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ABSTRACT 

Quantum measurement requires an observer to prepare a specific macroscopic measuring device from various options. 
In previous papers we redefined this observer role through a new concept: the observer determination, that is, the ob- 
server’s unique selection between the various measurement-devices. Unlike the measurement itself that is rationalized 
as dictated by nature, we presented the observer determination as a selection that cannot be disputed since it can neither 
be measured nor proven to be true or false. In general, we suggest that every action or decision made by the observer is 
eventually an output of some measurement. The apparently contradiction between the observer free determination and 
the deterministic measurement output was solved by extending the Hilbert space into a Hyper Hilbert space that is a 
space with hierarchy. In that frame the so called free selection of the observer determination in a certain level turns out 
to be a deterministic measurement output in the next higher level of the hierarchy. An important role of the conven- 
tional Hilbert space is played by the Schrödinger equation. It determines a basis of stationary states. In this paper we 
define the Schrödinger equation that corresponds with the various levels and we show that each level can be character- 
ized by a unique time scale. We also show how various levels can be synchronized. We believe that this hyperspace 
level represents a certain level in the physics of consciousness and therefore a level unique time scale can contribute to 
the time perception of the mind. 
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1. Introduction 

In previous papers we introduced a procedure showing 
how to integrate the “subjective observer” and the appa- 
rently “objective world of nature” [1,2]. In those papers 
we confronted the hard problem, that is, the problem of 
“integrating consciousness, per se, into our conception of 
nature” [3-11]. Following John Searle idea [4,7], we in- 
troduced a mathematical formalism that demonstrates 
how ordinary measurements and the freedom to select a 
measuring device type, are integrated into a single ma- 
thematical framework through the introduction of the 
concept levels of a hierarchy [1,2]. For that purpose we 
extended the Hilbert space into a Hilbert hyperspace, that 
is, a new space containing the levels of a hierarchy. 

The freedom to select a measuring device was defined 
as the observer determination where this determination 
can neither be measured nor proven to be true or false 
unless one ascends to the next higher stage. There, this 
subjective determination transforms into an objective mea- 
surement output, while at least one new observer deter- 
mination emerges. 

We believe that this levels of a hierarchy space plays a 
mathematical tool in the description of our consciousness 
as described by John Searle [4,7]. Since the Schrödinger 

equation plays a major role in quantum mechanics, we 
find it useful to understand the meaning of the schrö- 
dinger equation in the Hilbert hyperspace.  

2. Review—The Hyper Hilbert Space 

The first level in the Hilbert hyperspace is the regular 
Hilbert space. It is seen that even the first-level hyper- 
space contains an internal hierarchy. Thus, in order to 
distinguish between the hyperspace and a specific  n  
in the hierarchy, we refer to the internal level hierarchy 
as the term self-level. 

In the regular Hilbert space now referred to as the first 
level of the hyperspace, the first self-level is occupied by 
c-numbers that are the numeric coefficients in the super- 
position relations. They also serve as numeric elements 
in the second and third self-levels, that are the vectors 
and the operators, respectively. We recall that observ- 
ables are represented by Hermitian operators possessing 
an eigenvalue spectrum composed of real numbers. 

The observer determination is the selection of an ob- 
servable operator between at least two operators of the 
same kind. Once a selection is made, the corresponding 
eigenvalue spectrum becomes the exclusive possible 
measurement results.  
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2.1. The Higher Level Structure 

Ascending to higher levels, the structure of the concepts 
is preserved, but they adjust to the relevant hyperspace 
level with the following mathematical modifications: 

In the n-level (n > 1), the first self-level c-numbers are 
replaced by lower level operators ((n > 1)-level opera- 
tors). Correspondingly, first-level coefficients that were 
represented by simple complex numbers alter into what 
we refer to as coefficient operators. Real numbers are 
now substituted by Hermitian operators. Consequently, 
first-level observable eigenvalues ascend into Hermitian 
operators that we refer to as a Hermitian eigen-operator. 
States in higher levels alter into operator-states, that is, 
the numeric elements that stand in the column or line 
vector representation are replaced by operators of a lower 
level. Finally, the matrix elements of an n-operator are 
also substituted by lower level operators. 

It will be shown that at each level it is possible to 
define at least two frame operators    ˆ ˆ,n nS S  . Selecting a 
specific frame operator can stand for a possible observer 
determination. 

We emphasize that not only the eigen-operators of the 
n-frame or content operators are (n > 1)-Hermitian op- 
erators, but they can also serve as candidates for the ob- 
server determination one level lower. In other words, 
once the observer selects to conduct measurements with 
a specific n-level operator, the possible results can be one 
of the operators that were subjected to his determination 
a level lower. Thus, what seems to be an observer free 
determination appears to be a higher level output result 
of a hyperspace measurement. 

We now introduce the mathematical formalism that 
enables us to form the Hilbert hyperspace.  

2.2. The Hyper Space Algebra 

A column or line of a vector is represented by numbers. 
We define an operator vector (state) by replacing the 
numbers with operators in the following manner:   

1

2

ˆ
ˆ

ˆ

A
A

A

 
   
 

ˆ

                  (1) 

where we denote the operator state with the Dirac nota- 
tion, only now we added the hat symbol above “A” indi- 
cating we are dealing with an operator-state instead of a 
simple state. 1A , 2Â  are arbitrary operators that are of 
the same dimension (for example 2 × 2 matrices).  

The internal product between the operators’ states Â , 
B̂  is defined as   

  1† †
1 2

† †
2 2

2

ˆ
ˆ ˆ ˆ ˆ ˆˆ ˆ, .

ˆ

B
1 1

ˆB A A A B
B

 
   

 

       

A BA      (2) 

Consequently, the internal product between operators 

is defined as   

          † †ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, .n n n n n n n nA B A B A B B A   

 ˆ n

  (3) 

2.3. Categorization of Operators 

We defined the following operators:  
1) A sharp operator: The operator A  is defined 

sharp if:   

  2 2ˆ ˆnA a I

ˆ

                (4) 

I  is the unity operator. where 
2) A dull operator is defined as all other alternatives. 
3) Coefficient operators: The coefficient operators re- 

place the first order complex numbers. We define them 
as sharp operators   

  2 2ˆ nC c I

 ˆ nC

                (5) 

where  and c are arbitrary coefficient operator and 
c-number, respectively. In a normalized first-order state, 
coefficients serve as probability amplitudes. Thus, in or- 
der that the first and higher levels will be consistent, we 
set 

2
1c .  

 ˆ nS , 4) The frame operators are defined  ˆ nS  are the 
high level extension of the spin operators. They satisfy: 

a) Normalization:   

   2 2ˆ ˆ ˆn nS S I               (6)  

   

where n is the level in the Hilbert hyperspace hierarchy.  
b) Orthogonality:   

 ˆ ˆ, 0n nS S  

 ˆ nS

              (7) 

We recall that at each level there are at least two frame 
operators  ,  ˆ nS . The selection between those ope- 
rators can serve as a specific observer determination.  

2.4. The Ascending Procedure 

In Hilbert space (that is now the first-level in the Hilbert- 
hyper-space) two orthonormal states can be presented in 
the following way:  

 

    

    

 

    

    

1 1
1

1

1 1
2

1 1
1

2

1 1
2

ˆ ˆExp

ˆ ,

ˆ ˆExp

ˆ ˆExp

ˆ  

ˆ ˆExp

n n

n

n n

n n

n

n n

i S

i S

i S

i S





















 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
1̂

m

          (8) 

 
2̂

m ,   are Hermitian operators. where 
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These states satisfy the following [2]: 
1) Normalization: 

   
2 2

ˆˆ ˆ .
n n

1 1ˆ ˆ I                (9) 

2) Orthogonally: 
 

1 2ˆ ˆ 0
n

                 (10) 

3) Completeness relation:   
   

2 2
ˆˆn n

1 1ˆ ˆ ˆ .I              (11) 

2.5. The n-Level Frame Operators 

It was shown [2] that the following frame operators are 
appropriate to serve as frame operators (see Equations (6) 
and (7)): 

         

         
2 2

1
2 2

ˆ ˆ ˆ

ˆ ˆ ˆ .

n nn

n nn





 

 

1 1
1 1

1
1 1

ˆ ˆ ˆˆ

ˆ ˆ ˆˆ

n n

n n

S S S

S S S

 

 

 

 

 



 

 
   (12) 

3. Introducing the Hyperspace Schrödinger 
Equation 

In Equation (8) we defined operator states  
1 , ˆ n  

2  
and the content operators were presented through the 
Hermitian operators 

ˆ n

ˆm
1 , 2̂

m . 
In this section we demonstrate the introduction of the 

energy and Hamiltonian content within the levels of the 
Hilbert hyperspace.  

3.1. The First and Second Level Schrödinger  
Equations 

At the first level, an observer determination is the selec- 
tion between two Hamiltonians  1H ,  1H . 

Contrary to the frame operators, the self-operators can 
be non-orthogonal. 

Suppose that in the observer determination  1H  and 
 1H  satisfy an algebra defined through the anti-com- 

mutation relation   

    1 1 ˆ,H H c  

 1

              (13) 

We impose that algebra for all levels, that is, every 
two n-level-Hamiltonians H ,  1H  that are subject to 
the observer determination must satisfy Equation (13). 

In the first-level, we define the following operators (in 
the units system in which ):   1

   

   

1 1

1 1

ˆ ˆ ,

ˆ ˆ

H t

H t

 

 





 

 
              (14) 

There are two options of representing the second-level 
operator states of Equation (8): 

1) First option:  

 

    

    

 

    

    

1 1

2

1 ,

1 1

1 1

2

2 ,

1 1

ˆˆExp

ˆ ,

ˆˆExp

ˆˆExp

ˆ  

ˆˆExp

iH t S

iH t S

iH t S

iH t S

 

 

 

 

 

 





 
 
 
 
 
 
 
 
 
 
 
 

         (15) 

2) Second option:  

 

    

    

 

    

    

1 1

2

1 ,

1 1

1 1

2

2 ,

1 1

ˆˆExp

ˆ ,

ˆˆExp

ˆˆExp

ˆ  

ˆˆExp

iH t S

iH t S

iH t S

iH t S

 

 

 

 

 

 





 
 
 
 
 
 
 
 
 
 
 
 

         (16) 

where the selection between the two options is subject to 
the observer determination. 

Both options satisfy the following two Schrödinger 
equations  

     2 22
,, ,

ˆˆ ˆ , 1,2t i ii H i    
            (17) 

     2 22
,, ,

ˆˆ ˆ , 1,2t i ii H i    
   

 
 

 

1
2
, 1

ˆ 0ˆ
ˆ0

H
H

H


 



 
 
 
 

 
 

 

1
2
, 1

ˆ 0ˆ .
ˆ0

H
H

H


 



 
 
 
 

 1

        (18) 

with the second-level-Hamiltonians  

            (19) 

           (20) 

It is easy to see that the second order Hamiltonians in 
Equations (19) and (20), preserve the original algebra as 
expressed by the anti-commutator of Equation (13). The 
observer determination is to select between those second 
orders Hamiltonians. It is also seen that the eigen-ope- 
rators of the second-level Hamiltonians are the first-le- 
vel-Hamiltonians  1H , H  that at the first-level were 
subject to the observer determination.  

3.2. The Second-Level-Schrödinger Equation 

In ascending to the second-level we define the second- 
level-operators by applying Equation (12) with the opera- 
tor states defined in Equation (15) (or Equation (16)) and 
eigen-operators being the Pauli matrices  1Ŝ ,  1Ŝ  di- 
vided by . Assuming that the first order Hamilto- 2
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 1  1H Hnians  ,   commute with the Pauli matrices, we 
obtain  

 
   

 

 

 

   

   

 

1 1
2

,

1 1
2

,

ˆ ˆ1ˆ
2

ˆ ˆ1ˆ
2

S S
S

iS

S S
S

iS

 


 

 


 







 

   

1
,

1 1 1

1
,

1 1 1

ˆ
,

ˆ ˆ ˆ

ˆ

ˆ ˆ ˆ

iS

S S

iS

S S

 

 

 

 

 
 
   
 
 
   





    1 1 1ˆExp iH t

 1ˆ nS   1ˆ nS


 1n 

        (21) 

where the non diagonal terms are   

        1 1
,

ˆ ˆ ˆˆExpS i iH t S S          (22) 

It is seen that the second-order frame operators are 
time dependent. In the following derivation of the n- 
level-Schrödinger equation we consider the frame opera- 
tors to be time dependent  

3.3. The n-Level Schrödinger Equation 

We recall that at each level there are two options for 
choosing a Hamiltonian (see Equations (15)-(20)). Let us 
start by analyzing only the first option. 

In general the operators  ,  are time de- 
pendent. In ascending from the  into the n-levels 
we obtain   

 

    

    

 

1 .

2 ,

ˆExp

ˆ

ˆExp

ˆExp

ˆ  

ˆExp

n

n

iH

iH

iH

iH

 

 

















    

    

1 1

1 1

1 1

1 1

ˆ

 ,

ˆ

ˆ

ˆ

n n

n n

n n

n n

t S

t S

t S

t S

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

       (23) 

This yields two Schrödinger equations   
       

   

1
1 , 1, ,

1
, 2

ˆˆ ˆ

ˆ ˆ

n nn

nn

i H

H v

  1 2 ,

2

ˆˆ ,

ˆ

n

t tv i
    

 

  







   

 

 

 

1

1

0

ˆ0

n

nH









 
 
 
 

v̂ v̂
    

    

    

    

1 1

1 1

1 1

1 1

ˆ

 ,

ˆ

ˆ

ˆ

n n
t

n n
t

n n
t

n n
t

t i S

t i S

t i S

t i S

 

 

 

 

 

 

 

 

  
 
 
 

 


  
 
 


 


     (24) 

where 

 
,

ˆ
ˆ n H

H             (25) 

and the vectors ,  are  1 2

1

2

ˆExp

ˆ

ˆExp

ˆExp

ˆ  

ˆExp

iH

v

iH

iH

v

iH











        (26) 

We recall that Equations (15) and (16) describe two 
options of creating a Hamiltonian, while in our last 
analysis of the n-level we considered only the first. The 
generalization for both cases is simply to switch between 
the indices   and  . 

We note that if the first-level-Hamiltonians are time 
independent, all other high-level-Hamiltonians will re- 
main the same.  

In its present form, Equation (24) seems inappropriate 
for representing a measurement as the equation is not of 
an eigen-operator’s type. However, we now show that if 
each n-level is associated with a separate self-time vari- 
able tn, Equation (24) transforms to the desirable form of 
an eigen-operator equation type.  

3.4. The Schrödinger Equation as an  
Eigen-Operator Type  

Our purpose is to modify Equations (24)-(26) so they 
will be of an eigen-operator type. Later we will show that 
this modification gives rise to the definition of a new 
concept, perception of time at each level which we will 
denote as PTEL. 

We use the following mathematical manipulation: Sup- 
pose we have a time-dependent operator product ˆ ˆAB

   

. 
The product derivative is   

           ˆ ˆ ˆˆ ˆ ˆ
t t tA .t B t A t B t A t B t    

ˆ ˆ

  (27) 

AThe trick is to associate each operator B

at t

a bt t t

 with indi- 
vidual time variables , b , respectively, and to add an 
extra constraint  

    
  

      ˆ ˆ
ˆ ˆ a bt t a b

t

a b

A t B t
A t B t

t t t

     
 

   

       

1 1

1 1
1

ˆ ˆ, ,   

ˆ ˆ, ,   

n n
n

n n
n

    (28) 

We now apply the same manipulation on Equation 
(23). Substituting the following transformations   

H t H t

S t S t

 

 

  

  

 

 


    

  

1n nt t ti i i


       (29) 

and  
              (30)     

to obtain the following eigen-operator equations   
      

      

1

1

1
1 , 1, ,

1
2 , 2, ,

1

ˆˆ ˆ

ˆˆ ˆ

time adjustment between levels

n n

n n

n nn
t t

n nn
t t

n n

i H i

i H i

t t

    

    

 

 











    

    





 
 

 

1

, 1

ˆ 0ˆ ,
ˆ0

n
n

n

H
H

H


 







 
 
 
 

t t

    (31) 

with the Hamiltonian   

          (32) 

where we refer to the constraint 1n n  as the term 
time adjustment between levels. The energy eigen-op- 
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erator is interpreted as follows: 
We consider the energy operator 

nt
 to possesses an 

eigen-operators spectrum where the ground eigen-op- 
erator is considered to be simply zero. Setting this value 
in the diagonal terms of Equation (31) yields the 

i

 1n   
Schrödinger equation   

 
1

1 0.
nt

H i


  ,
ˆ n
 

              (33) 

In conclusion, the ground eigen-operators of the n- 
Schrödinger equation are the  1n 

ˆi H 

t

nt

ˆ

-Schrödinger equa- 
tions that were subject (through the Hamiltonians selec- 
tion) to the observer determination. This opens the possi- 
bility that in the non relativistic world, there are more 
Schrödinger equations rather than t . These may 
be induced by excited eigen-operators. We prefer to 
leave it for future research.  

3.5. Time Perception of a Level 

The more intriguing result, that at some part of the ana- 
lysis each level possesses individual time variables, en- 
genders the fascinating possibility that Equation (31) 
describe a mathematical description for the illusive con- 
cept of time perception. 

We assume that a hyperspace level represents a certain 
level in the physics of consciousness. Suppose that each 
level possesses a self clock described by the variable n . 
Now imagine that the observer is locked in a sealed room 
with no clocks. In that situation, the observer time meas- 
urements will be based only on his time perception, re- 
ferred to a self time measurement in some level among 
the Hilbert hyperspace. When the poor observer is re- 
leased from the dungeon, watching the outside clock, he 
can now compare his internal time nt  to the outside 
time t and he can make the appropriate time adjustment 
by imposing the relation .  t 

4. The Space Momentum Hyperspace  
Operators 

Suppose the observer determination is the selection be- 
tween the location or motion concepts. These are re- 
presented by the x  and  operators. P̂

The second level operator states are defined as   
1) First option:  

 

2) Second option: 

    

    

 

2

1 ,

2

2 ,

Exp

ˆ

Exp

Exp

ˆ  

Exp

x p

x p

















    

    

1 1

1 1

1 1

1 1

ˆˆ

 ,

ˆˆ

ˆˆ

ˆˆ

ixP S

ipX S

ixP S

ipX S









 
 
 
 
 
 
 
 
 
 
 
 

         (34) 

 

    

    

 

    

    

1 1

2

1 ,

1 1

1 1

2

2 ,

1 1

ˆˆExp

ˆ ,

ˆˆExp

ˆˆExp

ˆ .

ˆˆExp

p x

p x

ipX S

ixP S

ipX S

ixP S













 
 
 
 
 
 
 
 
 
 
 
 

 

         (35) 

The operator states are associated with the equations   

 
 

 

 
1

2 22
π 1, ,

ˆ 0ˆ ˆ ˆ , 1, 2
ˆ0

j jx p x p

P
O j

X
  

 
   
 

 2
π

0ˆ
0

x

   (36) 

with  

p

i
O

i

  
    

 

            (37) 

or 

 
 

 

 
1

2 22
π 1, ,

ˆ 0ˆ ˆ ˆ , 1, 2
ˆ0

j jp x p x

X
O j

P
  

 
   
 

 2
π

0ˆ .
0

p

x

i
O

i

  
    

   (38) 

with 

           (39) 

Let us conclude this part by suggesting that similar to 
the way we did for each level of Hamiltonians, it is pos- 
sible to define each level with the location concepts place 
perception and momentum perception, that are the way 
these concepts are conceived in our mind, represented by 
the high level of the Hilbert hyperspace.  

5. Summary 

Time perception refers to the sense of time. It differs 
from other senses since time cannot be directly perceived 
but must be reconstructed by the brain. In our hyperspace 
mathematical description, the construction of the concept 
time perception was introduced through the Schrödinger 
equation. This frame integrates between the so called 
physical word and the time perception abstracts concept. 
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