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ABSTRACT 

Stochastic modeling of biochemical reactions taking place at the cellular level has become the subject of intense re-
search in recent years. Molecular interactions in a single cell exhibit random fluctuations. These fluctuations may be 
significant when small populations of some reacting species are present and then a stochastic description of the cellular 
dynamics is required. Often, the biochemically reacting systems encountered in applications consist of many species 
interacting through many reaction channels. Also, the dynamics of such systems is typically non-linear and presents 
multiple time-scales. Consequently, the stochastic mathematical models of biochemical systems can be quite complex 
and their analysis challenging. In this paper, we present a method to reduce a stochastic continuous model of 
well-stirred biochemical systems, the Chemical Langevin Equation, while preserving the overall behavior of the system. 
Several tests of our method on models of practical interest gave excellent results. 
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1. Introduction 

Mathematical modeling of biochemical reactions within 
a cell is crucial for understanding cellular dynamics [1]. 
Biological processes are often represented as systems of 
chemical reactions. In general, such processes involve 
many reacting species subject to many reaction channels. 
In systems with some low molecular populations, the 
random fluctuations associated with molecular interac- 
tions may be significant, as was observed experimentally 
[2,3]. Then, a deterministic model is not appropriate and 
stochastic models are needed for an accurate description 
of the reacting system behavior [4]. In many applications, 
the biochemical reactions evolve on widely different time 
scales. The presence of the multiple time-scale dynamics 
leads to mathematical stiffness. Stiffness poses great 
challenges in the simulation of the system dynamics. 
Moreover, many biochemical systems are non-linear 
which makes them more difficult to analyze. Thus, the 
stochastic mathematical models of biochemically react- 
ing systems can be quite complex and their simulation 
computationally very demanding [5]. 

Often the goal is to understand some specific biologi- 
cal process of a complex biochemical network. Then, one 
needs to identify a reduced system of reactions which 
gives an accurate description of that process. Model re- 
duction strategies may focus on reducing the number of 

reactions, the number of parameters or that of molecular 
species [6]. The existing model reduction schemes for 
deterministic models of chemical reaction systems may 
be grouped into sensitivity analysis methods [7], lumping 
methods [8,9] and time-scale analysis methods [10,11]. 
Lumping techniques lead to loss of information about 
particular species or reactions and thus the physical in- 
terpretation of the elementary reactions is lost. They may 
be appropriate when only limited information is available 
about specific reactions. Time-scale analysis applies to 
systems with rapid and slow reactions channels and is 
based on the assumption that the fast components are in a 
quasi-steady state. The slow dynamics is restricted to the 
algebraic constraints defining the equilibrium manifold 
of the fast components. The identification of the fast and 
slow reactions is required as well as estimations of the 
orders of magnitude of separation between them. Finally, 
sensitivity analysis may be employed to eliminate the 
reactions which are not important, if the parametric sen- 
sitivity with respect to their reaction rate constants are 
small. Then the physical insight offered by the elemen- 
tary reactions, as opposed to group of reactions, is main- 
tained. Much less work has been dedicated to designing 
model reduction strategies for the stochastic models of 
biochemical kinetics (see [12-14] and references therein). 

Our contribution in this paper is to provide a novel 
method for reducing a stochastic continuous model of 
biochemical systems, the Chemical Langevin Equation.  *Corresponding author. 
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The Chemical Langevin Equation (CLE) model [15] is 
an approximation of the discrete stochastic model of 
well-stirred biochemical kinetics, namely the Chemical 
Master Equation [16-19]. The CLE model is valid in the 
regime of large molecular numbers. The CLE is a system 
of Itô stochastic differential equations (SDE) with multi- 
plicative noise of dimension equal to the number of re- 
acting species. Our method is based on sensitivity analy- 
sis, which is a key tool for modeling and analyzing bio- 
chemical systems. Sensitivity analysis is widely used in 
quantifying the characteristics of the system [20], such as 
robustness with respect to perturbations in its parameters. 
These parameters include the reaction rate constants or 
the initial supplies of species. The study of the depend- 
ence of the system dynamics on its parameters is a criti- 
cal problem in modeling biochemical systems, and in 
particular cellular dynamics, as usually some parameters 
for the kinetics of interaction are unknown or cannot be 
measured with accuracy. Also, in cellular environments, 
the supply of reactants may fluctuate. Sensitivity analysis 
studies the variation in molecular populations with re- 
spect to small changes in parameters. Thus, it enables the 
identification of the kinetic parameters with a negligible 
impact on the species of interest. Then, the reactions 
corresponding to these parameters can be removed from 
the system. By this procedure, the dynamics of interest in 
not altered while the system may be significantly reduced. 
Moreover, the reduced system may provide important 
physical insight and it is easier to analyze and simulate 
numerically. 

The outline of the paper is as follows. Section 2 gives 
an introduction to the stochastic continuous modeling of 
well-stirred biochemical system. In Section 3, a tech-
nique for estimating sensitivities of the Chemical Lange-
vin Equation is explored. In Section 4, we provide a 
model reduction strategy for the Chemical Langevin 
Equation, and we test this method on several models of 
interest in Section 5. 

2. Chemical Langevin Equation 

We present below a brief introduction to the stochastic 
modeling of chemical kinetics for well-stirred systems, in 
the regime of large molecular populations. The system is 
at thermal equilibrium in a constant volume. The chemi- 
cally reacting system contains N biochemical species 

1, , NS S  subject to M reactions 1, , MR R

 t

. Under the 
assumptions above, the system dynamics can be de- 
scribed by the vector of states , with component 

 being the number of Si molecules available at 
time t, for each . The dynamical state 

X
 i tX

1, ,i   N  tX  
is a Markov process. 

Let us define ij  to be the change in the number of 
molecules of species  caused by one reaction iS jR  

and denote by  1 , , j j Nj  ν   the state-change vec- 
tor characterizing the reaction jR . The matrix  

 S 
1 ,1ij i N j M   

 is known as the stoichiometric ma- 
trix. Remark that each reaction jR  produces a change in 
the system given by j x x ν . In representing the 
reaction jR  an essential role is played by propensity 
function  j . The propensity function is defined by a x

 dja tx  at the given state , is the probability that 
one reaction 

x

jR  will happen in the infinitesimal time- 
interval  dt

2

,t t 
1

1
cS S

. For example, for a reaction  
 the propensity function is  1 1a cx 1 , 

while for a reaction 3  the propensity 
function is 

x
2

1 2
cS S  S

 2 2 1 2a c x xx
3

1 1
cS S 

. Finally, the associated pro- 
pensity of the reaction  is  4S

   3 3 1 1 1a c x x x 2

0

. 
In addition, the following assumptions are made: there 

exists a time-step    such that 1) the step τ is small 
enough so that there is no significant change in any pro- 
pensity during the interval  ,t t  , 

       fort ,j jaa s s t t   X X

M

     (1) 

for each 1, ,j   , and 2) the step τ is sufficiently 
large so that the expected number of times each reaction 

jR  fires during  ,t t   is large. That is, each propen- 
sity should satisfy 

   1 f

 

or 1,j  , .M

  

j X

 

a t

 

       (2) 

Under the conditions above, the state vector obeys 

 jt W tX
1 1

jt d d
M M

j j

t
 

   dj jt aX X ja  (3) 

where jW
1, ,j M

 are independent Wiener processes for  
  . The Equation (3) is known as the Chemical 

Langevin Equation. This model is obtained when the 
requirements of 1) and 2) are satisfied. These conditions 
hold when each species has large molecular populations. 
The CLE is a system of Itô stochastic differential equa- 
tions with multiplicative non-commutative noise, having 
one equation for each reacting species. The solution of 
the CLE model (3) should satisfy the initial condition 

 0 0x

0

X

t 

                (4) 

imposed at the initial time . 
Applying the expectation (denoted by ) to the 

Chemical Langevin Equation (3) leads to 


  

        d d jt W t
 
 
 


   
d

1 1

M M

j j

 
 

1

d

j j

M

j j
j

a t

a t








X

X



 d .

t

t

  

t

j jaX X  

Now, dividing by , yields 
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      
1

d
.

d

M

j j
j

a t
t




 X X   

Notice that the CLE model reduces to the classical re- 
action rate equation model of the chemical kinetics, when 
all species have very large molecular numbers, in ther- 
modynamic limit, 

   
1

d
.

d

M

j j
j

t
a t

t




 
X

X           (5) 

The reaction rate equation is a system of ordinary dif- 
ferential equations of dimension equal to the number of 
biochemical species in the system. Generally, the reac- 
tion rate Equation (5) is written in terms of concentra- 
tions rather than in molecular population numbers. 

3. Parametric Sensitivity of the Chemical 
Langevin Equation 

Biochemical reaction models may depend on many pa- 
rameters such as the kinetic rates, the initial amounts for 
each species or an uncertain environment. Some small 
changes in the parameters may considerably affect the 
system behavior. Hence, it is important to determine the 
influences of such changes. Sensitivity analysis studies 
the dependence of the system dynamics on the reaction 
rate parameters or the initial conditions. It is an essential 
analysis tool in kinetic modeling and it may be used to 
decide which parts of the model are actively contributing 
to the system behavior. Therefore, it plays a key role in 
assessing the accuracy of a model, in analyzing the 
model and in model reduction. In general, if X is differ- 
entiable with respect to a parameter p, the first order sen- 
sitivity is defined as p X . A large sensitivity sug- 
gests that the system may change dramatically when that 
parameter is perturbed. This shows that an accurate 
measurement of that parameter is necessary. By contrast, 
a small sensitivity indicates that the system is robust with 
respect to small variations in that parameter and thus 
rough estimations of the parameter value will be suffi- 
cient. 

Below we discuss a numerical technique for comput- 
ing the pathwise (strong) sensitivities with respect to the 
kinetic parameters for the Chemical Langevin Equation 
model. Pathwise derivative estimation of stochastic dis- 
crete models was studied for biochemical systems [21,22] 
as well for other areas of applications [23,24]. Since the 
CLE is a system of SDEs, then sensitivity analysis tools 
available for SDEs may apply for the Langevin model. 
The pathwise sensitivity technique presented here applies 
to diffusion processes [23]. 

Let     1 2, , , , , , ,Nt p X X X t p

ries space Ω and p is a kinetic parameter. The pathwise 
sensitivity is interpreted as the pathwise derivative of 

 , ,t p X  with respect to  , ,p p t p , X , when 
the realization ω is fixed. The pathwise sensitivities may 
be obtained by differentiating, on each trajectory, the 
Chemical Langevin Equation (3) with respect to the pa- 
rameter of interest, p. If the derivative    , ,p t p  X  
exists with probability 1, we derive 

     

 
     

1

1

d

d

1
d

2

M
k k

k
k

M
k k

k k
k k

p

a a
t t

p p

a a
t W

p pa









 
  

  
     

      
     





X

X XX

X

X XX

XX

 

(6) 

Notice that k  does not depend on p for all  ν
1 k M  , while the propensities are polynomials of 
degree at most one in the kinetic parameters thus 

 ka p X  does not depend on p explicitly. This ap- 
proach to computing the pathwise sensitivities may be 
applied when each molecular species is bounded away 
from zero, which is true for biochemical systems in the 
Langevin regime. 

In order to calculate the local sensitivities, the coupled 
system consisting of the CLE (3) and the auxiliary equa- 
tions for the sensitivities (6) is solved to find the state 
vector  tX  and the sensitivities  t p X . Remark 
that the combined system (3) and (6) has double size 
compared to the Chemical Langevin Equation, but has 
the same number of independent Wiener processes. 
Hence, it is generally almost twice as expensive to solve 
numerically as the CLE. The pathwise sensitivity analy- 
sis uses the exact derivative with respect to a parameter 
instead of numerical differentiation, as does a finite-dif- 
ference scheme. It can be estimated along with the solu- 
tion of the CLE on each individual Brownian path, inde- 
pendently of the other paths. 

Note that we are only interested in the sensitivity with 
respect to the reaction rate constants. The initial amounts 
of molecules are independent of the kinetic parameters, 
and thus the initial conditions for the sensitivities obey 

 0 0.                (7) 
p





X

In the following, this analysis will be used to reduce 
the complexity of the biochemical reaction system. Note 
that the parametric sensitivity presented here is accurate 
for choices of the kinetic parameters in some neighbor- 
hood of the values for which the analysis was applied, 
since our analysis focuses on estimating the local sensi- 
tivities. 

 X   be the so- 
lution of the CLE model (3) satisfying the initial con- 
dition (4). Here ω is a realization of the sample trajecto-  
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4. A Model Reduction Strategy 

We provide below a novel strategy for reducing the 
complexity of stochastic continuous models of well- 
stirred biochemical kinetics. The aim is to reduce the 
original model to a smaller one which preserves the dy- 
namics, the stability properties and the physical rele- 
vance of the full system. This approach extends that of a 
parametric sensitivity for continuous deterministic sys- 
tems, and in particular for the reaction rate equations [7]. 

Our method utilizes the pathwise (strong) sensitivity 
analysis for diffusive processes in the case of the 
Chemical Langevin Equation. Only the sensitivity with 
respect to the kinetic parameters is considered. The 
strategy will help identify the parameters having a strong 
influence of the system dynamics. The parameters which 
have an insignificant impact on the overall behavior the 
biochemical system, or on the species of interest, are then 
eliminated. Hence, their reactions are deleted, which 
leads also to the elimination of the unimportant species. 
This is particulary important, as the Chemical Langevin 
Equation model has as many equations as reacting spe- 
cies. Since the deleted species are constant in the reduced 
model, then the associated reduced CLE model becomes 
lower dimensional. These species are set to their initial 
value. Moreover, the Wiener processes associated with 
the deleted reactions are also removed, simplifying the 
numerical simulation and improving its efficiency. 

For the Chemical Langevin model, the non-dimen- 
sional pathwise sensitivities depend on the particular 
Brownian path considered. Denote by 1   the toler- 
ance and by 



 a realization in the sample trajec- 
tory space. To estimate the pathwise sensitivity of 

 , ,t p X  with respect to the parameter  
 , , ,t pp p  X , for a fixed sample trajectory  , 

we integrate numerically the system (3) and (6), with the 
initial conditions (4) and (7) on that trajectory. Then, we 
impose the following strong criterion: the CLE system is 
robust (not sensitive) with respect to the parameter p if 
the non-dimensional (scaled) sensitivities satisfy 

   , ,
,

for all and all 0 ,

i

i

Xp
t

X t p

t T

 









  

         (8) 

for all  or all species of interest. For the pur- 
pose of applying the sensitivity analysis to simplify sto- 
chastic continuous models of biochemical kinetics, this 
strong criterion may not be necessary. 

1 i N 

We propose the following requirement for the elimina- 
tion of the unimportant reactions, which is a weaker cri- 
terion than (8), but quite useful for simplifying bio- 
chemical kinetics. A reaction with reaction rate p may be 
eliminated, if for a given tolerance 1  , the sensitivi- 
ties with respect to p obey 

  
   2i i

i

X Xp
t ar t

p pX t


               
 


 (9) 

for any 0 t T   and for all species of interest iX . 
Here ar  denotes the variance. 

5. Numerical Results 

In this section, our strategy for simplifying the Chemical 
Langevin Equation model is tested on several examples 
of practical interest. In our tests, the Chemical Langevin 
Equation and the associated system of local sensitivities 
with respect to each kinetic parameter are integrated nu- 
merically. The underlying numerical method is the Euler- 
Maruyama scheme. The reaction rates for which the as- 
sociated sensitivities in the species of interest are very 
small, that is satisfy the requirement (9) for some 1  , 
are identified. Then, the reactions corresponding to these 
kinetic parameters are eliminated. Finally, the relative 
errors in the mean and standard deviation of the reduced 
compared to the full system are estimated. 

5.1. Modified Cycle Test Model 

First, we study a modified cycle biochemical model [25], 
undergoing the following reaction channels 

31 2

54

1 2 2 3 3

1 4 5 5 1 4

,  ,  ,

,  .

cc c

cc

S S S S S

S S S S S S

  

   
1S





 

The state change vectors of this biochemical system 
are 

  

  
1 2

3 4

1, 1,1 ,  1,1, 1 ,

1,1, 1 ,  1, 1,1

 

 

     

     
 

and 5 1,1,1   . Furthermore, the reaction propensi- 
ties are given by 

    
   

1 1 1 4 4 1 4 2

2 2 5 5 5 3 3 3

,  ,  

,  ,  ,

a c X a c X X a

c X a c X a c X

 

  

X X X

X X
 

with the values of the kinetic parameters being  
3 3 3

1 2 3 41.5 10 ,  5 10 ,  10 ,  1.66 10c c c c 3        

and 2
5 8 10c  

 0
. The model is integrated with initial 

conditions  1200,800,1500,500, 200 X  on the 
time-interval [0, 10]. In our tests, the simulations are 
done over 10,000 trajectories. 

We apply the pathwise sensitivity analysis to this 
model. The plots of the time-evolution of the sensitivities 
with respect to the species of interests, S1, S2 and S3, are 
presented in Figure 1. Notice that the non-dimensional 
sensitivities with respect to the parameters 4  and 5  
of the species S1, S2 and S3 are very small, below 

, thus the system is robust with respect to 

c c

22 10 1 
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Figure 1. Sensitivity comparison for the cycle test model: 
the evolution in time of the sensitivities of X1, X2 and X3 with 
respect to the kinetic parameters, on the interval [0, 10]. 
The simulation uses 10,000 paths. 

variations in these parameters. In addition, this shows 
that the reactions R4 and R5, together with the unimpor- 
tant species S4 and S5, can be eliminated from the system, 
with a negligible effect on the dynamics of the important 
species, S1, S2 and S3. Figure 2 shows the graphs of the 
relative error, between the biochemical system without 
the reactions R4 and R5 and the full reaction system, for 
the mean and standard deviations in the species S1, S2 and 
S3. The relative errors in the mean are below 22 10 , 
while the relative errors in the standard deviation are at 
most 24 10 . Consequently, the model reduction tech-
nique provided, based on pathwise sensitivity analysis, 
gives a very accurate representation of the statistical 
properties of interest for the biochemical system under 
consideration. 

 

 

 
Figure 2. Cycle test model: the evolution in time of the 
relative errors in means (left) and std (right) of X1, X2 and 
X3 on the interval [0, 10], when the reactions R4 and R5 are 
eliminated, compared to the full system. The numerical 
simulations of the solution of the Chemical Langevin Equa-
tion used 10,000 trajectories. 
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5.2. Infectious Disease Model 

Now, let us consider an infectious disease model [26] 
involving two components, the species S1 which caries 
the infectious disease and the species S2, which may be- 
come infected. The species are subject to the following 
reactions 

31 2

54

1 2

2 1 2 1 1

,  ,  ,

,  .

cc c

cc

S S

S S S S S

  

   
1S



2X

1X

 

The reactions have state-change vectors given by 
,  and 

. Each reactions is characterized by a pro- 
pensity, expressed as 

 1 3 1,0     
 5 1, 1  

2 4 0, 1     

     
   

1 1 1 4 4 2 2

5 5 1 2 3 3

,  ,  ,

,  .

a c X a c a c

a c X X a c

  

 

X X X

X X
 

For this model, the kinetic parameters are  

1 2 3 4  and 5 . In-
tegration is performed on the time interval [0, 10], with 
the initial conditions . For our simula- 
tions, we approximate the exact solution of the Chemical 
Langevin Equation on 10,000 trajectories. 

2.0,  0.1,  25,  75c c c c   

  0 2X 

0.05c 

0, 40 

The pathwise sensitivity method for the Chemical 
Langevin Equation model is employed for this model. 
Figure 3 depicts the evolution of the non-dimensional 
sensitivities of the species S1 and S2 with respect to the 
kinetic parameters. Remark that the sensitivities with 
respect to c2 are quite small, less than  for spe- 
cies S1 and S2. This indicates that the reaction R2 is un- 
important, and thus can be deleted, with negligible in- 
fluence on the overall behavior of the system. Figure 4 
presents the evolution of the relative errors in the mean 
and standard deviation, between the reduced system 
(with the reaction R2 removed) and the full system, for 
the species S1 and S2, respectively. The relative errors are 
below , with the error in the mean being slightly 
larger than that in the standard deviation. We conclude 
that the model reduction techniques described above 
gives very good results on the infectious disease model 
with the set of parameters considered above. 

27 10

25 10

5.3. A Multiscale Biochemical Model 

Our final example is a biochemical model [27] undergo- 
ing the following reaction channels 

31 2

54

1 1 2 2 1

2 3 3

,  ,  ,

,  .

cc c

cc

S S S S S

S S S
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 
 

The propensities associated with the reactions above 
are 
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Figure 3. Sensitivity comparison for the infectious disease 
model: the evolution in time of the non-dimensional sensi-
tivities of X1 and X2 with respect to the kinetic parameters, 
on the interval [0,10]. The simulations are over 10,000 
trajectories. 

 
while the state-change vectors are  

     1 2 3 41,0,0 ,  1,1,0 ,  0, 1,1           



 

and 5 0,0, 1  
100,c c

. The kinetic parameters take the 
values 1 2 3 4 150,  0.02c c     and 5 0.5c  . 
The system, integrated on the interval  0,10  with ini- 
tial conditions , presents multiple 
scales in time. 

   100,100,100 0X

We start by employing the sensitivity analysis method 
described above. The evolution of the non-dimensional 
sensitivities of the species of interest, S1 and S2, with 
respect to all parameters is depicted in Figure 5. Figure 
5 shows that these species are robust with respect to 
variations in the parameters c4 and c5. Indeed, their sensi- 
tivities are below . Thus, we can eliminate  25 10 1 
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Figure 4. Infectious disease model: the evolution in time of 
the relative errors in mean and std of X1 and X2 in the 
interval [0,10], when the reaction R2 is eliminated, com- 
pared to the full system. The numerical solution of the 
Chemical Langevin Equation is computed on 10,000 trajec-
tories. 

 
the reactions R4 and R5 and the unimportant species X3. 
To estimate the changes in the important species dynam-
ics, produced by the deletion of the unimportant reactions 
R4 and R5, we compute the relative error between the 
biochemical system with the reactions R4 and R5 removed 
and the full reaction system. The time-evolution of the 
relative errors in the mean and the standard deviation for 
the species of interest X1 and X2 is plotted in Figure 6. 
The relative errors in the mean for the species X1 and X2 
are below , while the relative errors in the stan-
dard deviation are below . The CLE system was 
reduced from a model with 3 species subject to 5 reac-
tions to a system of 2 species undergoing 3 reactions. We 
note that our model reduction strategy works very well 
for this biochemical model with multiple scales in time. 

26 10
23 10

 

 
Figure 5. Sensitivity comparison for the multiscale bio-
chemical model: the evolution in time of the non-dimen- 
sional sensitivities of X1 and X2 with respect to the kinetic 
parameters, on the interval [0,10]. The simulations are done 
on 10,000 trajectories. 

6. Conclusion 

In this paper, we developed a method to reduce bio-
chemical systems modeled with the Chemical Langevin 
Equation. The Chemical Langevin Equation is a system 
of stochastic differential equations with multiplicative 
and non-commutative noise. Generally, the biochemical 
systems arising in applications are quite complex, in-
volving many species and many reactions, and thus are 
difficult to simulate numerically and to analyze. The 
model reduction strategy provided utilizes the pathwise 
sensitivity analysis of stochastic differential equations to 
identify the parameters with an insignificant influence on 
the biochemical system dynamics. These parameters are 
eliminated together with the unimportant species, leading 
to a smaller model which maintains the characteristics of 
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Figure 6. Multiscale biochemical model: the evolution in 
time of the relative errors in mean (left) and std (right) of X1 
and X2 in the interval [0,10], when the reactions R4 and R5 
are eliminated, compared to the full system. The solution of 
the Chemical Langevin Equation is approximated over 
10,000 trajectories. 

 
the full system, but is easier to analyze. The proposed 
model reduction technique has a simple implementation 
and may be used for a large class of biochemical reaction 
models, in the Langevin regime. We tested our method 
on several realistic models of biochemical kinetics and 
found an excellent agreement between the dynamics of 
the full and reduced models. 
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