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ABSTRACT 

An integer distance graph is a graph  with the set of integers as vertex set and an edge joining two vertices u 

and  if and only if 

 ,G Z D
v u v D   where D is a subset of the positive integers. It is known that   ,G Z P 4  where 

P is a set of Prime numbers. So we can allocate the subsets D of P to four classes, accordingly as  is 1 or 

2 or 3 or 4. In this paper we have considered the open problem of characterizing class three and class four sets when the 
distance set D is not only a subset of primes P but also a special class of primes like Additive primes, Deletable primes, 
Wedderburn-Etherington Number primes, Euclid-Mullin sequence primes, Motzkin primes, Catalan primes, Schröder 
primes, Non-generous primes, Pell primes, Primeval primes, Primes of Binary Quadratic Form, Smarandache-Wellin 
primes, and Highly Cototient number primes. We also have indicated the membership of a number of special classes of 
prime numbers in class 2 category. 

  ,G Z D 

 
Keywords: Primes; Chromatic Number; Distance Graphs 

1. Introduction 

The graphs considered in this paper are simple and 
undirected. A -coloring of a graph  is an assign- 
ment of  different colors to the vertices of  such 
that adjacent vertices receive different colors. The mini- 
mum cardinality  for which G  has a -coloring is 
called the chromatic number of  and is denoted by 

 Let G  and 

k G
k G

k k
G

 .G H  be graphs with H G , then 
it is easy to see that    H G   and so   is a mo- 
notone function. 

We begin with the plane coloring problem. What is the 
least number of colors needed to color all the points of 
the Euclidean plane such that no two points of distance 
one have the same color? The corresponding problem for 
the real line is easy.  To see this, 
partition the vertex set of  into two non empty 
disjoint sets such that their union is . 

   , 1G R D  
G

R

 2.



.

That is,  where     1 2 ,V R V V   1 2 , 2 1
n

V n n




 

and  Now color all the vertices   2 2 1,2 2
n

V n n




  
 

 

Figure 1. A sample Distance graph 

  , , , , , , , ,    G A Z D3 2 1 0 1 2 3 4  with  D 1 . 

of  with color 1 and the vertices of  with color 2.  1V 2V

As , 1,iV i 2  are independent and   , 1G R D   is  

bipartite the result follows. Clearly   2 , 1G R   is an 
infinite graph. The problem of finding the chromatic 
number of   2 , 1G R  is enormously difficult. Paul 
Erdos has mentioned this problem as one of his favorite 
problems. Although he could not solve this problem he 
has made a significant progress towards the solution of 
this problem with a vital result given as follows: First let 
us state the famous Rado’s Lemma [1]. 

Lemma 1.1 Let M  and 1M  be arbitrary sets. 
Assume that to any 1v M  there corresponds a finite 
subset vA  of M . Assume that to any finite subset 

1 , a choice function NN  M  x v  is given, which atta- 
ches an element of vA  to each element v  of : N

 N vx v A . Then there exists a choice function  x v  
defined for all 1v M  (   vx v A  if 1 ) with the 
following property. If 

vM
K  is any finite subset of 1M , 

then there exists a finite subset , such 
that, as far as 

 1N K MN 
K  is concerned, the function  x v  

coincides with       :N Nx v x v
k

x v v K  . 
Theorem 1.1 ([2]) Let  be a positive integer, and let 

the graph  have the property that any finite subgraph 
is -colorable. Then  is k -colorable itself. 

G
k G

Theorem 1.1 allows us to look for the maximum 
number of colors needed for the finite subsets. It is 
obvious that   2 , 1G R  is not a trivial graph. Therefore  
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   2 , 1 1G R 


. The presence of at least one edge,  

viz., between (0,0) and (1,1) in  conveys the    2 , 1G R

 2information that . Similarly, the pre-    2 , 1G R

sence of a clique of size 3, viz., 3K  with vertices at  

(0,0), 
1 3

,
2 2



 


 , (1,1) shows that  

   2 , 1 3G R  . 

Moreover, it is a fact that four points in the Euclidean 
two dimensional plane cannot have pairwise odd integer 
distances. Therefore, a clique of size 4, viz., 4K  cannot 
be an induced subgraph of . But it will be 
quite interesting to find the coordinates of a unit distance 
finite subgraph of G R  such that 

  2 , 1G R

 , 1


 2   4.1G   

The Moser Spindle graph in Figure 1 with a chromatic 
4-coloring is a good example to deduce that  

   2 , 1 4G R  . 

It is interesting to note that so far no unit distance 
graph that requires exactly five colors are known. Fal- 
coner [3] showed that if the color classes form mea- 
urable sets of , then at least five colors are needed. 
Since the construction of non measurable sets requires 
the axiom of choice, we might have the answer turn out 
to depend on whether or not we accept the axiom of choice. 
We can tile the plane with hexagons to obtain a proper 
7-coloring of the graph. The result is originally due to  

2R

Hadwiger and De runner [4]. So    24 , 1 7G R  .  b

See Figures 2 and 3 for the lower and upper bounds 
respectively. Despite the age of this problem, very little 
progress has been made since the initial bounds on   
were discovered shortly after the problem’s creatio  
This fact is a testament to the difficulty of the problem 
and in the absence of progress on the main problem, a 
number of restricted versions and related questions have 
been studied. We study here the open problem of char- 
acterizing the class 4 sets mentioned in the problem for 
the prime distance graph whose vertex set is 

n.

Z  and the 
distance set D  is a subset of not only prim  P  but 
are also they are a special set of primes. The autho  have 
already made some progress in [5-11]. 
 

es
rs
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Figure 3. The hexagonal 7 coloring. 

with the set 

2. Prime Distance Graph 

A prime distance graph is a graph  ,G Z P  
of integers as vertex set and with an edge joining two 
vertices u  and v  if and only if u v P   where P  
is the set  all pri e numbers. 

By a chromatic subgraph of
of m

 a graph we mean a 
m

G  
inimal subgraph of G  with the same chromatic num- 

ber as G .What class graphs will include a chromatic 
subgrap f 

of 
h o  ,G Z D  for D Z ? 

A graph G  is color critical if its only chromatic sub- 
graph is G tself. For any positive integer ,m n , let  i
 ,G m n   the graph comprising  1m  tinct 

0 1, , , mu u u  and m  distinct su s  

1, ,

be  dis
phvertices bgra

mH H which is a copy of ,n each of K  (Where 

nK  is th
adja

e complete graph on n vertices) suc at 0u  is 
cent to mu  and each vertex of i

h th
H  is adjacent to 

1iu   and ,iu for 1 i m   .  

   2 1 21,m nG C n K,1 ,m G   , 

2 1mC   where is the cycle on  vertices. 

Certain Known Results 

integers  the 

2 1m 

Lemma 2.1 ([12]) For any positive ,m n
graph  ,G m n  is color critical with 

  , n n 2G m   . 

Theorem 2.1 ([13])    , 2,3,5 4G Z   and hence 

  , 4G Z P  . 

Proof. Let each integer x  be assigned a color class 
i  precisely when  m  4x i , for 0 4.i   Since 

tegers assigned to t  differ iple of 
4, they are not adjacent in  ,G Z P , so  

od
e cin he sam olor by a mult

  , 4G Z P  . Figure 2. The moser spindle. 
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    , 2,3,5 ,G Z G Z PSince  and   is mono- 
tone, we have  

    , 2,3,5 ,Z G Z P .    

But as 

G

    , 2,3,5 2,2G Z G  we have

where is shown in the Figure 4 determined by 
 and the subgraphs 

  

   , 2,3,5G Z 4  

 2, 2G  
the vertices 0 1 2

1 2,
2, 3, 4u u u  

H H rtex sets  0,5  and  1,6  respectively. 
The proof now ma 2.1. 

iew of Theorem 2.  can allocate the subsets 
D  of P  to four classes, according as G

 with ve
 follows from the Lem

In v 1, we
 has 

on m bset

 ,Z D
chromatic number 1, 2, 3 or 4. Obviously empty set is the 

ly me ber of class 1 and every singleton su  is in 
class 2. 

Lemma 2.2   , 2G Z D   if D  consists only of 
odd integers. 

n into tw

such that an integer 

Proof. Partitio o sets with    V Z  

 Z V    1 2V Z V Z  

 ix V Z  
w as the elem

 V Z  are

if and only if  
 No ents of  are even 

at 
 mod 2x i .  1

and the elements of 2  odd we find th
V Z

jV

ere

 is 

n divisor of the eleme ts of  is 1 then 

an independent set for 1, 2j  . Therefor is biparti- 
te and hence    2G Z  . See Figure 5, wh  = 
indicates the presence o ge between any two ver- 
tices. 

Preposition 1 ([14]) If D  is finite and the greatest 
commo

e G  
, D

f an ed

n D
(a)   2D   if all id D  are odd, 

 

 

Figure 4. In the figure  and are isomor ic to . H1 H2  ph  K2

 

 

(b)   3D   if no distance element is divisible by 3, 
(c)   3D   if no distance element is divisible by 3 
d at istance element is even. an least one d
Lemma 2.3 If D  contains no multiple of a fixed 

positive integer k , then  , .Z D k   
Proof. Color each vertex x  in  ,G Z D  by x  mod 

k . Since x  and y  have the same colo only  r if an  ifd 
x y  is a multiple of k , but D  contains no multiple 

of k , this is a proper k -coloring. 
For simplicity, we assume that  gcd 1D   in the rest 

of this sectio . If n 1D  , then it is not hard to see that 
 , 2Z D  . For the case of  

d o  a

2, ,D D a b , where 
a  and b  are relatively prime, and so either they are 
both od r they re of opposite parity. 

Theorem 2.2 If a  and b  are relatively prime posi- 

tiv e odd integers, then  , , 2.Z a b   

Proof. The theorem f
2.3 an fact that 

ollows immediately from Lemma 
d the   , , 2Z a b   for any nonempty 

) Let  
D . 

Theorem 2.3 ([13] with  ,D P 2D  . Then 
 may D be classified as follows

; otherwise 
cla

: 
(a) D  is in class 2 if 2 D  is in 
ss 3 or 4. 

 D

(b) If 2 D  and 3 D , D  is in class 3. then 

(c) If     2,3 2 : mod 5D p P p   , then 

is in class 3. 

D  

(d) If     2,3
then D  is in class 3. 

: 2, 3,7 mod  14D p P p      ,  

(e) If  2,3,5 D  or  2,3,11,13 D , then 

any prime 

D  is 
in cla 4. ss 

Theorem 2.4 ([13]) For ,5p   2,3, p  is 
in class 3. 

Lemma 2.4 ([15]) There exists only r of 
sets 

a finite numbe
 2,3, , ,D  p q  , ,p q P  7p   and 2,q p   

with   4.D   
Th ]) , q  be  

prime 
eorem 2.5 ([15  Let  

2q p  . Then
2,3,D p  a set of

s with 7p  and    4D   
holds if and only if  

         , 11,19 , 11,p q 

       
23 , 11,37 , 11,41 ,

17,29 , 23,31 , 23,41 , 29,37 .
 

The proofs of Lemma 2.4 and Theorem 2.5 are 
available in [15]. Moreover, the authors M. Voigt and H. 
Walther have shown that there are exactly eight pairs of 
primes ,p q   7, 2p q p    with  2,3, , 4.p q   

Theorem 2.6 ([16]) Let  , ,D a b c  with a b c   
and  a b c  Then

b

 gcd ,, 1.

 
 

 

2, if are odd;

4, if 1, 2, 3 , or

and mod 3 ;

3, otherwise.

c a
D

b a





, ,a b c

D m   
 



 

Figure 5. = indicates the presence of an edge bet en any 
two vertices of V1(Z) and V2(Z). 

we

Copyright © 2013 SciRes.                                                                                OJDM 



V. YEGNANARAYANAN, A. PARTHIBAN 4 

3. Some Special Set of Prime Numbers 

Consider the following interesting set of prime numbers 
namely Additive Primes, Deletable Primes, Wedderburn- 
Etherington Number Primes, Euclid-Mullin Sequence 
Primes, Motzkin Primes, Schröder Primes, Catalan Pri- 

 Binary 
-Wellin 

mes, Non-generous Primes, Pell Primes, Primes of
Quadratic Form, Primeval Primes, Smarandache
Primes, Highly Cototient Number Primes, Annihilating 
Primes, Euclid primes, Fortunate Primes, Schröder- 
Hipparchus Number primes, Gaussian Primes, Mersenne 
Primes, Odd Primes, Primorial Primes, Proth Primes, 
Regular Primes, Self Primes, Solinas Primes, Super 
Primes, Delannoy Number Primes, Unique Primes, and 
Wagstaff Primes. For the definitions of these set of pri- 
mes refer [17]. However, the existence of an interesting 
mathematical process that logically leads to the precise 
definition of an Annihilating prime we mention the same 
here for the sake of completeness and for the ease of the 
readers. Each of these set of primes have certain unique 
properties that make them special and are found to be 
useful from both theoretical and practical point of view. 

Annihilating Primes 

Definition 3.1 ([18]) For  0,1, 2,n N    let  
 1 1seq n  denote the number of one-to-one sequences— 

these are sequences without repetitions—we can build 
with n  distinct objects. 

 (= the empty sequence), 1a , 2a , 1 2,a a , 

2 1,a a . 
Hence,  1 1 2seq  . Of c o find a

neral expression for  1 1

ourse, it is easy t  ge-  

seq n . Since there are 
k

n

 
 
 

  

possible ways to choose k  obj
tinct) objects, and since k  bjects  

!k

ects from a set of
(dis (distinct) o  g
rise to permutations, we get the 

 n  
ive

 following Lemma.  

Lemma 3.1 1 1

0 0

!n nk n  
( ) ! .

!j

seq k
n j



  Also  
k

n


 


 the

next representation for  1 1seq n  is elementary. 

Lemma 3.2 For all positive N  we have  
1 1 ! .



n
seq en      n

nRemark: For d, si
 1 1 0 1 2

0  
0

the fo does not hol nce rmula 
!se . 

Proof. Accord
q     e  

ing to Lemma 3.1 we have 

 

    
 1

1 1 for 1e n   



1 1

1

!
!j n

en seq n
j



 

  

1 1 1 1
1seq n  

    
 

1

!

1

1 2 2 3

n

n

n n n n



     

The following recursive relation for 





 is an 

immediate consequence of the second formula in Lemma 
3.1. 

Lemma 3.3 For all positive  we have  

 1 1seq n

n N
   1 1 1 1 1 1seq n nseq n  .  

finally get the following i
 Using 
ntegral

this formula, we 
 representation of 

 1 1seq n . 
Lemma 3.4 For all n N  we have  

1 1( ) d .n t

1

seq n e t e t


    

Notation: Throughout this te  adopt the stxt we andard 
notation a b  to express that a  divides b  for  

,a b N . Moreover, if 1b   then  

 Mod
a

a b
     , :a b
b


 

denotes the reminder of the division  by ; and of a  b
 ,a b
b

 denotes the greatest common di r of  and 

n es of 

viso  a
. 
We start our investigation o  divisibility properti

n  with ic st been proved in 
. 

Lemma 3.5 For natural numbers  the fol-  

 a simple fact wh h has fir
[19]

 n k N ,,

lowing implication holds: If 2 | n , then 2 | 2nk    k k 
   

 2 |k n tand 
  for any t  with 0 2 .kt   

Definition 3.2   If 
n N

mbers, we define its shadow to be the sequence 

f n  ce of natural  

nu

is a sequen

  d h
h N

 given by    : ,d h D h  where  

       f n: : |D h n N n h h     

are the shadow sets of the seq .uence f  
The shadow  d h  counts the se rquence ent ies  
     1f 0 , 1 , ,f f h   are divisible by h . So,  which

the shadow measures (to a certain extent) how “divisible” 
t ies of the sequence  he entr f n

being sm

 
n  sha- 

all. If the entries of 

are: For example, if 
 numbers occur in the sequence, theonly prime

dow 
 its

will reflect this fact by 
 f n  have many divisors, t shadow he will typically be 

large. 
If  f n  is an arithmetic sequence of first order, 

 and for the shadow of Euler’s 
then 

its sha  is periodic,dow
 -function we have   1d h   for all 1.h   

Example: If for a function f  there exists an 0n N  
such that for all 0h n  we have   0,d h   then for all 

0h n  we have  f h h . Vice versa, if  f h h  for 
Nall h , then  d h  equals the number of zeros in 

      10f ,
nt fu

1 ,f , f h  . Hence, it is easy to construct 
differe nctions which have the same shadow: 

n     0 1 2 3 4 5 6 7··· 

 1f n   5 6 7··· 0 1 2 3 4

 2f n  0 1 1 2 3 4 5 6··· 

Copyright © 2013 SciRes.                                                                                OJDM 
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 3f n  0 1 1 1 2 3 4 5··· 

dow 0

Definition 3 3 A seque

sha  1 1 1 1 1 1 1··· 

. nce   
n N

f n


 is said to have 

the reduction property, if for all , ,n q N q 

 

1,  we  

have,     Mod , , ., Mod Modf n n q q  q f

Lemma 3.6 The sequence   
n N

seq n


 1 1 has the re- 

duction property. 
Lemma 3.7 The sequence shadow d  of a  f n  

, i.e. if 

ng

which has the ltiplicative
 

t the followi

ry 1 If is the shadow of 

 reduction property is mu
a , 1b  , then    d ab d a  b .d

As an immediate consequence we ge : 

orollaC d  1 1seq   and if  

is 

Th ad

1

i
k

k
i

i

p


 n 

the prime decomposition of n , then 

.
k

   ik
id n d p  

1i

erefore, the sh ow d  of 1 1seq   is fully deter- 
mined by its values on the ers e numbers. But 
what can we say about  fo  prime? 

By the reduction pr

pow
 kd p
rty, all ele

 of prim
p
ents 

r 
mope  1km D p 

me 

  

must be of the form m n   for soklp  kn D p   

and some . Hence, we get inductively 
that if 

  0,1, , 1l p 
  0d p  , then   0kd p   for all positive 

 wi
.k N  

Definition 3.4 A prime number th   0d pp   is 
called annihilating. 

Preposition 2 If n by an annN  

 ar

is divisible ihilating 
pr

e prime
ime, then   0.d n   
Annihilating primes s such that   0d p  , 

where  d p  of a sequence of natural 
numbers. F  such pri es are: 3, 7, 11, 17, 47, 53, 
61, ··· 

 
irst 

is the shadow
few m

hs 

pute the hromatic number of the distance 
gr

4. Chromatic Number of Certain Prime 
Distance Grap

Here we com  c
aph:  ,G Z D , when D  is a set/subset of e 

above listed primes. 
Theorem 4.1   , 4G Z D

any of th

 , when D  is a finite/ 
infinite set/subset as the case may be of Wedderburn- 
Etherington Number Primes. 

Proof. Let A  denote the set of Wedderburn-E
ington Number Primes. Note that in 

ther- 
A , the set of prim

appears as a 
es 

proper By Lemma 2.4 

at

 2,3,11, 23  

ight se

subset. 
and Theorem 2.5, the set of primes  2,3,11, 23  is one 
of the e f chrom ic number 4 class. So ts o

   , 2,3,11,23Z

  
4 G

  , , 4G Z D G Z P   
 

as  2,3,11, 23 D P . 

Theorem 4.2 



  , 4G Z D  , when  is a finite/ 
infinite set/subset as the case may be of Additive Primes, 
Deletable Primes, and Euclid-Mullin sequence primes. 

 

D

Proof. Let A  be the set of Additive primes/Deletable 
primes/ Euclid-Mullin sequence primes. As the set of 
primes   is a proper subset of A2,3,5  , by Theorem 
1.1 and  2.1   Theorem

   
     

4 , 2,3,5

, ,

G Z

G Z D G Z P



 



4  
 

as  2,3,5 D P  . 
Theorem 4.3   , 3G Z D  , when D  is a finite/ 

infinite set/subset as the case may be of 1) Motzkin 
primes, 2) Catalan primes, 3) Schröder primes, 4) Non- 
generous primes, 5) Pell primes, 6) Primeval primes, 7) 
Primes of binary quadratic form, 8) Smarandache-Wellin 
primes, and 9) Highly Cototient number primes. 

Proof. Let A  denote the set of any one of these 
special class of prime numbers listed in the theorem. All 
these set of primes have a unique property that an even 

e integer  inprim   2 is A  but the odd prime integer 3 is 
not appearing in A . So by Theorem 2.3(b) and Preposi-  

tion 1(c),   , 3G Z D  . 

Theorem 4.4   , 2G Z D  , when D  is a finite/ 
infinite set/subset as the case may be of 1) Euclid primes, 
2) Fortunate primes, 3) Schröder-Hipparchus Number 
primes, 4) Gaussian primes, 5) Mersenne primes, 6) Odd 
pr o

nd

imes, 7) Prim rial primes, 8) Proth primes, 9) Regular 
primes, 10) Self primes, 11) Solinas primes, 12) Super 
primes, 13) Delannoy Number primes, 14) Unique primes, 
15) Wagstaff primes, a  16) Annihilating primes. 

Proof. Let A  note the set of any one of these spe- de
of e numbers listed in the theorem. All 

th  of primes have  p
cial class  prim

ese special class  a unique roperty that 
A  does not contain the even prime integer 2 but A  has 

an odd prime integer 3. So by Theorems 2.2 and 2.3(a), 
  , 2G Z D  . 

Conclusion 

A complete characterization of class three sets and class 
four sets are available in the literature when the car- 
dinality of the d

Th ss

ur sets. Moreover, Theorem 4.4 brings out certain 

istance subset D  of P  are either 3 or 
4. However when the cardinality of D  is more than 4 
only a little is known. So in this aspect Theorem 4.1, 

eorem 4.2 and Theorem 4.3 makes some progre  
towards the complete characterization of class three and 
class fo
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 of prime numbers with membership in 

in

[1] R. Rado, “Axiomatic Treatment of Rank in Infinite Sets,”
thematics, Vol. 1, No. 1949, 
4153/CJM-1949-031-1

special classes
class 2 category. 

5. Acknowledgements 

This research is carried out with the f ancial grant and 
support of National Board for Higher Mathematics, 
Government of India under the grant sanction no. 2/ 
48(10)/2005/R&D-II/11192/dated 26,Nov,2010. 

REFERENCES 
 

Canadian Journal of Ma
1949, pp. 337-343. doi:10.  

[3] K. J. Falconer, “The Realization of Distances in Measur- 
able Subsets  of Combina
Theory, Series  pp. 184-189. 

[2] N. G. de Bruijn and P. Erdos, “A Color Problem for Infi- 
nite Graphs and a Problem in the Theory of Relations,” 
Proceedings, Series A, Vol. 54, No. 5; Indagationes Ma- 
thematicae, Vol. 13, No. 5, 1951, pp. 371-373.  

Covering Rn,” Journal
 A, Vol. 31, No. 2, 1981,

torial 
 

doi:10.1016/0097-3165(81)90014-5 

[4] H. Hadwiger and H. Debrunner, “Combinatorial Geome- 
try in the Plane,” Holt, Rinehart and Winston, New York, 
1964. 

[5] V. Yegnanarayanan, “On a Question Concerning Prime 
Distance Graphs,” Discrete Mathematics, Vol. 245, No. 
1-3, February 2002, pp. 293-298.  
doi:10.1016/S0012-365X(01)00221-7 

[6] V. Yegnanarayanan and A. Parthiban, “Chromatic Num- 
ber of Certain Graphs,” Proceedings of Internatio
Conference on Mathematics in Engin

nal 
eering and Business 

nanarayanan, “Chromatic Number of Graphs with 

, “The Chromatic 

anarayanan, “The Chromatic Number of Gener- 

Parthiban, “The Chromatic 

 2012, pp. 305-313. 

. Erdos and D. K. Skilton, “Colouring 

Management, Vol. 1, Chennai, 9-11 March 2012, pp. 115- 
118.  

[7] V. Yeg
Special Distance Sets, I,” Algebra and Discrete Mathe-
matics, Accepted for Publication in January 2013, to ap-
pear.  

[8] V. Yegnanarayanan and A. Parthiban
Number of Graphs with Special Distance Sets-III,” Jour- 

nal of Mathematical and Computational Science, Vol. 2, 
No. 5, 2012, pp. 1257-1268. 

[9] V. Yegn
alized Fibonacci Prime Distance Graph,” Journal of Ma- 
thematical and Computational Science, Vol. 2, No. 5, 
2012, pp. 1451-1463. 

[10] V. Yegnanarayanan and A. 
Number of Graphs With Special Distance Sets-II,” Pro- 
ceedings of International Conference on Mathematical 
Modelling and Applied Soft Computing, CIT, Vol. 1, 
Coimbatore, 11-13 July

[11] V. Yegnanarayanan and A. Parthiban, “The Chromatic 
Number of Graphs With Special Distance Sets-IV,” Pro- 
ceeding of International Conference on Applied Mathe- 
matics and Theoretical Computer Science, Kanyakumari, 
2013, to appear.  

[12] R. B. Eggleton, P. Erdos and D. K. Skilton, “Coloring the 
Real Line,” Journal of Combinatorial Theory, Series B, 
Vol. 39, No. 1, 1985, pp. 86-100; To Erratum, Vol. 41, 
1986, p. 139.  

[13] R. B. Eggleton, P
Prime Distance Graphs,” Graphs and Combinatorics, Vol. 
6, No. 1, 1990, pp. 17-32. doi:10.1007/BF01787476 

[14] A. Kemnitz and H. Kolberg, “Coloring of Integer Distance 
Graphs,” Discrete Mathematics, Vol. 191, No. 1-3, 1998, 
pp. 113-123. doi:10.1016/S0012-365X(98)00099-5 

[15] M. Voigt and H. Walther, “Chromatic Number of Prime 
Distance Graphs,” Discrete Applied Mathematics, Vol. 51, 
No. 1-2, 1994, pp. 197-209.  
doi:10.1016/0166-218X(94)90109-0 

[16] X. Zhu, “The Circular Chromatic Number of Distance 
Graphs with Distance Sets of Cardinality 3,” Journal of 
Graph Theory, Vol. 41, No. 3, 2002, pp. 195-207.  
doi:10.1002/jgt.10062 

[17] en.wikipedia.org/wiki/List_of_prime_numbers  

pdf 

rithmetic 
 59, No. 

[18] L. Halbeisen1 and N. Hungerbuhler, “Number Theoretic 
Aspects of a Combinatorial Function,” 2000.  
www.math.uzh.ch/user/halbeis/publications/pdf/seq.

[19] L. Halbeisen and S. Shelah, “Consequences of A
for Set Theory,” Journal of Symbolic Logic, Vol.
1, 1994, pp. 30-40. doi:10.2307/2275247 

 

http://dx.doi.org/10.4153/CJM-1949-031-1
http://dx.doi.org/10.1016/0097-3165(81)90014-5
http://dx.doi.org/10.1007/BF01787476
http://dx.doi.org/10.1007/BF01787476
http://dx.doi.org/10.1007/BF01787476
http://dx.doi.org/10.1016/S0012-365X(98)00099-5
http://dx.doi.org/10.1016/S0012-365X(98)00099-5
http://dx.doi.org/10.1016/0166-218X(94)90109-0
http://dx.doi.org/10.1016/0166-218X(94)90109-0

