
Applied Mathematics, 2013, 4, 257-262 
http://dx.doi.org/10.4236/am.2013.41A039 Published Online January 2013 (http://www.scirp.org/journal/am) 

Finite Element Solution of a Stream Function-Vorticity 
System and Its Application to the Navier Stokes Equations 

Fattehallah Ghadi1, Vitoriano Ruas2, Mohamed Wakrim1 
1Equipe Modélisation Mathématique et Simulation, Faculté des Sciences Université Ibn Zohr, Agadir, Maroc 

2Institut Jean Rond d’Alembert/CNRS, UPMC Université, Paris, France 
Email: f.ghadi@uiz.ac.ma, m.wakrim@uiz.ac.ma, ruas@lmm.jussieu.fr 

 
Received October 6, 2012; revised November 28, 2012; accepted December 5, 2012 

ABSTRACT 

The finite element solution of a generalized Stokes system in terms of the flow variables stream function and vorticity is 
studied. This system results from a time discretization of the time-dependent Stokes system in stream function-vorticity 
formulation, or yet by the application of the characteristics method to solve the Navier-Stokes equations in the same 
representation. Numerical results presented for both cases illustrate the good behaviour of the adopted approach. 
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1. Introduction 

Expressing the incompressible Navier-Stokes equations 
in terms of variables other than velocity and pressure 
becomes a good alternative for solving them numerically, 
provided one is able, not only to uncouple the new flow 
variables, but also to derive reliable discrete counterparts. 
In this respect the classical stream function and vorticity 
formulation of these equations in two-dimension space is 
a very good example. After having studied it in the sta- 
tionary case (cf. [1]), in this paper we generalize our re- 
sults [1] to the time-dependent problem. 

In terms of numerical analysis this paper primarily 
deals with a mixed method to solve the two-dimensional 
generalized Stokes problem in terms of the stream func- 
tion and the vorticity. Such problem results for instance 
from the time discretization of the time-dependent Stokes 
system. The difficulty arising from the lack of boundary 
conditions for the vorticity is overcome by means of a 
suitable technique for uncoupling both variables follow- 
ing the mains lines of the well-known Glowinski-Piron- 
neau method [2]. Then we discretize in space the result- 
ing uncoupled system by means of continuous Lagrange 
finite elements. 

In computational terms we apply the above technique 
to the Navier-Stokes equations. This is achieved by first 
performing the semi-discretization in time of these equa- 
tions by a classical characteristics method. Then we ap- 
ply the same numerical ingredients as for the generalized 
Stokes system. We illustrate the good performance of our 
approach by means of numerical results, obtained for 
some benchmarks problems such as cavity lid driven 
flow. 

2. The Time-Dependent Stokes System as a 
Model Problem 

Given a field of volumetric forces f with    2,f t L    
for any time t, and denoting by ν the kinematic viscosity 
of the fluid occupying a bounded simply connected do- 
main Ω of R2 with boundary Γ assumed to be Lipschitz 
continuous, we wish to find the stream function   and 
the vorticity ω such that 
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where , 1,2,t n ,      with 0  given, and  
   : ,nF F ndt    for any function  ,F t . 

Assume that 1n   is known. Then problem (2) be- 
comes a generalized Stokes problem. 

If we omit the index , the problem is written n
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3. Variational and Uncoupling Techniques 

Like in [1], a suitable variational formulation of system 
(3) is provided by using the space 
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the unique solution of system (3). 

4. Discretized Problem 

The type of finite element approximation of problem (4) 
was first introduced in [3]. In this work we develop it in 
detail by referring the reader to that work for the 
numerical analysis of the method. Assuming that   is 
a polygonal domain and letting  h
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Here  kP K
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 denotes the space of polynomials of 
degree less than or equal to , defined in an element 

 and  is the numbered set of all the nodes used to 
define the degrees of freedom of  that lie on 

k
K

hV  . 
Finally, we define 

  
    

0

0 0

: , , 0, and

: , , , 0,

h
H h h h h h h

h
h h h h h h h h

X u V u v v M

X u V u v u v v M 

      

        .
 

Then the discrete versions of problems (4-i), (4-ii) and 
(4-iii) are defined as follows: (see Equation (5)). 
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5. Numerical Experiments 

In order to illustrate the performance of our approach, we  

present some numerical results obtained in the framework 
of a problem with known solution, solved with the equal 
order method for 1k  . 

We consider the stationary Stokes problem in  
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proximate vorticity for 0.05t  , respectively on the 

left and on the right. In Fig  display the contours 
of the exact and approximate streamlines for 0.05t

ure 2 we
  , 

respectively on the left and on the right. In Fi e 
display the exact and approximate vorticity along the 
first diagonal. In Figure 4 we display the exact and 
approximate stream function along the first diagonal. 

gure 3 w

6. Extention to the Navier-Stokes Equations 

 Let us first recall the Navier-Stokes equations expressed
in the stream function and vorticity formulation. 
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Figure 1. Exact (left) and a  (right) vorticity contours. pproximate
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Figure 2. Exact (left) a ate (right) streamline. n approxim

 

 

Figure 3. Exact an approximate vorticity along the first 
diagonal. 

 

 

Figure 4. Exact an approximate stream function along the 
first diagonal. 
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from which we derive the scheme:  
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m (10) is nothing but a generalized Stokes 
 problem of the type (3). Hence we can use the 

above described algorithm to solve it. Th  main difficulty 
is

e
 the computation of x . 

7. Numerical Tests 

In order to validate ou apr proach, we present the driven 

y the streamlines and vorticity 
cavity flow results. 

In Figure 5 we displa
contours for 10Re  . In Figure 6 we display the com- 
parison along the first diagonal between the vorticity 
(r

 metho

ach to solve the incompressible Navier-Stokes in 
tw

espectively the stream function) obtained with the 
characteristics d and the one obtained with the 
linearization method employed in [4]. In Figure 7 we 
display the streamlines and vorticity contours for Re = 
100. 

The numerical results presented in this Section not 
only confirms the adequacy and economy of our 
appro

o-dimension space, but also illustrates that it can be  tion of the problem: 
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Figure 5. Re = 100. Vorticity computed with characteristic method, stream function computed with characteristic method. 
 

   

Figure 6. Re = 10. Comparison of the two solutions along the first diagonal. 
 

   

Figure 7. Re = 100. Vorticity computed with characteristics method, streamline computed with characteristics method. 
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suitably combined with the characteristics method. How- 
ever the main difficulty of such combination is the choice 
of the time step  Unfortunately when the Reynolds 
number increases this issue becomes critical. In this case 
it is advisable to use moving meshes or yet a higher order 
characteristics method, in order to improve the quality of 
the numerical results. 
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