time to maturity maturity 0 0T     
since 0t   is assumed to be “today”) when the forward 
price of the underlying and the values of the stochastic 
volatilities at time 0t   (that is today) are respectively 
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where    max ,0


   . 
Note that since in the normal multiscale SABR model 

the forward prices/rates can be negative we have chosen 
 instead of K K   as it is done when models 

with positive asset prices are considered. Moreover in 
(40), (41) we have chosen the discount factor equal to 
one, that is we have chosen the risk free interest rate 
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equal to zero. This choice is due to the desire of keeping 
the expression of Formulae (40), (41) simple and can be 
easily removed. 

Formulae (40), (41) can be rewritten as follows: 

1 0,1, ,
  (42) 

1 0,1, , ,
 (43) 

where 

 
 

   
 

0 1,0 2,0

2,0 2 0,2

0 0,1

0 1,0 2,0

, , , ,

d , , , ,

d , ,

, , , , ,

MN

N

N

C x v v K T

M T v

x K M T v

x v v K T

   

     









  



   

    





  



 

       

,

,

 
 
    

 

0 1,0 2,0

2,0 2 0,2

0 1,0

0 1,0 2,0

, , , ,

d , , , ,

d ,

, , , , ,

MN

N

N

P x v v K T

M T v

K x M T v

x v v K T

   

     









  



   

    





  



 

       

 , , ,NM s     is given by:  

  
 

0
, , , , d , , , , , ,

, , , > 0, 1,1 ,

N NM s g s

s

         

   


 

  

 


  (44) 

when 0   Formula (44) reduces to:  

 

 

 
 

22

3 2

, , , ,0NM s   

 
2

π

8
3 2

2
2

2

1
e e

2π

s

s


 




  
 

 
 
 

2 2 2due sinhu u s
 0

2
2

1
1 22 2

2 2 2
2 2

π
sin cosh

sinh

, , , 0,

u
u s

s
P

u s

s

  
   
 

  

 

   
    
   

   
 

   

 (45) 

where 

,

P
  

ters 
is the Legendre function of the first kind of 

parame  ,   (see [15] p. 180). From (45) it 
follo ormulae (40), (41) can be simplifiedws th

0,2

at F
0

 when 

0,1  
e ca

. 
se oIn th f  normal SABR model Formulae (40) 

and (41) reduce respectively to the following for- 
mulae:  

, , , ,

 the


  

 

0 0

0 0

0 0

, , ,

d ,

, , , ,

N

N

C x v K T

x K M T v

x v K T


    





 

  

   



 

 

     

   (46) 

 0 , ,v K T

    
 

0

0 0

0 0

,

d ,

, , , ,

N

N

P x

K x M T v

x v K T

, , , ,    




 

  

   





 

     



   (47) 

where is the stochastic volatility at time 0v  0t   (see 
(17)). reover in (46) the integral with re  the  Mo spect to
  variable can be computed explicitly, we have:  

 

 

   

   
  

 
 

 

2

0

0 0

, ) ,

, , , ,

b v b u vd v x K

x v K T 

2

22

2 2

0 0

π
2

2
3 28
02 2

2

20 0

2
0 0

2 2

, , ,

11 e
e

π π 2

π 1
d sinh sin e d

,
1

(

N

T T

u T

C x v K T

v
T

u
u u v

T v

d v x K b u v d v x K

u







 





 




   
 

        
   

   



     

 

 



 

 

(48) 

where 

   0 0, , ,d v v v v v



      

    
2

2 2 2
0 02

0

1
, 2 cosh

, , .

b u v v v vv u

v v u







  



 

 

A formula analogous to (48) can be obtained for the 
put option price 

,
  (49) 

NP  integrating (47) with respect to the 
  variable. 

Note that also the integrals in the   variable
ing in Formulae (40) and (41) can b  done explicitly. 

 (41

fu

 appear- 
e

However in the case of Formulae (40) and ) this 
integration leads to formulae computationally useless. In 
fact in Formulae (40) and (41) the evaluation of the 

nctions NM  in a point of the   grid implies the 
computation of a two dimension ntegral, however 

ndependent of 
al i

these function are i  , K  and 0x , the 
value of t functions on a grid ihese n the   variable can 
be comput ut of the ed o  , k , 0x  loop

tegration with
s. No e 

double in  coming m ect 
to the 

te that th
 resptegral  fro  the in

  variable couples K ,   and 0x  vari es. 
In 6)-(4  th unt

factor has been chosen equal to one. This assumption can 
be easily removed. 

Let us derive Formula (27). The reader not interested 
in this derivation can move to Section 3. We begin de- 
ducing Formula (27) when

abl
e discoFormulae (4 8) for simplicity  

 0,1 0,2 0   . Under the 
assumptions (4)-(9), when 

0,1 0,2 0  
gorov equation as

 let us consider the backward Kolmo- 
sociated to the stochastic differential 
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Equations (18)-(20) satisfied by the functi n o MNp  as a 
function of the variables  1 2, , ,x v v t    , we vha e: 

 
2 22

2 2 21
1 2 1

1

22
22

2 2

2 2
2

1

2 2

, 0,
2

, , 1, 2.

MN MN MN

MN

p p p
v v v

s

j

x v

p
v s t t





      

v

x v j

   

        (50) 


    

Equation (50) must be equipped with an initial con- 
dition in 0s t t   , that is:  

 
     

1 2 1 2

1 1 2 2

, , , , , , ,

,

, , , 2,

MN

j j

p x v v t x v v t

, 1,

x x v v v v

x v v j

  


  

     

    

      (51) 

and appropriate boundary conditions. 
Let k  be the conjugate variable in th Fourier trans- 

form of the 

x

e 
x x   varia le, it is easy to see that the 

Fourier transform ˆ
b

MNp  of MNp  with respect to x x   
is the s ution of the followin  p blem: ol g ro

 
2

2 2
1 2

ˆ
ˆ

2
MN

MN

p k
v v p

s

    


2 22 2
2 21 2

1 2

, 1,2,j

2 2
1 2

ˆ ˆ
,

2 2

, ,

MN MNp p
v v

v v

j 

with the initial

and the appropriate boundary conditions. To solve Pro- 
blem (52) and (53), we proceed by separation of variables, 
that is we assume: 

    (54) 

, , s to be determined. 
Substitu g  (52) we have:  

s k v

 

 

   
  

   

       (52) 

 condition: 

     1 2 1 2 1 1 2ˆ 0, , , , , ,

, 1,2,

MN

j

p k v v v v v v v

v j

 


     

  
 (53) 

2v

 
   

1 2 1 2

1 1 1 2 2 2

ˆ , , , , ,

, , , , , , ,

MNp s k v v v v

G s k v v G s k v v

 

   

, , , , 1, 2,j js k v v j      

where G are functioni

tin
1, 2i 

(54) in

 
2

2 21 2
2 1 1 2 1

2 2 2 2

2

2

2

,

,

G G k
G G v v G

s s



      
 

   (55) 

ng initial value 
problems: 

2 21 1 2
2 1 1 22

G G
G v G v

    
2

1 22 2

, , 1,2.j

v v

s k v j

  

     

That is the assumption (54) reduces the solution of (52) 
and (53) to the solution of the followi

G

 
2 22

2 2
2

1 0
2 2

, , , , 1, 2,

jj j j
j j j j

j

j j

G Gk
v G v qG

s v

s k v v j



 

 
  ,   

 

     


  (56) 

   0, , , , ,

2,

j j j j jG k v v v v k

v v j




   

  


 

, , 1,j j 
      (57) 

with the appropriate boundary conditions. The constant 
appearing in (56) comes from the separation of

ables. 
q   vari- 

To solve problems (56) and (57) we assume that the 
functions jG , 1, 2j  , have the following form: 

 

 
2 2

21 1
1

1 1 1, , ,G s k v v

82 2
1 1 1 1 1 10

1 1

e e d e , , , , ,

, , , ,

q
ss s

Q k v v

s k v v

 


1



   
 

 



  


  

  (58) 

 


2 2

22 2
2

2

82 2e e d
q

ss s

G s k

e Q
 




2 2

2 2 2 2 2 2 20

2 2

, , ,

, , , , ,

, , , ,

v v

k v v

s k v v

 
 

   
 





    

 (59) 

where jQ , 1, 2j  , are functions to be determined. 
Note that for 1,j 2  the function jG

 not
 Equat

 depend
howe  does  depend on
Equati  that ion (56) re  
to th

s on q , 
ver th
ons (

e product
58) and 

 1 2G G
9) imply

 
d

q . 
uce(5

e following linear ordinary differential equations satis- 
fied by jQ , 1, 2j  : 

22
2 2v

  2 2 2 2
2

0,
4

, , , 1, 2,

j
j j j j j j j

j

j j

Q k v Q
v

k v j


 

  

 
           

     

 (60) 

with the boundary condition: 

         (61) 

The boundary condition (61) is derived from the boun- 

lim 0, 1,2.
j

j
v

Q j
 

   

dary conditions imposed to the solution of (50) (and as a 
consequence to the solution of (56)) and follows from the 
fact that we are looking for solutions of (56) that are 
probability density functions. Imposing the boundary 
condition (61) to the general solution of (60) we have: 

 

 

, , , ,

, , , ,

, , , , 1,

j

j j j j j

j j j j j
j

j j j

Q k v v

k
v c k v K v

k v v j



 

 


  



 

2,

    
 

     

   

where for 

  (62) 

 the function  , , ,j j jc k v 
n of (60), that is 

1, 2j   is an 
“arbitrar tant” of the solutio  is 
independe

y cons
nt of 

c

jv , that can be d ), etermined through (58
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(59) imposing the initial conditions (57) to the parabolic 
Equation (56). In fact we have: 

 
 

 

 

0

0

d , , , ,

d , , , ,
j

j

j j j j j j j

j j j j j j j
j

k v v

k
v c k v K v

  

   








 
    

 





   (6 ) 

0, , ,

, , , 1, 2,

j j j

j

j j

G k v v

v v

Q

k v v j









 

   

3

using the inversion formula of the Kontorovich Le
Transform (see Formula (3) of [12] and the references 
therein) we have:  

bedev 

 
 

2
,

π

, , , , 1, 2.

j j
jj j

j j j

K v
v v

k v j

 

   

   
 

       

  (64) 

Using (63) and (64) we obtain the following formula 
for the function 

, , ,c k v 

sinh π2

j j j

j k  

MNp : 

 

 

   



1 2 1 2

i

1 1 1 2 2 2

1 2

, , , , , , ,

1
d e

2π

, , , , , , , , ,

, , ,

MN

k x x

p x v v t x v v t

k

b t t k v v b t t k v v

v  1 2, , ,

, 0, > 0,

x v x v v

t t t t

 

  



 

   



     







    (65) 

    

  

 

where 

 
2

2
2

8
2

2
0

2
, , , , e

π

d e sinh(π ) ,

, , , , 0.

s

s

v
b s k v v

v v

k k
K v K v

s k v v




 

 



 
 





 

 

   
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  

   



  

 (66) 

When the boundary conditions are chosen appropri- 
ately the solution (65) of the backward Kolmogorov 
Equation (50) with 



0,1 0,2 0    in the “past” vari- 
ables x , 1v , 2v , t  with the final condition (51) is 
the solution of the Fokker Planck Equation (24) with 

0,1 0,2 0    (also known as forward Kolmogorov 
equation) in the “future” variables x , 1v

5) is d
,  with 

 assu- 
2v , 

edu
t

cedthe in
ming t 1

itial co
hat

nd
 0,

ition 

0,

(25). Formula (6

2 0   , when  0,1 0,2 , 1,1  re- 

placing in (65),

 

 x , x , k  respectively with  

0,1 0,2

1 2

2 2
0,1

1,0 2

0,11 1

,0x v v

 

 
 

 

 
, 

0,1 0,2
1,0 2,0

1 2

2 2
0,1 0,11 1

v v
 
 

 

   

 
 an

x

d  

2 2
0,1 0,11 1

k

  

that (27) satisfie  F

 

s t
 (25

e ch

we 

he
)

nge

ob

ok
 and th

 of v

tain (27) and it is easy to verify  

ker Planck Equation (24) with 
initial condition e appropriate boundary con- 
ditions. 

Note that th a ariables used to go from the 

0,1 0,2 0    case to the 0,1 ,  0,2 1,1  
t the chang

e normal SABR m

 case 

dy 
generalizes to 
ables used in [9
to go from th

the m
] in
e 

u
 the st

0

ltiscale 
u

contex
of th

e of vari- 
odel 

   case h to t e  1,1  
he heat kernel

n probability d
 when 0

 case. 
 of the 
ensity 

R

Recall that the 
Poincaré plane g

n of the 

McKean form
e
al

ula for t
sitio

 model
iv

norm
s the tran

 SABfunctio   . 
Note that (39) ved with elementary com- 

putations from 0) he following representation 
formulae that be ced from Formula (46) p. 35 of 
[16], Formula of [17], and Formula (1.1) of 
[18]: 

can be deri
ng t
u
6 

 (3
 can 

(9) p.

 usi
ded
 17

   

 

   

22

0
e e ,

2

, , 0, 0, 0,

yK y
y

Re Re



    

 
1 y



 


 
 

   1 d

K K

y

 

    


 

 (67) 

 
     

 

cosh

0
d sin sinh e ,

, 0, 0,

u

K

u u u

Re





 



  

 

  

      (68) 

where   de  of the c  and 



es

 

not  t omplex numbershe set
 Re z  denotes e r l art of the complex nth

and
mul

ee t
 de

r th

ea
68) 

at

 p
gene

a (15), p. 7

 Form

umber z. 
67)  ( ralize to complex arguments 

respectively For 47 of [12] and Fo 2) 
p. 99 of [19]. 

It is easy to s h ula (33) for the normal SABR 
model can be
Formula (27) fo

Le
those are Mode

Formulae (
rmula (3

duced proceeding as done to deduce 
e normal multiscale SABR model. 

3. The Lognormal SABR and Multiscale 
SABR Models 

t us consider the lognormal multiscale SABR model, 
ls (1)-(3) when 1, we have:  

 0,1 0,2
1, 2,d d d , 0,t t t t t tx x v W v W t      (69) 

1
1, 1 1,d d , 0,t t tv v W t               (70) 

Copyright © 2013 SciRes.                                                                                 JMF 



L. FATONE  ET  AL. 20 

2
2, 2 2,d d , 0,t t tv v W t          (71) 

with the initial conditions: 

0 0 ,x x                     (72) 

1,0 1,0 ,v v                    (73) 

2,0 2,0 ,v v                   (74) 

where, as already said, 0x , 
e to 

y

,0iv
be co
th

 we ad
me th

, 1, 2i 
ncentrat

e assump
d th

at th

, are random 
variables that we assum ed in a
with probability one. To tion , 

, done previousl e assu  
. Moreover we assu e quantit

 point 

,0 0iv 
mption
ies i

1,2i 
0 0x   , 

, are positive const1,2i  ants such that 1 2   and
when 

 
 conditions that the (4)-(9) hold. Recall that 0x  

s that tis positive with probability one it follow x  
solution of (69)-(7

. We

droppe

)-(74). 

4) is positive with probability one 
0  withfor t  0

ilit
 can conclude that when 0

probab y one the absolute value in (69) can be 
d. 

Let us derive a formula for the transition probability 
density function of the stochastic process defined im- 
plicitly by (69

x  

Let 0 0t   be a constant such that 
0t

x  is positive 
with probability one, we define the variable  

 0
lnt t tx x  , 0t t . Using the variable t , t  0t

0t t
, 

the stochastic di tial Equations (69)-(71fferen ) for  
can be rewritten as follows: 

 
 

1, 2,

0,1 0,2
1,

d d
2

d d ,

t t t

t t

v v t

v W t t

   

  
  (75) 

2 2

2, 0

1

,t tv W

,        (76) 

Let us choose the previous chan
(69)-(71) into the Equations 
e initial conditions (72)-(74) 

into the initial conditions: 

1
1, 1 1, 0d d ,t t tv v W t t   

2
2, 2 2, 0d d ,t t tv v W t   .t        (77) 

0 0t   ge of variables 
transforms the Equations 
(75)-(77) for 0t   and th

0 0,                    (78) 

1,0 1,0v v  ,                 (79) 

2,0 2,0v v           (80) 

The variable t

.       

 , 0t  , is called log-return of the 
forwa d prices/rates. Note that the differential Equation 

 the log return variable t

r
(75) in  , 0t  , of the lo - 

l multiscale SABR model differs from the corre- 
sponding equation (18) in the forward prices/rates va - 
able 

g
norma  

ri

tx , 0t  , of the normal multiscale SABR model 

only for the presence of the drift term  2 2
1, 2,

1
d

2 t tv v t    

that appears in (75) and is absent in (18). Fo reason 
under the previous assumptions it is possible to derive a 
formula fo

r this 

r the transition probability density function 

ML  associated to the process  1, 2,, ,t t tv v , 0t  , 
implicitly defined by (75)-(77) when 0 0t   with the 
initial conditions (78)

p

-(80) arguing 
to y the n el

as done in Section 2 
 stud ormal multiscale SABR mod . Proceeding 

in this way we obtain the following formula: 

 
  

1 2 1 2, , , , , , ,

1
d e ,

ML

k

p v v t v v t

k g t t  

 
   

 
   

1 1 1 0,1

2 2 2 0,2

1 2 1 2

, , , ,
2π

, , , , , ,

, , , , , , , 0, 0,

L

L

k v v

g t t k v v

v v v v t t t t

 

 

 



 

   

  

  

           

(81) 

where 



t  , t   , , , 
remain
functio

t
e o

0t 
ne used

0 , and the 
ection 2. The 

t t 
 in Sing nota

n 
tion is th

Lg  is given by: 

 
 

 

2

2 2

8
2

2

2
e e

π

d e sinh π

L

v vs
k

s

v

v

     
0

, , , , ,

,

, , , , 0,

g s k v v

v

 

 1,1 ,

K k v K k v

s k v v



 

 

  




 


   




 

 
   

 

 

(82) 

   


  

where 

 

     
2

2 2
2 2

1 , , 0, 1,1 .k k  
 

        (83) 

Note that when 0t

k k 

   in (81) must choose 
0

we 
   , 1 1,0v v   , 2 2,0v v   . From (81) and the pro- 
perties of the Fourier transform we have: 

 
  1

e , , , ,k g t t k v v   

1 1 0,1

,

,

,

L 

 


 
   

1 1 1 0,1

2 2 2 0,2

1

2 2 2 0,2

1 2 1 2

2π

, , , , ,

d , , , ,

, , , , , ,

, , , , , ,

, 0, 0,

L

L

L

L

g t t k v v

g t t v v

g t t v v

v v v v

t t t t

1 2 1 2, , , , , ,Mp v v t v v t

 

 

     

  

 







 

  

     

  

     

   

 



  

    (84) 

     

   

Lg  where is the Fourier transform with respect to the 
     variable of Lg

ier transform
 and  is the conjugate 

he Four f the 
k

 ovariable in t   variable. 
Using Formulae (67) and (68) an elementary compu- 
tation gives: 
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   

       

    
 

  

 

2 2
2 2

2 2

1 2
2

2 2 2
2

2π

8 2 2
2 202

11
2 cosh

1
, , , , , d e , , , , ,

2π

11 1 π
e e e d sinh sin e

ππ 2

1

k
L L

us
v v

s s

v v v v vv u

g s v v k g s k v v

v v u
u u

svs

v v

 

   
 


  

    



 




 



    

           
  

 

             



  







 

2 1 

22 1
e




  

  
 

 
  

 

2

3 2 2222
2 22 2

22

1 2 1

11
2 cosh2 cosh

, , , , 0, 1,1 .

v v v v vv uv v vv u

s v v



 
 

   







   
                               

(85) 


       

 

 
 that Formula (81) gives the transition probability 

density function 



t 0 . Note

Lp  
e log

of the lognormal multiscale SABR 
model using th -return of the forward price
variable, that is:  

Final
Sectio

ly starting from (84) and proceeding as done in 
n 2 we obtain the following formulae for the prices 

MLC
s/rates 

MLP
me t

 and  in the lognormal multiscale SABR 
l at ti 0  

th st
pric
ol
ively

of respectively European call and 
ptio rike price , maturity time 

wh e of the unde d the values of 
cha atilities at tim  (that is today) 

ven re  by

mode , , ,Lp v t

   

 
   

, ,

1
d e , , , , ,

2π
, , , , , ,

, , , , , 0, 0,

k
L

L

v t

k g t t k v v

g t t v v

v v t t t t

  



 

   

 

  





 

  

    

       




 

    (86) 

where we assume 


put o

0T 
the sto
are gi

ns wi
en the 
stic v
spect

0K 
rlying an
e 0t 

 

 0x , v1,0 , 2,0v : 

 
 

 

 
  

 

0 1,0 2,0

0

1 2 1 2 1,0 2,00 0

0

1,0 1 0,1 2,0 2 0,2

0 1,0 2,0

, , , ,

d e

d d , , , ,0, , ,0



d e
π

d e , , , , , , , , ,

, , , , ,

ML

k
L L

C x v v K T

x K

v v p v v T v v

x K

k m T k v m T k v

x v v K T





 







   









 

    

 

 



    

 



  



 



 

       

 

(87) 

1

2

ML















t  , tv v , t   , tv v  , 
, en, 0t t 

choose 
0t t 

0
. Note that wh  0t   we must 

   , 
 1,1 

0v v  . Note 
. This 

th
(closed fo

at Form
 

ula (8
rm) form

6) holds 
ula whenwhen 

0


   is a new formula, in fact up to now when 0   
only series expansions in powers of   with base point 

0   have been known for Lp  (see,
n). 

 for example, [10], 
[11] and the references therei

Note that the lognormal SABR model is a special case 
of the Hull and White stochastic volatility model. It is 
easy to see that the analysis presented here for the 
lognormal SABR model can be extended to the study of 

e Hull and White model in presence of a nonzero 
co

p

ensity function of the Hull and 
White model and for the corresponding European call 
and put option prices. These formulae will be presented 
elsewhere. 

The previous formulae for the transition p
density functions

 

 

th
rrelation coefficient between the stochastic differen- 

tials of the Wiener rocesses of the model. In this way it 
is possible to obtain new (closed form) formulae for the 
transition probability d

robability 
 MLp  and Lp  written using the log- 

return variable  0lnt tx x , can be easily re- 
written in the ori ariable 


gin

, 
al forward prices/rates v

0t 
tx , 

 

 
   

 

0

1 2 1 2 1,0 2,00 0

0

1,0 1 0 2,0 2 0,2

d e

d , , ,0, , ,0

1
d e

2π

e , , , , , , , , ,

, , ,

ML

k
L L

K x

v p v T v v

K x

k m T k v m T k v

x v v K





 





   



 

 





  

 

 



  









 



 

  

 

0 1,0 2,0

,1

, , , ,

d ,

d

P x v v K T

v v




 



  ML




0 1,0 2,0 , ,T     

(88) 

where the function Lm  is given by: 
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 

       
 

2

2
2

2

8
2 0

2
0

, 1 , , ,

2 1
e e d e

π

d e sinh π ,

, , , 0, 1,1 ,

L

s v v
k k

s

m s k v

v v
v v

K k v K k v

s k v

   
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 

 

  

    

 


 



 



   
 



     




  

 

(89) 

and  2 k , k   given  (83). Formula (89) can 
be rewritten as fo

, is by
llows: 

 

   

   

2

22

2

π

2
8

2

20

cosh

0

2 e
e

π 2

π
d sinh sin e

d
e e ,L

s v sk

s

y u a y

s

u
u u

s

y

y

  













  



   
 





 

   (90) 

 

2 2

e

, , , 0, 1,1 ,

L

u

s k v  



        

where 

2, 1 , , ,m s k v  

2
La  is given by:  

   
 2

22 2 2
2

1
2 ,

.

L

v v
a y y v k k y

y


 

 



             






(9  

The numerical experience presented in Section 5 has 
shown that in the evaluation of Formula (90) the complex 
square root that defines must be computed very 
accurately. For this purpose i numerical experim
we have found useful to exploit the results of [20]. 

Note that the integrands of the integrals appearing in 
Formulae (87) and (88) have the same special form of the 
integrands of Formulae (40) and (41). This implies that 
evaluating Formulae (87) and (88) has the same com- 
putational cost than evaluating Formulae (40) and (41). 
This last cost has been discussed in Section 2. 

In the case of the lognormal SABR model Formulae (87) 
and (88) reduce respectively to the following formulae: 

,

1)

 La y  
n the ents 

 

   
0 0

0 0

0 0

, , ,

d e d e , , , ,

,

L

k
L

C x v K T

x K k m T k v

K

  

 , , ,x v T

  
 

 
   

 

 
           

 

,

(92) 

 

   
 

0 0

0 0

0 0

, , ,

d e d e , , , ,

, , , ,

L

k
L

P x v K T

q K x k m T k v

x v K T

    
 

 

   

  

   

 

 

 

     

LC , LP  are respectively the prices at time 0t   
al SABR 

ld and 

 (93) 

where 
of Eu d put options in the lognorm
mode itial conditions (16) and (17) ho

ropean
l wh

 call an
en the in

Lm  
(88)

is  (90). In the option pricing formul
, (  the risk free interest rate has been c

equal to zero and as a consequence the discount factor 
has been chosen equal to one. This choice is made to 
simplify the formulae and can be removed easily. 

4. A Calibration Problem for the Normal 
d Lo norm

Let 

 given 
92), 

by
(93)

ae (87  
hose  

),
n

an g al SABR and Multiscale 
SABR Models 

 be a positive integer and   be the  - 
dimensional real Euclidean space. We formulate a cali- 
bration problem for the models studied in Section 2 and 
3. 

Under the assumptions (4)-(9) the normal and log- 
normal multiscale SABR models (18)-(20) and (69)-(71) 
together with the associated option pricing Formu
(41) and (87), (88) are parameterized by six real quan- 
tities, that is: the parameters 

lae (40), 

i , , the cor- 
relation coefficients 

1, 2i 
0,i , 1i 

1,2
, 2 , and the initial sto- 

chastic volatilities ,0i , iv  . Th
in

d in t
 5 we c

n th
r . 

 pricin

ese quan
 in
e 
onsider

e calibratio
The risk fr

formul
plicity, h

tities are the 
unknowns that m ed  the calibration 

. h numerical expe- 
riments presente  as a para- 
meter that must be n problem 
also the risk free ee int
rate appears in g ae when we 
co er the discou for sim as been 
om

u

d in
 d

 th
n

st be

 Sect
eterm

interest rat
e op

t factor t

 determ
an

ion
ined i

e 
tion

hat, 

problem In this Section 

erest 
r  

nsid
itted in Formulae (40), (41), (87), (88). That is all 

together when we consider the normal and lognormal 
multiscale SABR models there are seven real parameters 
that must be determined in the calibration problem. We 
introduce the vector 7  and the set 7    
defined as follows:  

 


7
1 0,1 1,0 2 0,2 2,0

0, ,0 1 2

, , , , , , | 0,

1 1, 0, 1,2, , 0 .

i

i i

v v r

v i r

    

  



    

      

  





  (94) 

In the calibration problem for the (normal and log- 
normal) multiscale SABR models the vector 7  is 


ibrati

the unknown that must be determined and  defines 
the set of the “feasible” vectors of the cal on pro- 
blem. That is   is the set of vectors th is
“physical” constraints that follow from th ing of 
the parameters in the model equations. 

Similarly when we consider the (normal and log- 
normal) SABR models the unknown of the calibration 
problem is the vector 

at sat
e mean

fy the 

  4
0, , ,v r      and t

 of the “feasible” vectors of the calibration 
problem is defined as follows: 

he set 
4  
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  4
0 0, , , 0, 1 1, 0, 0 .v r v r   



          


 

(95) 

To keep the notation simple in the formulation of the 
calibration problems for the SABR and multiscale SABR 
models we denote with the same symbol   a vector 
belonging to   or to  . 

The calibration problems considered use as data a
of option prices observed at a given observation ti

e option price data are fitted in the least squares s
th the option pricin

 set 
me. 

Th ense 
wi g formulae deduced in Sections 2 

 (c ors  th

es problem. 

and 3 ompleted with the discount fact ) imposing e 
constraints defined in (94) or (95). That is the calibration 
problem is formulated as a nonlinear constrained least 
squar

Let Pn , Cn  be positive integers, 0t   be the ob- 
servation time and tx  be the forward prices/rates ob- 
served at time t t  . Let  , ,, ,t

C i C i tC T K x
 , 

1, 2, , Ci n  ,  , ,, ,t
P i P i tP T K x

 , 1, 2, , Pi n  , be re-  

spectively the observed prices t time t t   of the 
European call options hav  maturity time ,C iT  and 
strike price ,C i

a
ing

K , 1, 2, , Ci n  , and of the European 
put options having maturity time ,P iT  and strike price 

,P iK , 1, 2, , Pi n  . Note that the values ,C iT , ,C iK , 
1, 2, , Ci n  , and ,P iT , ,P iK , 1, 2, , Pi n  , are not 

necessarily distinct. For example options having the 
same maturity time and several strike prices can be con- 
sidered, in this case in the previous sets some of the 
maturity times are repeated. Moreover let   and 
let  ,

, ,, ,t
MN C i C i tC T K x

 ,  ,
, ,, ,t

ML C i C i tC T K x
 , 

1, 2, , Ci n  ,  ,
, ,, ,t

MN P i P i tP T K x
 ,  ,

, ,, ,t
ML P i P i tP T K x

 ,  

1, 2, , Pi n  , be the prices as a function of   
of the European call and ptions obtained e , 
respectively, Formul

 put o valuating
ae (40), (41) and (87), (88) com- 

 discount factors when pleted with the , ,C i C iT t   
, or ,P i

 (i.e. 
 time), the maturity 1, 2, , Ci n  ,P iT t    , 

1, 2, , Pi n  , and 0 tx x   . Note that when 0r   
Formulae (40)
at time 0t 
tim

, (41)
and t

i

 an
h

d (87), (88) gi
at we are com

ve the option p
puting the prices at

 neces

rices 

s

  
e t t  . Some obvious changes in the interpretation 

of the formulae derived in Sections 2 and 3 are ary 
to handle this situation. For example the initial stochastic 
volatilities 0,1v , 0,2v  that in (40), (41) and (87), (88) 
denote the vola es at time 0t   must be interpreted 
as the volatilities at time t t

t liti
  . Similarly when the  

SABR models are considered let  , , ,t T K x  , , ,N C i C i tC 

 ,
, ,, ,t

L C i C i tC T K x
 ,  1, 2, , Ci n  ,   ,

, ,, ,t
L P i P i tP T K x

 ,  

 ,
, ,, ,t

N P i P i tP T K x
 , 1, 2, , Pi  orresponding 

the European call and put options obtained 
using Formulae (40), (41) and 

n , be the c
prices of 

(87), (88) completed with 

the discount factors. Note that when we consider  



 ,
, ,, ,t

N C i C i tC T K x
 , 1, 2, , Ci n  ,   ,

, ,, ,t
N P i P i tP T K x

 , 

1, 2, , Pi n  , and  ,
, ,, ,t

L C i C i tC T K x
 , 1, 2, ,i n  C , 

 ,
, ,

t
LP  , ,P i P i tT K x

 , 1, 2, , Pi n  , the vector   is a  

vector belonging to 4   . In general Cn  and Pn  
are functions of the observation time t , h wever, to 
simplify the ation, we omit

o
endenot  this nce.  

no
 dep  For

tational convenience we define the following sets 
**MN ML    , *N L    . 

The calibration problem considered is formulated as 
follows: 

 ,min , , , , ,
Q t QL Q MN ML N L


 


     (96) 

where the objective function  L   is given by: ,t Q

 

   

  

,

, , ,

t Q

nC
t
Q i i
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



2

, , , ,
1

2

, ,

, ,

t
C i C C i Ct t

i

n

C T K

x

Q MN ML



,
, , , ,

1

, , , , ,

0, , , .

P
t t

Q P i P i P i P it t
i

Q

P T K x P T K

t N L





   

   

 

  
 



Prob  nonlinear constrained le st sq res 
e that w en in 97) we c MN

 


 





lem (96) is a a ua
problem. Not h  ( hoose 





 
  (97) 

Q   or 
Q ML  we calibrate respectively the normal and 
lognormal multiscale SABR model and when we choose 
Q N  or Q L  we calibrate respectively the normal 
and lognormal SABR model. The solutio cali- 
brat e 

n of the 
ion pr  th vectoroblem is    that so  

bl  is only a fo ulation 
bration problem ormu-

w. For 
n

his 
ing 

i ti

lves problem
of the ca(96). Pro em (96) rm li- 

 between many other possible f  
lations. 

In the numerical experiments presented in Section 5 
Problem (96) is solved with a local minimization method 
that is explained belo ,MN  we 
choose the i itial guess of the minimization procedure 
used to solve Problem (96) exploring the feasible region 

Q . T is done taking a set of random points 
belong to Q  and evaluating the objective function 
on this set of points. The initial guess of the minimization 
method is chosen among these points using a heuristic 
rule. The m iz on method used is a variable metric 
steepest descent method (see [2 . This method is an 
iterative procedure that, given an initial vector  

, ,Q ML N L

1])
nim a

0 Q  , generates a sequence  f 
vectors, 

k ,  o0,1,k   ,
k Q  , 0,1,k  

nus the 
, obtained m  

mi
aking a step

 to in the direction of gradient with respect   
of ,t QL  computed in a suitable metric that depends on 
the constraints defined in Q . The procedure stops 
when the following criterion is satisfied: 
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  max, , or ,tolt QL e k n       (98) 

where are given positive constants. Details o
the im f the variable me steepest des
cent method used to solve the cali  c
found in [6]. 

he erical expe ents presented
th

), (87), (88), (92), (93) and completing the 
results obtained with the appropriate discount
compared with the option prices actually observed. The 

ormed u osite 
midpoint quadrature rule with 1000 nodes in each co- 
ordinate direction. These choices guarantee approximate- 
ly six significant digits correct in the option prices. 

We present two numerical experiments based 
calibration problem of Section 4. The stopping
meters of the minimization algorithm introduced in (98) 
have been chosen as follows: ,  

. 
t experiment we ily values of 

the futures price on the EUR/USD currency’s 
rate having maturity September 16th, 2011, (the third 

em

exchange 

tole , 
plem

max f 
tation o tric - 

bration problem an be 

n  
en

Friday of Sept ber 2011) and the daily prices of the 
corresponding European call and put options with expiry 
date September 9th, 2011 and strike prices  

, ,C i P iK K  1.375 0.005 1iK i    , 1, 2, ,18i   .  
The strike prices iK , 1, 2, ,18i   , are expressed in
USD. These prices are observed in the time period that

s from Septem

 
 
 

5. Some Numerical Experiments Using Real 
Data 

In t num rim  in this Section 

goe ber 27th, 2010, to July 19th, 2011. The
observations are made daily and the prices considered are 
the closing prices of the day. Recall that a year is made 
of about 250 - 260 trading days and a month is made of 
about 21 trading days. Figure 1 shows the futures price 
EUR/USD (ticker YTU1 Curncy) (blue line) and the 
EUR/USD currency’s exchange rate (pink line) as a 
function of time. Figures 2 and 3 show respectively the 
prices (in USD) of the corresponding call and put options 
with maturity time September 9th, 2011 and strike price 

iK , 1, 2, ,18i   , as a function of time. 

e option prices computed evaluating with numerical 
quadratures the integrals contained in Formulae (40), (41), 
(46), (47

 factors are 

numerical quadratures are perf sing the comp

The computation of thirty-six option prices using the 
midpoint quadrature rule as specified previously requires 
three and half seconds on the Intel CORE Duo CPU 
T6400 2 GHz processor. 

st ex

on the 
 para- 

45 10tole  

 consider the da
max 1000n 
In the firs

In the fir periment we use the normal SABR and 
m  

 
ultiscale SABR models to interpret these data. In par- 

 

Figure 1. YTU1 (blue line) and EUR/USD cu
 

rrency’s exchange rate (pink line) versus time. 

 

 = 1.375 0.005 1iFigure 2. Call option prices TU1 with strike price on Y K i  , ,= 1 2, ,18i  , and expiry date T = 

September 9th, 2011 versus time. 
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Figure 3. Put option prices on YTU1 with strike price  = 1.375 0.005 1iK i  , ,= 1 2, ,18i  , and expiry date T = 

September 9th, 2011 versus time. 
 
ticular for these models we solve the calibration problem 
posed in Section 4. We solve Problem (96) when 

 and  for 18C Pn n  , Q MN Q N jt t
,  

,  
e 1, 2j  , wher

2

1 Septt  ember 027th, 201
Novembet 

prices (YTU1
previously me
tions available at 

r 4th, 2010
 ticker of 
ntioned eig

, usi
Figure 1
hteen d eigh

ng as 
) and th

 call an

data the futures 
e prices 

teen 
of the 

put op- 

jt t , j 1, 2 , (Figures 2 and 3). 
The choice of the dates jt t

 in 2 an
no lim


ulae deduced

ulae that have 
h

, 1, 2j 
Sections 

itations. 

, exploits the fact
d 3 ar

In particular t

 
e closed 

hey 
that the form
form form
can be used w en the products  2 T t   ,  2

i T t   , 
 This is the case when we consider 1,2 , are 

pricing form
[9] are asym

i
the dates chosen 

not small.
previous

ulae for the 
ptotic form

ly
SAB

n

. Recall that the option 
ntained
 

R models co
ulae that hold whe

 in [1], 
 T t2   is 

small. 
Tables 1 and 2 show respectively the parameter values 

obtained as solution of the calibration problems (96) for 
the normal SABR and multiscale SABR models when we 
consider the data relative to jt t , 1, 2j  . 

those with the The calibrated models, that is parameter 
values given in Tables 1 and 2, are used to forecast 
option prices one day ahead of the current date, that is 
ahead of the observation day of the prices used to cali- 
brate the model. The forecasts are made evaluating for- 
mulae (40) and (41) when Q MN  

en Q N
ors. These form

price the fut
tilities 

problem

and evaluating for- 
mulae (46) and (47) wh multiplied by the 
appropriate discount fact ulae are eva- 
luated using as futures res price observed 
the day of the forecast. The vola  and  ob- 
tained from the calibration  
of the volatilities the day of the forecast. 

Let us define the moneyness of an option a given day 
as the ratio between the strike price of the option and the 
futures price on the EUR/USD exchange rate of that day. 
Figures 4 and 5 show the forecast option prices one day 
in the future (i.e. at time  with  equal one 
day) the observed option prices and the relative errors of 

Table 1. Solution of the calibration problem: Normal SABR 
model (FX experiment). 

September 27th, 2010 November 4th, 2010 

 

u

1,0v
 are taken as

2,0v
 proxies

t t t   t

t  

  0.514 0.844 

0v  0.161 0.181 

  −0.415 −0.267 

 0.0 0.019 r

 
Table 2. Solution of the calibration problem: Normal mul- 
tiscale SABR model (FX experiment). 

vember 4th, 2010t  September 27th, 2010 No

1  0.514 0.507 

1,0v  0.143 0.158 

0,1  −0.0164 −0.084 

0.0069 0.0112 r  

2  0.8842 0.894 

0.083 0.087 2,0v  

0,2  −0.558 −0.561 

 
the forecast option prices one day in the future compared 
with the observed prices as a function f the moneyness 
of the day of the forecast (i.e. 
the relative error obtained using t
(Figures 4(a) and 5(a)) and the norm ltiscale SABR 
model (Figures 4(b) and 5(b using the 
option prices of

o
t t t  
he 

al mu
)) calibrated 

). We consider 
normal SABR model 

 1t t
 prices us
 and 

2
x

 (Figure 4  (Figure 
5). The futures ed in 

), and 
the forecasts are 

71  wher

2t t

e  
1

1.3536t tx   1.39t t 
 1 260 yearst 

Figures 4 and
one

 5
day . 

 show that in this experiment the 
normal multiscale SABR model outperforms the normal 
SABR model. This is probably due to the fact that the 
use of two volatilities in the multiscale SABR model 
captures efficiently the “smile” effect contained in the 
option prices. In fact the values of the constants 1  and 

2  resulting from the solution of the calibration problem 
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Figure 4. Relative errors obtained using the normal SABR

September 27th, 2010 versus moneyness (FX experi
 

 (a) and m ltiscale SABR (b) models calibrated

ment). 

u  at t 1= =t  

 

) and multiscale SABR (b) models calibrated at 2= =t t  Figure 5. Relative errors obtained using the normal SABR

November 4th, 2010 versus moneyness (FX experiment). 
 
shown in Table 2 differ approximately of a factor two 
showing that the presence of the second volatility is 

 (a

really useful to interpret the data. Note that the values of 

1  and 2  shown in Table 2 do not differ of one or 
mo
in 
Hesto

re or of magnitude as found for similar constants 
udies [6,7]. In [6] and [7] a multiscale 

n odel has been used to study electric power 
prices. Electric power prices show severe spikes and 
abrupt cha ges that justify the huge difference in the 

ders 
previous st

 m

n 1 , 

2  
price 
mo
that 

valu wo orders of magnitude) while the fut
of USD currency’s exchange rate is a m

re well behaved quantity. However also the factor t
separates approximately the values of 

es (t
EUR/

ures 
uch 
wo 

1  and 2  
ce in shown in Table 2 corresponds to a relevant d ren

s
In the second experiment we consider the daily ob- 

served values of the USA five-year interest rate swap 
(see Figure 6(a)), the corresponding futures prices hav- 
ing maturity September 30th, 2011 (the ticker DSU1 in 
Figure 6(b)) and the prices of the corresponding Euro- 
pean call and put options with expiry date September 
19th, 2011 and strike prices  

iffe

the forecasting ability of the normal SABR and mul- 
cale SABR models as shown in Figures 4 and 5. ti

 106 0.5 1iK i    , 1, 2, ,18i   . 
going from Septem
 strike prices 

These prices are 
ber 14th, 2010, observed in the period 

to July 20th, 2011. The iK , 1, 2, ,18i   , 
se points that is, for ex- are expressed in hundr

ample, 106iK
eds of ba

  corre   sponds to an interest rate 106 −
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(a)                                                          (b) 

Figure 6. Observed USA five-year interest rate swap (a) and the corresponding futures price DSU1 having maturity 
September, 2011 (b) versus time. 
 
100 = 6 that is 600 base points, this corresponds to an 
interest rate of  per year (see Figures 7 and 8). 

We consider two dates 
and 

6%

1̂ October 12th,2010t t   

2̂ November 15th,t t 

sider two dates the first one 
re the oscillations of the 

e second one 2̂t  selected at the be
e futures price (see Figure

2010 , where the values of 

e 

1̂t  selected in a period 
futures price are small and 

ginning of the fall of 
 6(b)). Note that from Novem- 

the corresponding futures prices (ticker DSU1 Figure 
6(b)) are 

1̂
112.093tx   and 

2̂
107.875tx  . That is w

con
whe
th
th
ber 12th, 2010 to December 15th, 2010 the futures price 
goes from the value of 110 to the value of 104. Recall 
that these futures prices are expressed in hundreds of 
base points. 

Tables 3 and 4 show the parameter values obtained 
calibrating the lognormal SABR and multiscale SABR 
models on the data discussed above relative to the USA 
five-year interest rate swap futures price and its options 
observed at . In particular Table 4 shows 
that the valu h eters 

 ît t , 
es of t

1, 2i 
e param 1  and 2  

 th
of the log- 

normal mu odel resulting from e calibration 
differ of approximately a factor two. 

Figures 9(a), 10(a), 11(a) and 12(a) show the ob- 
served option prices and the forecast option prices as a 

)). 
he forecast option e  log- 

rel rr

ta

ltiscale m

function of the moneyness at the date ît t  (Figures 
9(a) and 10(a)) and 2̂t t  (Figures 11(a) and 12(a
T prices ar obtained using the
normal SABR model (see Figures 9(a) and 11(a)) and the 
multiscale SABR models (see Figures 10(a) and 12(a)). 

Figures 9(b), 10(b), 11(b) and 12(b) show the the 
ative e ors committed on the forecast option prices 

one day ahead of the current day as a function of the 
moneyness. In particular we use the values of the model 
parameters obtained calibrating the model using the data 
at 1̂t t  to forecast the option prices at 1̂t t t    (see 
Figures 9 and 10), and the values of the parameters ob- 

ed calibrating the model using the data at 2̂t tin   to 
forecast the option prices at 2̂t t t    (see Figures 11 
and 12), where one dayt  . 

Figures 9(b), 10(b), 11(b) and 12(b) show tha the use f t o

Table 3. Solution of the calibration problem: Lognormal 
SABR model (interest rate swap experiment). 

October 12th, 2010 November 15th, 2010t  

  0.7926 0.7827 

0v  0.2424 0.2426 

  −0.0502 −0.0435 

0.0103 0.0107 r  

 
Table 4. Solution of the calibration problem: Lognormal 
multiscale SABR model (interest rate swap experiment). 

October 12th, 2010 November 15th, 2010t  

1  0.4332 0.5333 

1,0v  0.000013 0.000013 

0,1  0.000046 0.0244 

0.0103 0.0103 r  

2  0.7926 0.8776 

0.2425 0.24154 2,0v  

0,2  −0.0502 −0.0879 

 
the lognormal multiscale SABR model really improve
the results of the forecasting experiment in comparison

SABR
model. In fact the relative errors on the forecast option 
prices of the multiscale SABR model (see Figures 10(b) 

l im- 
pr

 data of October 12th, 2010 
(see Table 4), that is a date before t

.

s 
 

with the results obtained with the lognormal  

and 12(b)) are smaller than the corresponding relative 
errors of the SABR model (see Figures 9(b) and 11(b)). 
In particular the lognormal multiscale SABR mode

oves substantially the lognormal SABR model in the 
forecasting of the prices of at the money options (see 
Figures 9(b), 10(b) and 11(b), 12(b)). 

This numerical experiment shows that the use of two 
volatilities is justified when the forward/futures prices 
present significant changes in their behaviour. Note that 
the calibration done using the

he beginning of the 
futures price fall, already provides two volatilities of 
volatilities significantly different (i.e ) and  2 1 1.8  
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Figure 7. Call option prices on DSU1 with strike price  = 106 0.5 1iK i  , ,= 1 2, ,18i   and expiry date T = September,  

19th, 2011 versus time. 
 

 

Figure 8. Put option prices on DSU1 with strike price  1= 106iK 0.5 i  , ,= 1 2, ,18i  , and expiry date T = September 

19th, 2011 versus time. 
 

 
                               (b) 

all and put options (a) and relative errors (b) obtained using 
2010  versus moneyness (interest rate swap experiment). 

(a)                             

Figure 9. Observed and forecast prices one day in the future o
the lognormal SABR model calibrated at 1̂= = October 12tt t

 
this remains true for the parameter values obtained with 
the  of November 15th, 2010 (see Tab wever 
we observe that on November 15th, 2010 the calibration 
provides values of 1

f c

 data le 4). Ho

 h,

  and 2  greater than th lues 
provided on October 12th, 20

e va

 we calibrate the 
m

10. 

Finally we calibrate the lognormal models every day 
for approximately two months, that is

odels in the period going from September 14th, 2010 to 
November 15th, 2010. The parameter values obtained in 
the calibration of the lognormal models are shown in 
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igure 10. Observed andF
th

 forecast prices one day in the future of call and put options (a) and relative errors (b) obtained using 
e lognormal multiscale SABR model calibrated at  versus moneyness (interest rate swap 

experiment). 
 

 1̂= = October 10th, 2010t t

 

Figure 11. Observed and forecast prices one day in the future of call and put options (a) and relative errors (b) obtained using 
the lognormal SABR model calibrated at versus moneyness (interest rate swap experiment). 

 
Figure 13. We can see that the values of the para- meters 
remain substantially unchanged in the two months period 
except for the values of the parameters 

2̂= = November 15th, 2010t t  

  and 2  that 
show a significant change at the end of e  and 
during the first fifteen days of Novem 2010 is is 
probably due to the deep fall in the fut
same period (see Figure 6). This expe ent s gests 
that the lognormal models really
the values of the paramete

e volatilities of 
olatilities 

Octob
ber 
ures 
rim

r 2010
. Th

price in the 
ug

 interpret the data, in fact 
rs found depend on the 

dynamics of the futures price and the presence of a sig- 
nificant changes in the values of th

may imply abrup an  the 

ahead of the current day obtained using the parameter 
values shown in Figure 13. We can see that the log- 
normal multiscale SABR model gives more accurate 
forecast option prices than the lognormal SABR model. 
The average and the worst case of the relative errors are 
respectively 0.0037, 0.028 for the lognormal SABR 
model and 0.0025, 0.025 for the multiscale SABR model. 
That is as shown in Figures 9-12 the lognormal mul-

substantially the log- 

pric

m r 

t ch ges inv  , 1 , 2  
forward prices/rates variable. Finally Figure 14 shows 
the relative errors on the forecast option prices one day 

6. Conclusion 

The closed form for ulae fo the transition probability 

 
tiscale SABR model improves 
normal SABR model especially in forecasting option 

es and in particular prices of at the money options. 
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Figure 12. Observed and forecast prices one day in the future of call and put options (a) and relative errors (b) obtained using 
the lognormal multiscale SABR model calibrated at versus moneyness (interest rate swap 

experiment). 
2̂= = November 15th, 2010t t  

 

 

al SABR and multiscale SABR models every day for two 
ber 15th, 2010 versus time (interest rate swap experiment). 

Figure 13. Parameter values obtained calibrating the logno
months in the period going from September 14th, 2010 to Nov

rm
em
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Figure 14. Relative errors on the forecast prices one day in the future of call and put options obtained using lognormal SABR 
model (a) and lognormal multiscale SABR model; (b) versus time to maturity expressed in days. The period considered goes 
from September 14th, 2010, to November 15th, 2010 (interest rate swap experiment). 
 
density function of the normal and lognormal SABR and 

and 
using these formulae “easy to use” formulae 
of European options on futures prices/rates 

have been deduced and have been used to study the 
prices of European call and put options on the Eurodollar 
futures price and on the USA five year interest rate swap 
futures price. Using these option pricing formulae a 
calibration problem based on the least squares method is 
formulated and solved numerically. The models are used 
to study real data time series. The numerical experiments 
compare the performance of the SABR and multiscale 
SABR models in forecasting option prices. The com- 
parison suggests that in the circumstances studied in Sec- 
tion 5 the lognormal SABR model outperforms the nor- 
mal SABR model and the SABR multiscale models 
outperform the corresponding SABR models. In general 
we could say that the multiscale SABR models out- 
perform the corresponding SABR models when the 
change in time of the data interpreted by the models is 
sufficiently big. Finally let us point out that the potential 
of the technique used to derive these formulae can be 
exploited in other circumstances. In fact the idea of 
expressing the transition probability density function of a 
two factor volatility model as a kind of convolution of 
two copies of the kernel of the corresponding one factor 
volatility model can be exploited to study the multiscale 
generalization of other stochastic volatility models. 
Moreover the closed form formulae for the transition 
probability density functions of the normal and log- 
normal SABR and multiscale SABR models presented in 
this paper deserve further investigation and can be ex- 
ploited, for example, to price exotic derivatives or to 

solve new calibration problems. 
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