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ABSTRACT

An integer distance graph is a graph G(Z, D) with the set of integers as vertex set and an edge joining two vertices U
and v ifand only if |u —V| e D where D is a subset of the positive integers. It is known that ;((G(Z, P)) =4 where

P is a set of Prime numbers. So we can allocate the subsets D of P to four classes, accordingly as ;((G(Z, D)) is 1 or

2 or 3 or 4. In this paper we have considered the open problem of characterizing class three and class four sets when the
distance set D is not only a subset of primes P but also a special class of primes like Additive primes, Deletable primes,
Wedderburn-Etherington Number primes, Euclid-Mullin sequence primes, Motzkin primes, Catalan primes, Schroder
primes, Non-generous primes, Pell primes, Primeval primes, Primes of Binary Quadratic Form, Smarandache-Wellin
primes, and Highly Cototient number primes. We also have indicated the membership of a number of special classes of

prime numbers in class 2 category.
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1. Introduction

The graphs considered in this paper are simple and
undirected. A K -coloring of a graph G is an assign-
ment of K different colors to the vertices of G such
that adjacent vertices receive different colors. The mini-
mum cardinality Kk for which G has a k-coloring is
called the chromatic number of G and is denoted by
2(G). Let G and H be graphs with H ¢ G, then
it is easy to see that y(H)< y(G) andso y isa mo-
notone function.

We begin with the plane coloring problem. What is the
least number of colors needed to color all the points of
the Euclidean plane such that no two points of distance
one have the same color? The corresponding problem for
the real line is easy. )((G(R, D= {1})) =2. To see this,
partition the vertex set of G into two non empty
disjoint sets such that their unionis R.

That is, V(R)=V,UV,, where V, = CJ [2n,2n+1)
N=—o0
and V, = D [2n+1,2n+2). Now color all the vertices

n=-o

3 2 -1 0 1 2 3 4

Figure 1. A sample Distance graph
G(A={-3-2-101234}cZ,D) with D={1}.
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of V, with color 1 and the vertices of V, with color 2.
As V,i=1,2 are independent and G(R,D:{l}) is

bipartite the result follows. Clearly G(Rz,{l}) is an
infinite graph. The problem of finding the chromatic
number of G(R? ,{1}2‘ is enormously difficult. Paul
Erdos has mentioned this problem as one of his favorite
problems. Although he could not solve this problem he
has made a significant progress towards the solution of
this problem with a vital result given as follows: First let
us state the famous Rado’s Lemma [1].

Lemma 1.1 Le¢ M and M, be arbitrary sets.
Assume that to any ve M, there corresponds a finite
subset A, of M . Assume that to any finite subset
N < M, a choice function x, (v) is given, which atta-
ches an element of A, to each element v of N:
Xy (V) € A . Then there exists a choice function x(v)
defined for all veM, (x(v)e A, if veM,) with the
following property. If K is any finite subset of M,,
then there exists a finite subset N(K = N <M, ), such
that, as far as K is concerned, the function x(v)
coincideswith x (v): x(v)=x, (v)(veK).

Theorem 1.1 ([2]) Let k be a positive integer, and let
the graph G have the property that any finite subgraph
is k-colorable. Then G is k-colorableitself.

Theorem 1.1 allows us to look for the maximum
number of colors needed for the finite subsets. It is
obvious that G(R2 ,{1}) is not a trivial graph. Therefore
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;((G(Rz,{l}))il. The presence of at least one edge,
viz., between (0,0) and (1,1) in G(Rz,{l}) conveys the
information that Z(G(Rz,{l})) >2 . Similarly, the pre-

sence of a clique of size 3, viz.,, K, with vertices at

00) [1 NG)

—,—3 , (1,1) shows that
22

2(G(R.{1}))23.

Moreover, it is a fact that four points in the Euclidean
two dimensional plane cannot have pairwise odd integer
distances. Therefore, a clique of size 4, viz., K, cannot
be an induced subgraph of G(Rz,{l}). But it will be
quite interesting to find the coordinates of a unit distance
finite subgraph of G(RQ,{I}) such that (G )=4.
The Moser Spindle graph in Figure 1 with a chromatic
4-coloring is a good example to deduce that

2(G(R.{1}))= 4.

It is interesting to note that so far no unit distance
graph that requires exactly five colors are known. Fal-
coner [3] showed that if the color classes form mea-
urable sets of R*, then at least five colors are needed.
Since the construction of non measurable sets requires
the axiom of choice, we might have the answer turn out

to depend on whether or not we accept the axiom of choice.

We can tile the plane with hexagons to obtain a proper
7-coloring of the graph. The result is originally due to

Hadwiger and Debrunner [4]. So 4 < ;((G ( Rz,{l})) <7.

See Figures 2 and 3 for the lower and upper bounds
respectively. Despite the age of this problem, very little
progress has been made since the initial bounds on ¥
were discovered shortly after the problem’s creation.
This fact is a testament to the difficulty of the problem
and in the absence of progress on the main problem, a
number of restricted versions and related questions have
been studied. We study here the open problem of char-
acterizing the class 4 sets mentioned in the problem for
the prime distance graph whose vertex setis Z and the
distance set D is a subset of not only primes P but
are also they are a special set of primes. The authors have
already made some progress in [5-11].

Figure 2. The moser spindle.
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Figure 3. The hexagonal 7 coloring.

2. Prime Distance Graph

A prime distance graph is a graph G(Z,P) with the set
of integers as vertex set and with an edge joining two
vertices U and v if and only if [u-vje P where P
is the set of all prime numbers.

By a chromatic subgraph of a graph G we mean a
minimal subgraph of G with the same chromatic num-
ber as G .What class of graphs will include a chromatic
subgraph of G(Z,D) for Dc Z?

A graph G is color critical if its only chromatic sub-
graph is G itself. For any positive integer mn, let
G(mn) be the graph comprising (m+1) distinct
vertices U,,U,---,U, and m distinct subgraphs
H,,---,H, each of which is a copy of K,, (Where
K, is the complete graph on n vertices) such that u, is
adjacent to U, and each vertex of H; is adjacent to
u_, and u, for 1<i<m.

G(m1)=C,,..G(1,n)=K

n+2 >

where C,.,, isthecycleon 2m+1 vertices.

Certain Known Results
Lemma 2.1 ([12]) For any positive integers m,n the
graph G(m,n) iscolor critical with
7(G(mn))=n+2.

Theorem 2.1 ([13]) #(G(Z.{2.3,5}))=4 and hence
2(G(Z,P))=4.

Proof. Let each integer X be assigned a color class
i precisely when Xx=i(mod4), for 0<i<4. Since

integers assigned to the same color differ by a multiple of
4, they are not adjacent in G(Z,P), so

2(G(Z,P))<4.
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Since G(Z,{Z,S,S})QG(Z,P) and y is mono-
tone, we have

7(6(2.{2.3.5})) < 2(6(2.P)).
Butas G(Z,{2,3,5})2G(2,2) wehave
7(6(2.{2.3.5})) = 4

where G(2,2) is shown in the Figure 4 determined by
the vertices U, =2, U =3,U, =4 and the subgraphs

H,,H, with vertex sets {0,5} and {1,6} respectively.

The proof now follows from the Lemma 2.1.

In view of Theorem 2.1, we can allocate the subsets
D of P to four classes, according as G(Z,D) has
chromatic number 1, 2, 3 or 4. Obviously empty set is the
only member of class 1 and every singleton subset is in
class 2.

Lemma 22 »(G(Z,D))=2 if D consists only of
odd integers.

Proof. Partition V (Z) into two sets with

V(Z)=Vi(2)UV,(2)

such that an integer xeV,(Z) ifand only if
x=i(mod 2). Now as the elements of V,(Z) are even
and the elements of V,(Z) are odd we find that V, is
an independent set for j =1,2. Therefore G is biparti-
te and hence Z(G(Z,D))=2. See Figure 5, where =
indicates the presence of an edge between any two ver-
tices.

Preposition 1 ([14]) If D is finite and the greatest
common divisor of the elementsof D is1 then

(a) x(D)=2 ifall d eD areodd,

3u,
m
0% ‘ i: 1i ——>6
2u0 4 Ua
Figure4. Inthefigure H, and H, areisomorphicto K,.

Figure 5. = indicates the presence of an edge between any
two vertices of V4(Z) and V,(2).
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(b) x(D)<3 ifno distance element is divisible by 3,

(¢) x(D)=3 if no distance element is divisible by 3
and at least one distance element is even.

Lemma 2.3 If D contains no multiple of a fixed
positiveinteger k,then y(Z,D)<k.

Proof. Color each vertex x in G(Z,D) by x mod
k. Since X and y have the same color if and only if
|X— y| is a multiple of k, but D contains no multiple
of Kk, this is a proper K -coloring.

For simplicity, we assume that ged(D)=1 in the rest
of this section. If |D| =1, then it is not hard to see that
2(Z,D)=2. For the case of |D| =2,D ={a,b}, where
a and b are relatively prime, and so either they are
both odd or they are of opposite parity.

Theorem 2.2 If a and b arereatively prime posi-

tive odd integers, then y(Z,{a,b})=2.

Proof. The theorem follows immediately from Lemma
2.3 and the fact that ;((Z,{a, b}) >2 for any nonempty
D.

Theorem 2.3 ([13]) Let D< P, with |D|>2. Then
D may be classified as follows:

(@) D is in class 2 if 2¢ D ; otherwise D is in
class 3 or 4.

®)If 2eD and 3¢ D,then D isinclass 3.

(©If {2,3}cDc{peP:p=+2(mod5)}, then D

is in class 3.

(If {23} cDc{peP:p=+2,%3,7(mod 14)},
then D isin class 3.

(e) If {2,3,5}< D or {2,3,11,13} =D, then D is
in class 4.

Theorem 2.4 ([13]) For any prime p>5, {2,3,p} is
inclass 3.

Lemma 2.4 ([15]) There exists only a finite number of
sets D={2,3,p,q}, p,geP, p>7 and gq>p+2,
with z(D)=4.

Theorem 2.5 ([15]) Let D={2,3,p,q} be a set of
primes with p>7 and q>p+2. Then y(D)=4
holdsif and only if

(p.a)e{(11,19),(11,23),(11,37),(11,41),
(17,29),(23,31),(23,41),(29,37)}.
The proofs of Lemma 2.4 and Theorem 2.5 are

available in [15]. Moreover, the authors M. Voigt and H.
Walther have shown that there are exactly eight pairs of

primes p,q (p>7,9>p+2) with x(2,3,p,q)=4.
Theorem 2.6 ([16]) Let D={a,b,c} with a<b<c
and ged(a,b,c)=1. Then
2, if a, b, care odd;
4, if D={1,2,3m},orc=a+b
and b—a#(mod 3);

3, otherwise.

z(D)=
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3. Some Special Set of Prime Numbers

Consider the following interesting set of prime numbers
namely Additive Primes, Deletable Primes, Wedderburn-
Etherington Number Primes, Euclid-Mullin Sequence
Primes, Motzkin Primes, Schroder Primes, Catalan Pri-
mes, Non-generous Primes, Pell Primes, Primes of Binary
Quadratic Form, Primeval Primes, Smarandache-Wellin
Primes, Highly Cototient Number Primes, Annihilating
Primes, Euclid primes, Fortunate Primes, Schrdder-
Hipparchus Number primes, Gaussian Primes, Mersenne
Primes, Odd Primes, Primorial Primes, Proth Primes,
Regular Primes, Self Primes, Solinas Primes, Super
Primes, Delannoy Number Primes, Unique Primes, and
Wagstaff Primes. For the definitions of these set of pri-
mes refer [17]. However, the existence of an interesting
mathematical process that logically leads to the precise
definition of an Annihilating prime we mention the same
here for the sake of completeness and for the ease of the
readers. Each of these set of primes have certain unique
properties that make them special and are found to be
useful from both theoretical and practical point of view.

Annihilating Primes

Definition 3.1 ([18]) For ne N ={0,1,2,---} let
seq™' (n) denote the number of one-to-one sequences—
these are sequences without repetitions—we can build
with n distinct objects.

) (= the empty sequence), (a), (&), (a.a,),

a,.a).
Hence, seq”'(2). Of course, it is easy to find a ge-

k
neral expression for seq”™ (n). Since there are [nj

possible ways to choose k objects from a set of n
(distinct) objects, and since k (distinct) objects give
rise to k! permutations, we get the following Lemma.
n (k n Nl
Lemma 3.1 seq”'(n)=) k!:Zi. Also the
ko\n i J!
next representation for seq'™' (n) iselementary.
Lemma 3.2 For all positive ne N we have
g (n) = ent]|.
Remark: For n=0 the formula does not hold, since
seq! (0)=1<2=|e0!].
Proof. According to Lemma 3.1 we have
© !
enl=seq”' (n)+ > n

j=n+l1 J'

=seq”' (n)+ Py ! Hoe
n+1 n+2 (n+2)(n+3)

SL(&I)Q for n>1
n+l1

The following recursive relation for seq”™ (n) is an
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immediate consequence of the second formula in Lemma
3.1.

Lemma 3.3 For all positive ne N we have
seq' (n)=nseq' (n-1)+1. Using this formula, we
finally get the following integral representation of
Seql—l (n) )

Lemma3.4Foral neN wehave

seq”'(n) =eft"e dt.
1

Notation: Throughout this text we adopt the standard
notation a|b to express that a divides b for
a,be N . Moreover, if b>1 then

Mod(a,b):= a—bEJ

denotes the reminder of the division of a by b; and
(a,b) denotes the greatest common divisor of a and
b.

We start our investigation on divisibility properties of
n° with a simple fact which has first been proved in
[19].

Lemma 3.5 For natural numbers n ke N, the fol-

lowing implication holds: If 2% |n*, then 2“ |(n+2")*
and 2 [(n+t)" forany t with 0<t<2X
Definition 3.2 1f {f (n)|  isa sequence of natural

numbers, we define its shadow to be the sequence
{d(h)},_, givenby d(h):=|D(h)|, where

D(h)::{ne N :(n<h)/\(h| f(n))}

are the shadow sets of the sequence f.

The shadow d(h) counts the sequence entries
f(0), f(1),---, f (h—1) which are divisible by h. So,
the shadow measures (to a certain extent) how “divisible”
the entries of the sequence f(n) are: For example, if
only prime numbers occur in the sequence, then its sha-
dow will reflect this fact by being small. If the entries of
f(n) have many divisors, the shadow will typically be
large.

If f(n) isan arithmetic sequence of first order, then
its shadow is periodic, and for the shadow of Euler’s
¢ -function we have d(h)=1 forall h>1.

Example: If for a function f there exists an n, € N
such that for all h>n, wehave d(h)=0, then for all
h>n, wehave f(h)<h. Viceversa,if f(h)<h for
all heN, then d(h) equals the number of zeros in
(f (0), f (1), f (h—l)) . Hence, it is easy to construct
different functions which have the same shadow:

n 01234567

f(n) 01234567
f,(n) 01123456
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f,(n) 01112345+
shadowO1111111-
Definition 3.3 A sequence {f (n)}

the reduction property, if for all n,ge N,g>1, we
have, Mod(f(n),q):Mod(f (Mod(n,q)),q).

Lemma 3.6 The sequence {seq'' (n)}n )

is said to have

has the re-

duction property.

Lemma 3.7 The shadow d of a sequence f(n)
which has the reduction property is multiplicative, i.e. if
(a,b)=1,then d(ab)=d(a)d(b).

As an immediate consequence we get the following:

Corollary 11f d istheshadowof seq'™ andif

k
n=[]pf
i=1
isthe prime decomposition of n, then

k
d(n) :Hd(pilq )-

Therefore, the shadow d of seq™ is fully deter-
mined by its values on the powers of prime numbers. But
what can we say about d ( pk) for p prime?

By the reduction property, all elements me D( pk+!

must be of the form m=n+Ip* for some ne D(pk)

and some | e {0,1,---, p—l} . Hence, we get inductively
that if d(p)=0, then d( pk)z 0 for all positive
ke N.

Definition 3.4 A prime number p with d(p)=0 is
called annihilating.

Preposition 21f ne N isdivisible by an annihilating
prime, then d(n)=

Annihilating primes are primes such that d(p) =0,
where d(p) is the shadow of a sequence of natural
numbers. First few such primes are: 3, 7, 11, 17, 47, 53,
61,

4. Chromatic Number of Certain Prime
Distance Graphs

Here we compute the chromatic number of the distance
graph: G(Z,D), when D is a set/subset of any of the
above listed primes.

Theorem 4.1 7(G(Z,D))=4, when D is a finite/
infinite set/subset as the case may be of Wedderburn-
Etherington Number Primes.

Proof. Let A denote the set of Wedderburn-Ether-
ington Number Primes. Note that in A, the set of primes
{2,3,11,23} appears as a proper subset. By Lemma 2.4
and Theorem 2.5, the set of primes {2,3,11,23} is one
of the eight sets of chromatic number 4 class. So

Copyright © 2013 SciRes.

= 7(G(z.{2.3.11,23}))
<#(6(2.0))< 2(6(2.P)) -4

as {2,3,11, 23}gDcP

Theorem 4.2 #(G(Z,D))=4, when D is a finite/
infinite set/subset as the case may be of Additive Primes,
Deletable Primes, and Euclid-Mullin sequence primes.

Proof. Let A be the set of Additive primes/Deletable
primes/ Euclid-Mullin sequence primes. As the set of
primes {2,3,5} is a proper subset of A, by Theorem
1.1 and Theorem 2.1

4=y(G(2.{2.3.5}))
<7(G(2.D))<7(G(2.P))=4

as {2,3,5}cDcP.

Theorem 43 7(G(Z,D))=3, when D is a finite/
infinite set/subset as the case may be of 1) Motzkin
primes, 2) Catalan primes, 3) Schroder primes, 4) Non-
generous primes, 5) Pell primes, 6) Primeval primes, 7)
Primes of binary quadratic form, 8) Smarandache-Wellin
primes, and 9) Highly Cototient number primes.

Proof. Let A denote the set of any one of these
special class of prime numbers listed in the theorem. All
these set of primes have a unique property that an even
prime integer 2 is in A but the odd prime integer 3 is
not appearing in A . So by Theorem 2.3(b) and Preposi-

tion 1(c), #(G(Z,D))=3.

Theorem 4.4 »(G(Z,D))=2, when D is a finite/
infinite set/subset as the case may be of 1) Euclid primes,
2) Fortunate primes, 3) Schréder-Hipparchus Number
primes, 4) Gaussian primes, 5) Mersenne primes, 6) Odd
primes, 7) Primorial primes, 8) Proth primes, 9) Regular
primes, 10) Self primes, 11) Solinas primes, 12) Super
primes, 13) Delannoy Number primes, 14) Unique primes,
15) Wagstaff primes, and 16) Annihilating primes.

Proof. Let A denote the set of any one of these spe-
cial class of prime numbers listed in the theorem. All
these special class of primes have a unique property that
A does not contain the even prime integer 2 but A has
an odd prime integer 3. So by Theorems 2.2 and 2.3(a),

7(G(z,D))=
Conclusion

A complete characterization of class three sets and class
four sets are available in the literature when the car-
dinality of the distance subset D of P are either 3 or
4. However when the cardinality of D is more than 4
only a little is known. So in this aspect Theorem 4.1,
Theorem 4.2 and Theorem 4.3 makes some progress
towards the complete characterization of class three and
class four sets. Moreover, Theorem 4.4 brings out certain
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special classes of prime numbers with membership in
class 2 category.
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