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ABSTRACT 

We consider the  order nonlinear differential equation on time scales  thn

    , 0y t f t y t  n  ,  ,t a b

 

, 

subject to the right focal type two-point boundary conditions  

0y a
i  , 0 2i n    

   0n py b p

 ,  1, but fixed





     

1 p n  . 

We establish a criterion for the existence of at least one positive solution by utilizing Krasnosel’skii fixed point theorem. 
And then, we establish the existence of at least three positive solutions by utilizing Leggett-Williams fixed point theo-
rem. 
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1. Introduction 

The study of the existence of positive solutions of bound- 
ary value problems (BVPs) for higher order differential 
equations on time scales has gained prominence and it is 
a rapidly growing field, since it arises, especially for 
higher order differential equations on time scales arise 
naturally in technical applications. Meyer [1], strictly 
speaking, boundary value problems for higher order dif- 
ferential equation on time scales are a particular class of 
interface problems. One example in which this is exhib- 
ited is given by Keener [2] in determining the speed of a 
flagellate protozoan in a viscous fluid. Another particular 
case of a boundary value problem for a higher order dif- 
ferential equation on time scales arising as an interface 
problem is given by Wayner, et al. [3] in dealing with a 
study of perfectly wetting liquids. In these applied set- 
tings, only positive solutions are meaningful. By a time 
scale we mean a nonempty closed subset of . For the 
time scale calculus and notation for delta differentiation, 
integration, as well as concepts for dynamic equation on 
time scales we refer to the introductory book on time 
scales by Bohner and Peterson [4], and denote the time 

scales by the symbol .  
By an interval we mean the intersection of the real in- 

terval with a given time scale. The existence of positive 
solutions for BVPs has been studied by many authors, 
first for differential equations, then finite difference 
equations, and recently, unifying results for dynamic 
equations. We list some papers, Erbe and Wang [5], and 
Eloe and Henderson [6,7], Atici and Guseinor [8], and 
Anderson and Avery [9], and Avery and Peterson [10], 
Agarwal, Regan and Wang [11], Deimling [12], Gregus 
[13] Guo and Lakshmikantham [14], Henderson and 
Ntouyas [15], Hopkins [16] and Li [17]. Recently, in 2008, 
Moustafa Shehed [18] obtained at least one positive solu- 
tion to the boundary value problem  
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This paper considers the existence of positive solutions 
to  order nonlinear differential equation on time 

Copyright © 2013 SciRes.                                                                                 APM 



K. R. PRASAD  ET  AL. 71

scales  

    , 0
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subject to the right focal type boundary conditions  
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These boundary conditions include different types of 
right focal boundary conditions.  

We make the following assumptions throughout:  
(A1)  is continuous with 

respect to  where  is nonnegative real numbers, 
 : , nf a 
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(A2) The point t in  , na b 
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This paper is organized as follows; In Section 2, we 
estimate the bounds for the Greens function which are 
needed for later discussions. In Section 3, we establish a 
criteria for the existence of at least one positive solution 
for the BVP by using Krasnosel’skii fixed point theorem. 
In Section 4, we establish the existence of at least three 
positive solutions for the BVP by using Leggett-Williams 
fixed point theorem. Finally, as an application, we give 
some examples to demonstrate our result.  

2. Green’s Function and Bounds 

In this section, first we state a Lemma to compute delta 
derivatives for , next, construct a Green’s function for 
homogeneous two point BVP  with (2), (3) 
and estimate the bounds to the Green’s function.  

Lemma 2.1. Let , define a function  
by   nf t  t
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set of all distinct combinations of  such 
that the sum is equal to given .  
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Theorem 2.2. Green’s function for the homogeneous 
BVP  

  

 

with the boundary conditions (2), (3) is given by  
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Proof: It is easy to check that the BVP  with 
the boundary conditions (2) and (3) has only trivial solu-
tion. Let 
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By using boundary conditions, ,   0u a 
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Lemma 2.3. For     ,a b      
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3. Existence of at Least One Positive Solution 

In this section, we establish a criteria for the existence of 
at least one positive solution of the BVP (1)-(3). Let 
 y t
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Theorem 3.1. (Krasnosel’skii) Let 

  
  be a Banach 

space, K  1 be a cone, and suppose that  , 2  
are open subsets of   with  and 10 1 2  . 
Suppose further that  : \ K   2 1T K  is com-
pletely continuous operator such that either 
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1) Tu u ,  and 1u K  Tu u
u K 

,  
, or 2

2) Tu u , 1  and u K  Tu u
2u K 

,  
 holds. Then T has a fixed point in  

 \ . 
f  

2 1

Theorem 3.2. If  and  , then the BVP 
(1)-(3) has at least one positive solution that lies in 
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0 0f
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Proof: We seek a fixed point of T in . We prove this 

by showing the conditions in Theorem 3.1 hold.  
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An application of Theorem 3.1, to (12), (13) and (14) 
yields a fixed point of T  that lies in  \ 2 1



E P
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This fixed point is a solution of the BVP (1)-(3).      

4. Existence of Multiple Positive Solutions 

In this section, we establish the existence of at least three 
positive solutions to the BVP (1)-(3).  

Let  be a real Banach space with cone . A map 
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 is said to be a nonnegative continuous 
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nonnegative continuous concave functional on . We 
define the following convex sets  

0 a b   S
P

 : ,a y P y a   P  

    , , : , .P S a b y P a S y y b        

We now state the famous Leggett-Williams fixed point 
theorem.  
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To sum up the above, all the hypotheses of Theorem 
4.1 are satisfied. Hence  has at least three fixed points, 
that is, the BVP (1)-(3) has at least three positive solu- 
tions ,  and  such that 
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5. Examples 

Now, we give some examples to illustrate the main 
result.  

Example 1 
Consider the following boundary value problem  
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The Green’s function for the homogeneous boundary 
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It is easy to see that all the conditions of Theorem 3.2 
hold. It follows from Theorem 3.2, the BVP (18) has at 
least one positive solution.  
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Consider the following boundary value problem  
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The Green’s function for the homogeneous boundary 
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It is easy to see that all the conditions of Theorem 3.3 
hold. It follows from Theorem 3.3, the BVP (19) has at 
least one positive solution.  

Example 3 
Consider the following boundary value problem on 

time scale 
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where  
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The Green’s function for the homogeneous boundary 
value problem is given by  
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A simple calculation shows that 
13

1179648
C  ,  

1

720
D   and 

1

3072
  . If we choose 0

1

2
d  1 1d,    

4000cand   then, we see that all the conditions of 
Theorem 4.2 hold. It follows from Theorem 4.2, the BVP 
(20) has at least three positive solutions. 

6. Conclusion 

In this paper, we have established the existence of posi-
tive solutions for higher order boundary value problems 
on time scales which unifies the results on continuous 
intervals and discrete intervals, by using Leggett-Wil- 
liams fixed point theorem. These results are rapidly aris-
ing in the field of modelling and determination of flagel-
late protozoan in a viscous fluid in further research. 
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