
Applied Mathematics, 2013, 4, 242-247 
http://dx.doi.org/10.4236/am.2013.41A037 Published Online January 2013 (http://www.scirp.org/journal/am) 

Parallel Computing of Discrete Element Method on GPU 

Teruyoshi Washizawa, Yasuhiro Nakahara 
Simulation & Analysis R&D Center, Canon Inc., Tokyo, Japan 

Email: washizawa.teruyoshi_at_canon.co.jp, nakahara.yasuhiro105_at_canon.co.jp 
 

Received October 10, 2012; revised November 10, 2012; accepted November 17, 2012 

ABSTRACT 

General purpose computing on GPU for scientific computing has been rapidly growing in recent years. We investigate 
the applicability of GPU to discrete element method (DEM) often used in particle motion simulation. NVIDIA provides 
a sample code for this type of simulation, which obtained superior performance than CPU in computational time. A 
computational model of the contact force in NVIDIA’s sample code is, however, too simple to use in practice. This pa-
per modifies the NVIDIA’s simple model by replacing it with the practical model. The computing speed of the practical 
model on GPU is compared with the simple one on GPU and with the practical one on CPU in numerical experiments. 
The result shows that the practical model on GPU obtains the computing speed 6 times faster than the practical one on 
CPU while 7 times slower than that of the simple one on GPU. The effects of the GPU architectures on the computing 
speed are analyzed. 
 
Keywords: GPU; Particle Motion Simulation; Discrete Element Method; Warp Divergence 

1. Introduction 

Recently, high performance computing on GPU in scien-
tific and industrial fields has attracted much attention. 
Splendid achievements applied to various information 
processing problems, physical simulations, and social 
scientific problems can be found easily on the web site of 
NVIDIA [1]. The expected speed-up ratio reported in 
“Complete applications catalog” in [2] ranges from 1.5 to 
500 depending on applications. As described later, since 
GPU obtains high computational performance by em- 
ploying special hardware architectures and control proc- 
esses, programmers are requested to tune their programs 
for fitting the specification of GPU. Fortunately, pro- 
grammers can utilize NVIDIA’s sample codes included 
in NVIDIA GPU Computing SDK obtained from the 
web site, which also demonstrate the superior perform- 
ance of their products. 

This paper focuses on discrete element method (DEM) 
which has properly used in particle motion simulation 
arising for the last decades [3,4]. NVIDIA SDK provides 
a sample code for DEM and demonstrates the computing 
speed on GPU to be over 40 times faster than on CPU. 
However, the contact force employed in the sample code 
is too simple to use in practice. A practical DEM code 
has several kinds of force between a collided or inter- 
acted pair of particles. Hereafter, we refer to this model 
of force as practical model. 

The first step to use the sample code in practical cases 
is to replace the NVIDIA’s simple model with the prac- 

tical model without modification of GPU-tuned parts. 
Numerical experiments are conducted to compare the 
computing speed of the following four cases, i.e., the 
practical model on CPU, the practical model on GPU, 
and the simple model coded in two languages on GPU. 
The result shows that the computing speed of the practi- 
cal model is 6 times faster than that of the practical 
model on CPU while it is 7 times slower than that of the 
simple model on GPU. The effects of the GPU architec- 
tures on the improvement and the reduction in computing 
speed are analyzed. 

The rest of this paper is organized as follows. The next 
section gives an overview of GPU architecture. Main 
features which affect the computational performance are 
described. The simple model and the practical model of 
the contact force in DEM are shown in Section 3. Section 
4 is devoted to the implementation of the practical model 
as well as the simple one. After describing the data 
structure, we show the process flow. Almost all proc-
esses are same for both models except the contact force 
calculation processes. The results of numerical experi-
ments are shown in Section 5, which is followed by the 
discussion of the results. 

2. An Overview of GPU Computing 

Before the detailed description of the implementation of 
the practical model, architecture of GPU is overviewed 
[5]. It helps us to analyze the result of numerical experi- 
ments described later. 

Copyright © 2013 SciRes.                                                                                  AM 



T. WASHIZAWA, Y. NAKAHARA 243

In order to make the following description more com- 
prehensive, a brief introduction of CPU architecture is 
given first. A CPU has several cores containing several, 
recently 6 or more processing units, an address counter 
and a decoder of instruction, a memory unit and other 
peripherals. Since one core has only one instruction ad- 
dress counter, processing units in each core are allowed 
to execute concurrently only one instruction. As described 
below, a GPU has 448 processing units which have their 
own instruction address counters so that they execute 
different sequences of instructions. This might be the 
biggest difference between CPU and GPU. 

GPU also has hierarchical structure based on its proc- 
essor hierarchy. GPU employs three types of hierarchy 
called thread hierarchy, memory hierarchy, and schedul- 
ing hierarchy. It employs a unique processing method 
called SIMT (single-instruction, Multiple-Thread) on these 
hierarchical structures. 

Processor hierarchy is organized such that a GPU is 
composed of 14 streaming multiprocessors (SMs) con- 
sisting of 32 processing cores (PCs). GPU’s SM and PC 
correspond to CPU’s core and processing unit, respec- 
tively. The individual threads composing a warp start 
together at the same program address. They are free to 
branch and execute independently since they have their 
own instruction address counter and register state. Under 
the SIMT architecture, however, they are restricted to 
execute a common instruction at the same time because 
only one instruction interpreter is available per SM. This 
means that if they have M distinct instructions, these 
instructions are executed sequentially so that the speed 
up ratio is bounded to 32/M. This can be regarded as a 
kind of latency of instruction execution. This is called 
warp divergence and causes reduction of computational 
performance. 

Thread hierarchy basically corresponds to the proces- 
sor hierarchy, which is composed of thread, warp, and 
thread block. A thread is defined as the minimum unit of 
execution, which is equal to a sequence of instructions 
implemented by a user. A warp is defined as a set of 32 
threads concurrently executed within a SM. A thread 
block is defined as a set of threads assigned to a SM. 
Since one SM executes one warp concurrently, the num- 
ber of threads in a thread block is usually preferred to be 
a multiple of the number of threads in a warp. Thread 
blocks are organized into a data structure called grid. A 
GPU can execute two or more grids concurrently. 

Memory hierarchy is composed of three types of mem- 
ory, i.e., global memory, shared memory, and local 
memory. In the memory hierarchy, a global memory on a 
GPU is shared by all SMs while a shared memory on a 
SM is shared by all PCs. Moreover, each PC has its own 
local memory. From the global memory to the local 
memory, the access speed increases while the amount of 

memory size decreases. The shared memory can be ac- 
cessed several 10 times faster than the global memory. 
Explicit description of usage of the shared memory en- 
ables us to enhance the efficiency of memory access. 
One more remarkable feature in memory access must be 
mentioned. When some threads in a warp are concur- 
rently accessing addresses which are located locally in 
memory space, the memory access is improved. This 
function is called coalescing access. 

The two-level distributed scheduler plays a great role 
to hide latencies caused by any instructions. At the chip 
level, a global work distribution scheduler assigns SMs 
to thread blocks. At the SM level, a dual warp scheduler 
in each SM distributes instructions in warps to its PCs. 
This hierarchical scheduling obtains highly effective load 
balancing among warps. However, it gives no contribu- 
tion to reduce the warp divergence. 

SFUs execute transcendental instructions such as sin, 
cosine, reciprocal, and square root. Each SFU executes 
one instruction per thread, per clock. All threads in a 
warp must share only 4 SFUs. If all threads must execute 
distinct special functions at the same time, only 4 threads 
are allowed to execute their special functions by using 
SFUs while other 28 threads must wait for the releases of 
the SFUs. This causes the speed up ratio of parallel 
computation is limited to the number of SFUs. 

3. A Practical Model of Particle in DEM 

NVIDIA’s sample code employs a simple model of the 
force acting on a particle. The force acting on the j-th 
particle caused by the collision of the k-th particle, FS is 
defined as following: 

S sp n da sh tF k k v k v g             (1) 

where δn, ν, g, is, respectively, displacement between two 
particles, velocity of a particle relative to the other one of 
a contact pair, and the gravitational acceleration. 

A suffix t and n denotes, respectively, the tangential 
and the normal component. The simple model is com- 
posed of spring force, damping force, sharing force and 
the gravity. All coefficients of RHS terms are constant. 
Although this model yields high computational perform- 
ance of GPU, it is too simple to apply to practical simu- 
lations. 

One of the standard model described in many articles 
related to DEM are much more complicated than the 
simple model in Equation (1) [6]. It is composed of a 
contact force F and a contact torque T described in the 
following equations, 

t nF F F                    (2) 

 iT r n F  t                  (3) 

where Ft and Fn are, respectively, the tangential and the 

Copyright © 2013 SciRes.                                                                                  AM 



T. WASHIZAWA, Y. NAKAHARA 244 

normal component of the contact force defined as 

,t t t t n n n nF k v F k v              (4) 

where k, η and ri are the spring coefficient and the damp- 
ing coefficient of particles and radius of the i-th particle, 
respectively. The tangential component of the contact 
force is adjusted if the following condition is satisfied, 

  ,  ift n t t t nF F F F F F        (5) 

where μ is a coefficient of kinetic friction. The following 
equations give the definitions of the tangential compo- 
nent of velocity and the displacement between two parti- 
cles, respectively: 

    ,t i i jv v v n n r r n      j       (6) 

 ,old ,oldt t t tn n v t       ,        (7) 

where ω, δt,old, n, Δt are angular velocity, displacement 
between two particles at the previous time, a unit vector 
between two particles, and a time step respectively. The 
coefficients of the terms in RHS of Equation (4) is, re- 
spectively, defined as functions of the physical proper- 
ties, 

   1 1
,: ,t k t n i jk C i j r r    ,        (8) 

   1 1
,: ,n k n n i jk C i j r r    ,



       (9) 

   1 1: , n i ji j k m m     ,       (10) 

where Ck(i, j), α(i, j), mj are spring parameter, restitution 
parameter, and mass of the j-th particle, respectively. 
Hereafter, we refer to all variables in above equations as 
particle properties. 

4. Implementation 

NVIDIA’s sample code has been tuned so well as to 
demonstrate the speed up ratio of over 40 than an ordi- 
nary CPU. This performance must be maintained through 
implementation of practical DEM code. The first step we 
decided to take is to replace the simple model in the 
sample code with the practical model in Equations (2)- 
(10). This implementation can be used as a reference of 
the lower bound of the DEM performance for the practi- 
cal model on GPU. When we apply some approximations 
to speed up, we can evaluate the ratio of both the com- 
puting speed and the approximation error to those of the 
lower bound case. 

Another factor we have to determine in advance is a 
programming language. NVIDIA provides a program- 
ming environment named CUDA (Compute Unified De- 
vice Architecture) [5] which is only available for NVIDIA 
GPUs. On the other hand, OpenCL has been proposed to 

platform-independent programming for GPUs. We choose 
OpenCL to implement the practical model because of its 
performance-portability [7]. NVIDIA provides sample 
codes for both languages. 

The practical model is also implemented in C++ for 
execution on CPU. Since the contact force is often ar- 
ranged in practical applications, the comprehensive in- 
terface to add or delete a force term should be imple- 
mented. Object-oriented programming enables us to ob- 
tain such maintainability. The C++ implementation is a 
reference as the most maintainable case. 

4.1. Allocation of Variables 

To detect particle collisions effectively, DEM simulation 
usually uses a collision detection grid (CDG). The CDG 
divides the whole computational space into small sub- 
regions called cell. Every particle is registered to a cell 
that occupies its location. It is guaranteed that all parti-
cles registered in a cell are close each other. Particles 
colliding with the j-th particle at the next time step can be 
found in either the cell containing the j-th particle or its 
neighbor cells. For example, the number of cells to be 
searched is 33 in 3-dimensional space. The candidates of 
colliding pairs decrease as the number of cells of the 
CDG increases because the number of particles in each 
cell reduces on average. Hence, the CDG much reduces 
the computational time to search colliding pairs. It should 
be noticed, however, that, if the size of the buffer of par- 
ticles in a cell is greater than the cache memory size, the 
computational performance is considerably degraded. 
The number of cells should be selected by considering 
these factors. The sample code employs the CDG struc- 
ture. 

Most straightforward way to manage particles in the 
CDG is to assign an array to each cell to register particles 
referred as “array-in-grid” [3]. Since this method is ob- 
viously memory consuming, improved methods have 
been proposed [3]. The sample code uses a correspon- 
dence map from particle to cell. The corresponding map 
CM is a 1D array set to be CM[j] = k when the j-th parti- 
cle is inside the k-th cell. The number of entries of CM is 
equal to the number of particles. 

Locations of variables in memory space affect the 
computational performance. Variables located consequently 
in memory space can be uploaded once on high-speed 
accessed cache memory. If all variables needed for cal- 
culation of some value are uploaded on the cache mem- 
ory at the same time, the minimum memory access time 
is needed. Otherwise, time-consuming memory access 
reduces the computational performance. 

The sample code has the process of sorting the parti- 
cles along the correspondence map. By performing this 
process, a pair of particles close to each other in calcula-  

Copyright © 2013 SciRes.                                                                                  AM 



T. WASHIZAWA, Y. NAKAHARA 245

tion space is also located to be close in memory space. It 
follows that a collision pair of particles is expected to be 
close in memory space so that they are uploaded simul- 
taneously on cache memory when the contact force is 
calculated. The sample code uses the bitonic sort algo- 
rithm which could be the best for GPU. 

4.2. Process Flow 

Both the NVIDIA’s simple model and the practical com- 
plicated one are obtained by executing along the same 
flow of operations except the calculations described in 
Equations (1)-(10). The process flow is shown below [8]: 

1) Update the all particle properties. 
2) Make the correspondence map from a particle to a 

cell. The correspondence map is contained in an integer 
array CM. CM[j] = k when the j-th particle is inside the 
k-th cell. 

3) Sort the CM to get the sorted CM, SCM and the 
map from SCM to CM, SCCM. These arrays satisfy the 
following relationship: 

   SCM CM SCCMj j    .       (11) 

4) Reorder all the properties along SCM by bitonic 
sort. 

5) Assign the i-th thread to the SCM[i]-th particle. 
6) Collect the SCM[i]-th particle’s cell and its neighbor 

cells. If the particle’s cell is the (i, j, k)-th cell in 3D com- 
putational space, a set of these cells is 

 


, , 1 1,  1 1,

1 1

l m n i l i j m j

k n k

       

   
   (12) 

7) Calculate the contact force between two particles in 
Equation (1) for the simple model, or Equations (2)-(10) 
for the practical model. 

8) Calculate the contact force between particles and 
walls for the practical model. A wall can be modeled as a 
particle with the infinite value of radius. 

The difference between the simple model and the prac- 
tical model is only the calculation of force in Step-7 and 
Step-8. Before the calculation of contact force in Step-7, 
collision detection is executed for any pair belonging to 
the cells collected in Step-6. The same detection is per-
formed for any pair of a particle and a wall in Step-8. 
This detection generates huge amount of load unbalance 
causing the reduction of computational performance. 

The practical model is implemented in OpenCL and 
C++ for GPU and CPU, respectively. The implementa- 
tion in C++ on CPU is a kind of reference of the best 
code for maintainability for modifying the contact force 
composition. 

5. Numerical Experiments 

Numerical experiments were conducted to compare the 

performances of the following four cases, the simple 
model coded in CUDA on GPU, the simple model coded 
in OpenCL on GPU, the practical model coded in 
OpenCL on GPU, and the practical model coded in C++ 
on CPU. First two cases have been provided by NVIDIA 
as sample codes. The remains are coded by the authors in 
OpenCL and C++, respectively. The first two cases are 
used to find the effect of the difference of programming 
language for the simple model. The second and third 
cases show the effect of the difference of the contact 
force model. The difference of the performance between 
GPU and CPU for the practical model is evaluated from 
the comparison of the last two cases. The first and the 
last case are, especially, regarded as references of the 
fastest and the most maintainable model, respectively. 

A sample problem simulates a time evolution of 217 = 
131,072 particles with same radius which fall from a box 
on a floor through a slit at the bottom of the box. The 
time evolution is continued until displacements of all 
particles are less than a predetermined value. Specifica- 
tions of CPU and GPU are shown in Tables 1 and 2, re- 
spectively. Computing speed [particles/sec] of these four 
cases are shown in Table 3. 

The difference between first two cases from the top in 
Table 3 is only the programming languages used and has 
little effect on the computing speed. 

 
Table 1. Specification of CPU. 

 Specification 

Model name Intel®Xeon®CPU X5670 

Clock frequency 2.93 GHz 

Cache 
CPU: L1 I cache, 32 K, L1 D cache; 32 K 
CPU: L2 cache, 256 K 
CPU: L3 cache, 12288 K 

 
Table 2. Specification of GPU. 

 Specification 

Model name C2050 (Fermi) 

Number of multiprocessors 14 

Total number of threads 448 

Clock frequency of processing cores 1.15 GHz 

Maximum band width 144 GB/s 

Peak performance of Double Precision (FMA) 515.2 GFLOPs 

 
Table 3. Comparison of the computing speed of four cases. 

Computational 
model 

Programming 
language 

Processor 
type 

Computing speed
103 [particles/sec]

CUDA GPU 22,359 NVIDIA’s 
simple model OpenCL GPU 21,266 

OpenCL GPU 2960 
Practical model

C++ CPU 474 

Copyright © 2013 SciRes.                                                                                  AM 



T. WASHIZAWA, Y. NAKAHARA 246 

The effect of the difference of the contact force model 
on computing speed can be evaluated by comparing the 
second and third cases. The computing speed of the prac-
tical model on GPU is 7 times slower than the simple 
model on GPU. The effect of the difference of processor 
type and of programming language on computing speed 
can be also evaluated by comparing the third and fourth 
cases. The computing speed of the practical model on 
GPU is 6 times faster than the practical model on CPU. 
This concludes that the GPU computation is available in 
practical use even if a complicated practical model of 
contact force is employed. 

6. Discussion 

Here we consider factors which effect on two cases, one 
is when the practical model on GPU has greater per- 
formance than that on CPU and the other is when the 
practical model on GPU is less performance than the 
simple model on GPU. Effects of factors to the comput- 
ing speed are estimated under the assumption that all 
factors are independent to each other. The integrated ef- 
fects of all factors evaluated as the product of all esti- 
mates under this assumption give the bounds for both 
cases. 

First, let us focus on the improvement of the comput- 
ing speed by replacing CPU with GPU. See the first and 
the second rows from the bottom in Table 3. As de- 
scribed above, we can find that the practical model on 
GPU is 6 times faster than that on CPU. The following 
three factors mainly affect the improvement. 

A GPU has 448 PCs (14 SMs per GPU times 32 PCs 
per SM) which execute concurrently. If all threads exe-
cute instructions independently, the computing speed is 
expected to be increased by 448/(2.93/1.15)/4 = 44 (the 
number of PCs divided by the clock frequency ratio and 
by the number of processing units in one CPU-core). 
This astonishing improvement is the best case in which 
all pairs containing the neighbor cells in Equation (12) 
have collisions. This case, however, can be seldom seen 
in practice. As the opposite limit, consider case when, 
among all threads in a grid, only one thread needs to 
calculate the contact force while the particles assigned to 
the other threads have no collisions. This is obviously the 
worst case when the computing speed is same as CPU. 
All practical cases are located between these two cases. It 
can be said that the probabilities of collisions of any pairs 
increase as the density of particles increases. In the ap- 
plication used for our benchmark, particles are located so 
densely that most particles are expected to have colli- 
sions with their closest particles. The effect of this kind 
of warp divergence can be evaluated. A thread calculates 
the contact force acting on a particle after detecting the 
collision with other particles in the collection of 27 cells 

described in Equation (12). Warp divergence in this case 
is generated by the difference of the number of particles 
being checked and by the necessity of contact force cal- 
culation for each pair. If all particles have the same di- 
ameter d, the number of particles closest packed into a 
cell is given as 

  3

2

3 2 2 3

y xx x
L LL L

d dd d
 y zL L

     (13) 

where Lx, Ly, and Lz are the length of edges of a cell 
along x-, y-, and z-axis, respectively. In the NVIDIA’s 
sample code, all lengths of edges are set to be equal to 
the diameter of a particle. This reduces Equation (13) to 

2 . The maximum number of particles being checked is, 
therefore, 27 times 2 , or about 47. On the other hand, 
the maximum number of particles collided with one par- 
ticle simultaneously can be evaluated to be 12. Hence, in 
case of densely distributed particles, a particle is collided 
with about a quarter of all particles contained in a cell. 
This means a thread is idle for three quarters of whole 
computing time. Since the collided pairs of each particle 
probably be different from others, all threads must per- 
form the contact force calculation for all pairs regardless 
of their validity under the SIMT architecture. 

The warp divergence in this case makes the computing 
speed 4 times slower. Notice that the reduction rate 
would be up to 47 when only one pair has a collision. It 
should be also noticed that the total number of particles 
in a cell effects on warp divergence strongly. When the 
computing time of the contact force calculation is much 
larger than that of the CDG registration, the cell size in 
the NVIDIA’s sample code must be the best choice. This 
is because all the collided particles should be found in 
the neighbor cells and the ratio of the collided particles to 
the total ones in a cell is expected to be large. 

Second, a large amount of threads increases the effec- 
tive memory access speed. The two-level distributed sched- 
uler arranges uncompleted threads so that the total 
amount of idol time of all threads would be minimized. If 
this scheduling works perfect, the latencies caused by the 
conflicts of memory access and of SFU operations are 
completely hidden. 

Third, coalescing access increases the memory access 
speed. In our implementation, all particle properties are 
reordered according to the locations of particles. Vari- 
ables used for calculating the contact forces are, therefore, 
located locally in memory space. This enables coalescing 
memory access. 

Next, the reduction of computing speed by replacing 
the simple model with the practical one is considered. 
See the second and the third rows from the top in Table 
3. We can find that the practical model on GPU is 7 
times slower than the simple model on GPU. The major 

Copyright © 2013 SciRes.                                                                                  AM 



T. WASHIZAWA, Y. NAKAHARA 

Copyright © 2013 SciRes.                                                                                  AM 

247

causes of this reduction are the following three factors. 
First, increment of the amount of computation of the 

contact force proportionally increases the computing 
time. Second, increment of the number of if-branches 
increases the warp divergence. N-layered nested branches 
generate 2N paths. Since the different paths must be exe- 
cuted sequentially, the computational time increases 
proportionally to the number of paths. Third, usage of the 
SFUs causes the pause of operations. If all 32 threads in 
a warp must calculate special functions at the same time, 
requests from only 4 threads are accepted and the re- 
maining 28 threads must wait for the releases of SFUs. In 
this case, the computing speed reduces by at most 8 times 
than those without using the SFUs. The practical model 
indeed includes square root functions in Equations (8)- 
(10), which request to use the SFU twice every calcula-
tion of the contact force of a particle. 

7. Conclusion 

We reported the computational performance of GPU for 
practical DEM computation by comparison with CPU. 
Since the model of contact force in NVIDIA’s sample 
code is too simple to evaluate the practical performance, 
the simple model was replaced with a practical model 
used in many DEM simulations. The computing speed of 
the practical model on GPU obtains 6 times faster than 
that on single core CPU while 7 times slower than the 
NVIDIA’s simple model on GPU. Because of no ap- 
proximation and no special tricks in our code, this com- 
puting speed is regarded as the lower bound of DEM 

simulation on GPU. The effects of the GPU architectures 
on the computing speed were analyzed for the further 
improvement. Especially, branch divergence among 
threads in a warp caused by the branches in contact force 
calculation was discussed. 

REFERENCES 
[1] http://www.nvidia.com 

[2] http://www.nvidia.com/object/gpu-applications.html 

[3] Y. Shigeto and M. Sakai, “Parallel Computing of Discrete 
Element Method on Multi-Core Processors,” Par-
ticuology, Vol. 9, No. 4, 2011, pp. 398-405.  
doi:10.1016/j.partic.2011.04.002 

[4] D. Nishiura and H. Sakaguchi, “Parallel-Vector Algo-
rithms for Particle Simulations on Shared-Memory Mul-
tiprocessors,” Journal of Computational Physics, Vol. 
230, No. 5, 2011, pp. 1923-1938.  
doi:10.1016/j.jcp.2010.11.040 

[5] NVIDIA, “NVIDIA CUDATM Programming Guide Ver-
sion 3.0,” NVIDIA Corporation, Santa Clara, 2010. 

[6] M. Sakai, “Numerical Simulation of Granular Flows,” 
Maruzen Co. Ltd., Tokyo, 2012, pp. 17-40. 

[7] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson and 
J. Dongarra, “From CUDA to OpenCL: Towards a Per-
formance-Portable Solution for Multi-Platform GPU Pro-
gramming,” Parallel Computing, Vol. 38, No. 8, 2012, pp. 
391-407. doi:10.1016/j.parco.2011.10.002 

[8] Y. Nakahara and T. Washizawa, “Obstacles for Applying 
Discrete Element Method to GPU,” Proceedings of the 
JSIAM, Wakkanai, 29 August 2012, pp. 11-12.  

 

http://dx.doi.org/10.1016/j.partic.2011.04.002
http://dx.doi.org/10.1016/j.jcp.2010.11.040
http://dx.doi.org/10.1016/j.parco.2011.10.002

