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ABSTRACT 

Asset pricing under the certainty equivalent approach framework always raises the current value of the asset with the 
riskless rate first, followed immediately by risk adjustments. Clearly, this type of arrangement does not apply to assets 
that are expecting to lose values if it were to adhere to feasible economic reasoning. By using the put-call parity rela- 
tionship and its underlying law of no arbitrage, the needed expected rates of return for the job of option pricing can thus 
be obtained. This study suggests a new model in old fashion, which can better satisfy the empirical criticism of the 
Black-Scholes option pricing model. 
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1. Introduction 

Standard financial textbooks recommend two basic ap- 
proaches to capital budgeting. The first is to calculate the 
expected value of a project, and then to adopt an uncer- 
tain discount rate to obtain the present value of the pro- 
ject. In most occasions, this is called the net present 
value (NPV) with uncertainty approach. In contrast, the 
second approach is used to transform the expected value 
of the project immediately into a certainty equivalent 
value that is free of any uncertainties, and then to directly 
apply the riskless discount rate from the market to obtain 
the present value of the project. Similarly well known as 
the first approach, this has been termed the certainty 
equivalent (CEQ) approach. The problem with the latter 
approach is that its logic of calculation does not conform 
to overall economic reasoning; hence, its feasibility to 
price options is questionable. Nevertheless, the tradi- 
tional NPV approach still has its own deficiency in the 
management of option pricing. Usually uncertain dis- 
count rates must be created in a normative instead of a 
positive manner (Yu, 2012) [1], and they are certainly 
not perfectly applicable to price options, which can con- 
sequently have direct connections with their underlying 
assets in returns and risks. Furthermore, if a unique way 
of determining the needed uncertain discount rates in the 
positive sense exits, applying uncertain discount rates in 
the normative sense for option pricing must then become 
unacceptable. 

Traditionally, the law of no arbitrage is the mainstream 
concept for price options. Irrespective of whether it is 
the Black and Scholes (1973) [2] option pricing model 

(BSOPM) or a similar product such as the binomial 
model by Cox et al. (1979) [3], “(T)he underlying idea is 
that an investor could exactly replicate the payoff of the 
option by trading at each point in time in the stock and a 
riskless bond··· For the market to be free from arbitrage 
opportunities, the cost of the replicating strategy must be 
the exact price of the option” (Dimson & Mussarian, 
1999, p. 1761) [4]. However, because the method to con- 
structing the hedging portfolio is itself consistent with 
the framework of the CEQ approach, it may be unavoida- 
ble to only have mathematical feasibility but no eco- 
nomic feasibility. 

This study has three main tasks. First, we explain why 
the BSOPM is conducted by following the framework of 
the CEQ approach which, in turn, has a difficulty to ad-
dress economic feasibility. Second, we demonstrate how 
to employ the law of no arbitrage to acquire the needed 
uncertain discount rates for option pricing under the NPV 
approach. Finally, we provide simple simulation tests to 
further verify the economic feasibility of the suggested 
option pricing model. 

2. The CEQ Approach 

The entire process of deriving the BSOPM can generally 
be divided into the following two stages: In the first, the 
main task is to establish a riskless discount rate and crea- 
te a form of heat equation in physics; in the second, the 
main task is to determine the effective range of values of 
the option, to adopt the Fourier integral technique to 
solve the expected value of the option. All related details 
of derivation can be found in the Kutner (1988) [5] study. 
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A careful examination showed that this framework of 
two-stage derivation can be demonstrated exactly under 
the CEQ approach. 

Taking a call as an example, after setting the price of 
its underlying asset at the maturity date T as T  and its 
exercise price as X, its terminal value can then be stated  

S

as . According to the NPV approach,  Max ,0TS X 



the current price of this call C0 must be exactly equal to 
the discounted expected value of this terminal value, and 
can be expressed mathematically as 

 0 Max ,0TC PV E S X   
        (1) 

This equation can be re-written in more detail as 

   
    

0

2
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T

C

PV S X S X

PV S X N d

   

 

 



T (2) 

Under the assumptions of the BSOPM, the connection 
between  and its present price S0 can be listed as TS

 0ln TS S y                 (3) 

Hence, it can be further re-arranged into 

0e y
TS S                    (4) 

By following the CEQ approach, with Equation (4) 
and the riskless discount factor , Equation (2) can 
be transformed into 

e rT
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      (5) 

The whole process is thus far exactly the same as the 
outline of the first BSOPM stage of deriving the call. 
Consequently, the main aim in the second stage of the 
model is to solve the cumulative probability factor 

, to verify the expected value listed in Equation 
(2). The peculiar thing about this stage is that everything 
must occur instantaneously. 

 2N d

The framework of the CEQ approach is also evidently 
applicable to the Cox et al. (1979) [3] binomial model, as 
can be further explained in the followings: For only a 
short period t after limiting the terminal price of the un- 
derlying asset t  to only two possible outcomes of Su 
and Sd, the corresponding terminal values for either call 
or put is a set of Cu and Cd or of Pu and Pd, respectively. 
After constructing a hedging portfolio consisting of the 
underlying asset plus cash and having the same random 
payoff as the call (or put), the current price of the call can 
thus be 

S

  0 e 1rt
uC C     dC           (6) 

in which, π is the so-called risk-neutral probability, and 
the price for the corresponding put is 

  0 e 1rt
uP P     dP         (7) 

With an exercise price X, all four possible terminal 
values for both call and put can be entered into Equations 
(6) and (7) first, before replacing the left-hand side of the 
following put-call parity relationship 

0 0 0 e rTC P S X               (8) 

Finally, regardless of what may occur to all of these 
four possible terminal values, the following outcome is 
always concluded as 

   0e 1 erT rT rT
u dS S X S X        e    (9) 

For the underlying asset, its current price S0 can now 
be clearly determined directly based on the framework of 
the CEQ approach. In other words, within the binomial 
approach, the method for constructing the hedging port- 
folio from the beginning must follow the logic behind the 
first stage of the CEQ approach. 

However, under the assumption of Ceteris Paribus, 
future movements can never be advantageous to both call 
and put. This means that, although inflating the current 
price with a riskless rate for either call or put is mathe- 
matically permissible, it is still impossible to interpret the 
calculated outcome with any acceptable economic rea-
soning. When terminal conditions for both call and put 
must be expressed in the opposite manner, the corre- 
sponding expectation of future values for either party 
goes against each other. In other words, under no cir- 
cumstances can simultaneously inflating the current 
prices of both call and put with a riskless rate be consis- 
tent with the relationship between those two terminal call 
and put values. Moreover, in our financial market, it is 
common to find the future price of an asset to be lower 
than its spot price. 

The disclaimer of the BSOPM is that it exists in a 
world of risk neutrality, and the expected rate of return of 
its underlying asset can thus be totally discarded. How- 
ever, “(E)ven Black and Scholes found it hard to provide 
a good intuition for this result” (Dimson & Mussarian, 
1999, p. 1761) [4]. Moreover, because the expected rate 
of return for a newly-existent option is not directly ob- 
servable, it is reasonable to consider switching from the 
NPV to the CEQ approach to circumvent this difficulty. 
However, because the latter cannot be economically fea- 
sible, returning to the former remains the only choice. 
Based on this rationale, a different idea of determining 
the needed uncertain expected rates of return for option 
pricing under the NPV approach must be considered. 
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3. Pricing European Options under the Law 
of No Arbitrage 

To re-examine Equation (1) describing the pricing of a 
European call, because its effective value is confined  

within the range where  0ln TS S  is greater than 

 0ln X S , the expected terminal value of this call can  

be stated as  

      0ln
dT TX S

E C S X f y y


          (10) 

and the expected terminal value of the corresponding put 
as 

      0ln
d

X S

T TE P X S f y y


          (11) 

Under the framework of the NPV approach, Smith, Jr. 
(1976) [6] clearly demonstrated that Equation (10) can be 
expressed in details as 

     0 1e T
TE C S N h XN h 

2        (12) 

in which, μ is the expected rate of return for the underly- 
ing asset of the call, and 
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

 
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Similarly, Equation (11) can be listed as 

     2 0 11 e 1T
TE P X N h S N h            (14) 

In addition, expected rates of return for both call and 
put can be expressed directly as 

  0e CT
TE C C               (15) 

  0e PT
TE P P                (16) 

After substituting Equations (12) to (16) into Equation 
(8), which represents the put-call parity relationship, the 
outcome becomes 
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Under the law of no arbitrage, the following two rela-
tionships must thus hold 

       1 1e e 1C PT TN h N h            (18) 

   2 2e e 1C PT T rTN h N h            (19) 

The expected rates of return for both call and put can 

now be calculated separately as 
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Finally, current prices for both call and put can be 
presented as 
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Clearly, if the expected rate of return of the underlying 
asset μ is exactly equal to the riskless rate, then both 
Equations (21) and (22) conform to the BSOPM. Fur-
thermore, both equations have a natural limitation; that is, 

 1N h  and  2N h  cannot be equal or close to 1, 
which means that the possibility of success is one hun-
dred percent or near. If this were the case, then the whole 
pricing job would have to be re-adjusted to address a 
riskless condition. 

4. Simulation Tests 

Other than the necessary condition of conforming to the 
put-call parity relationship presented in Equation (8), 
more pieces of evidence should also be provided to fur- 
ther support the feasibility of Equations (21) and (22). 
Simulation results for both the BSOPM and suggested 
models are listed in Table 1 after we arbitrarily set the 
exercise price X at 40, the expected rate of return μ at 
0.12 and its corresponding standard deviation σ for the 
underlying asset at 0.03, the annual riskless rate r at 
0.0488 and the maturity date T at 0.0833 year. Based on 
major findings in past empirical studies on the BSOPM 
such as the one conducted by MacBeth and Merville 
(1979) [7], this clearly indicated that on average the 
pricing outcome for in-(or out-)the-money Black-Scholes 
call is lower (or higher) than the actual market price; the 
more out of the money, the more significant the pricing 
bias. Regarding put, the criticism is exactly opposite. 
Table 1 shows that the suggested models can better satis- 
fy all criticisms. However, whereas absolute deviations 
are not significantly large, this may explain why the 
BSOPM remains the most widely-adopted model for 
pricing European options to date. 
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Table 1. Pricing outcomes simulated from different models. 

S0 B-S C0 New C0 B-S P0 New P0 

34 0.0422 0.0112 5.8798 5.8488 

35 0.0958 0.0628 4.9335 4.9005 

36 0.1956 0.1633 4.0333 4.0010 

37 0.3633 0.3352 3.2001 3.1783 

38 0.6202 0.5998 2.4579 2.4374 

39 0.9834 0.9732 1.8210 1.8109 

40 1.4614 1.4628 1.2991 1.3005 

41 2.0534 2.0660 0.8910 0.9037 

42 2.7495 2.7717 0.5872 0.6094 

43 3.5341 3.5632 0.3718 0.4009 

44 4.3885 4.4218 0.2262 0.2595 

45 5.2946 5.3297 0.1323 0.1673 

46 6.2368 6.2716 0.0745 0.1093 

47 7.2028 7.2360 0.0404 0.0937 

48 8.1835 8.2145 0.0212 0.0522 

49 9.1730 9.2015 0.0107 0.0391 

50 10.1676 10.1934 0.0052 0.0311 

5. Conclusions 

A Comparing of the BSOPM and the model proposed 
from this study shows that one of the main differences is 
the inclusion of information regarding the expected rate 
of return for the underlying asset of the option in the 
proposed model. According to the simple rules of domi- 
nance, when the risk measures are equivalent for two 
different assets, whichever has the higher expected rate 
of return should thus have a better evaluation, and hence, 
a higher market value. Disregarding this point certainly 
violates the principle of informational efficiency in the 
financial market. This may be the reason the BSOPM 
remains applicable when the expected rate of return for 
the underlying asset of the option does not deviate too 
much from the riskless rate of the market, or when ad- 
dressing only short-term pricing jobs. 

Increasing the value of an asset with the riskless rate 
can rarely be interpreted with pessimism in the market, 
and this certainly means that the CEQ approach of pric- 
ing assets cannot be feasibly applied to assets that are 
expecting to lose values. In other words, if the move- 

ments of increasing value should always occur first, then 
it must be appropriate to describe only assets that are not 
expecting to lose values, regardless of the next move- 
ments. 

Regarding the uncertain NPV approach, unless better 
alternatives can be found, it remains the only orthodox 
framework to price financial assets. The problem with 
this approach, especially for new options, is that ex- 
pected rates of return are not directly observable from the 
beginning. However, the inevitable link between Euro- 
pean call and put, to be presented as the put-call parity 
relationship, and its underlying law of no arbitrage can 
be used to obtain the needed expected rates of return for 
option pricing. 

Traditionally, interest parity theory has long been be- 
lieved to have a convincing power to explain the move- 
ment of exchange rates. This can certainly be interpreted 
to mean that other than the principle of supply and de- 
mand, the law of no arbitrage can serve as another im- 
portant mechanism to price assets. In the financial market, 
one pricing approach does not fit all. 
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