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ABSTRACT

We consider the n" order nonlinear differential equation on time scales

y' (t)+ f(ty(t))=0, tefab],

subject to the right focal type two-point boundary conditions

y* (a)=0, 0<i<n-2

y’ (6""’ (b)) =0, (1< p<n-1,but fixed).

We establish a criterion for the existence of at least one positive solution by utilizing Krasnosel’skii fixed point theorem.
And then, we establish the existence of at least three positive solutions by utilizing Leggett-Williams fixed point theo-

rem.
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1. Introduction

The study of the existence of positive solutions of bound-
ary value problems (BVPs) for higher order differential
equations on time scales has gained prominence and it is
a rapidly growing field, since it arises, especially for
higher order differential equations on time scales arise
naturally in technical applications. Meyer [1], strictly
speaking, boundary value problems for higher order dif-
ferential equation on time scales are a particular class of
interface problems. One example in which this is exhib-
ited is given by Keener [2] in determining the speed of a
flagellate protozoan in a viscous fluid. Another particular
case of a boundary value problem for a higher order dif-
ferential equation on time scales arising as an interface
problem is given by Wayner, et al. [3] in dealing with a
study of perfectly wetting liquids. In these applied set-
tings, only positive solutions are meaningful. By a time
scale we mean a nonempty closed subset of R. For the
time scale calculus and notation for delta differentiation,
integration, as well as concepts for dynamic equation on
time scales we refer to the introductory book on time
scales by Bohner and Peterson [4], and denote the time
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scales by the symbol T.

By an interval we mean the intersection of the real in-
terval with a given time scale. The existence of positive
solutions for BVPs has been studied by many authors,
first for differential equations, then finite difference
equations, and recently, unifying results for dynamic
equations. We list some papers, Erbe and Wang [5], and
Eloe and Henderson [6,7], Atici and Guseinor [8], and
Anderson and Avery [9], and Avery and Peterson [10],
Agarwal, Regan and Wang [11], Deimling [12], Gregus
[13] Guo and Lakshmikantham [14], Henderson and
Ntouyas [15], Hopkins [16] and Li [17]. Recently, in 2008,
Moustafa Shehed [18] obtained at least one positive solu-
tion to the boundary value problem

y" +2a(t) f(y(t)=0,0<t<l,

y(0)=y"(0)=-=y"" =y'(1)=0.
y(0)=y'(0)=--=y"? =y(1)=0.
y(0)=y'(0)="=y" =y"(1)=0.

This paper considers the existence of positive solutions
to n™ order nonlinear differential equation on time
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scales
y? (t)+ f(ty(t))=0,te[ab],a<b 1)
subject to the right focal type boundary conditions
y* (a)=0,0<i<n-2 ©)

y* (6" (b))=0.(1< p<n-Lbutfixed).  (3)

These boundary conditions include different types of
right focal boundary conditions.

We make the following assumptions throughout:

(A1) f :[a,a”(b)]xR+ — R" is continuous with
respectto y, where R* is nonnegative real numbers,

(A2) The point t in [a, o" (b)} is not left dense and
right scattered at the same time.

Define the nonnegative extended real numbers f,,

f° f, and f* by
t
£ = tim gm0V
y—0" le[a,o'n(b)] y
t
fO=lim max (’y),
3’4’04r te[a,o'n(b)} y
t
f —tim fim BY)
yﬁwte[ﬂ,o‘”(b)} y
and

f(t
f*=lim max (’y).
y—o© lel:a‘a'n(b):l y

This paper is organized as follows; In Section 2, we
estimate the bounds for the Greens function which are
needed for later discussions. In Section 3, we establish a
criteria for the existence of at least one positive solution
for the BVP by using Krasnosel’skii fixed point theorem.
In Section 4, we establish the existence of at least three
positive solutions for the BVP by using Leggett-Williams
fixed point theorem. Finally, as an application, we give
some examples to demonstrate our result.

2. Green’s Function and Bounds

In this section, first we state a Lemma to compute delta
derivatives for t", next, construct a Green’s function for
homogeneous two point BVP —yAn =0 with (2), (3)
and estimate the bounds to the Green’s function.

Lemma 2.1. Let neN, define a function f.T >R
by f(t)=t", if we assume that the conditions (A2) and
(A3) are satisfied, then

r (t):(nf:n)!(nzm”‘J @

o =t""" s {ﬁ(ai(t))ni},wewm

NNy, eNU{0} L i
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N+ ++ -+ =1

holds for all m<neN, where > is the

-+ +-+np eNU{0}
set of all distinct combinations of {n,,n,,---,n } such
that the sum is equal to given r.

Proof see [19].

We denote

n-p-1

977
119"

p—
w(t,s)=
r=0

NNy - np=r

2
o=
-,Npe

NNy, Ny eNU{0}

Theorem 2.2. Green’s function for the homogeneous
BVP

-y =0,
with the boundary conditions (2), (3) is given by
G (t,9), t<s

(nil)!?_ll(t""i(s))» o(s)<t

G(t,s)=

G (t,5)-

where

o(c™ (b),' (s))[T(t-" (a))
G (t,s)= " =
(n—l)!a)(a (b),o a)
for all (t,s)e[a,a“ (b)}x[a,b]. n
Proof: It is easy to check that the BVP —y* =0 with
the boundary conditions (2) and (3) has only trivialn solu-
tion. Let y(t,s) be the Cauchy function for —y* =0,
and is given by

For each fixed se[a,b], let u(-s) be the unique
solution of the BVP

and

0 (6™ (b),5) =—y" (" (b).5).

yAp (t,s) -1

= —1)! w(o-”‘p (b),o' (S))

t=o"P() (N—p-—

Since

t t t

V(1) =1y, ()= [Ary, () = [ f o AT At

a a
(n-1)times

are the solutions of —u®" =0,
u(t,s)

=a1(s)-1+a2(S)-iAr+-~-+an(s)£---r Ar--Ar
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By using boundary conditions, u (a)=0, 0<i<n-2,

=0 . Therefore

At =anlj(t—0'i_l (a)).

wehave o =a,=--=0,
t t
=% .[a”'.[o"’z(a)AT
(n-1)times
Since,
u?’ (o—“”’ (b),s) =—y* (o—“”’ (b),s),
It follows that
a)(O'"’p (b),O'i (S))
a, = AN
(n—l)!w(a"'p (b),a'_la)
Hence G(t,s) has the form for t<s,
. n_l .
a)(an’p (b),UI (S))lﬁ[(t—a"1 (a))
G(t,s)= L I .
(n—l)!w(a"'p (b),o-"la)

G(t,s)=y(t,s)+u(t,s). It follows

And for t>o(s),
that

n-1

1 i
-5 <t_a (S))’

si=l

G(t,s)=G(t,s)-

where

ofo™ (o). (5)[](1-0" (2)

G (t,5)= = O

(n 1)'a)( ”p(b),a a)

Lemma 2.3. For (t,s) [ G”(b)}{a,a )], we
have

G(t,5)<G(o" (b),s). (5)
o (b) we have
G(t.5)=G,(t,5)<G,(c" (b).s)=G(c" (b).s).

Similarly, for aSO'(S)StSO' (b), we have
G(t,S)SG(U”(b),S). Thus, we have

G(t,s)sG(a”(b),s),
for all (t,s)e[a,a” (b)]x[a,o-(b)]. O
3a+0"(b) a+30"(h)

Proof: For a<t<s<

Lemma 2.4. Let | = , . For
4 4
(t.s)elx[a,o(b)], we have
1 n
G(t,s)zWG(o (b).s). (6)

Proof: The Green’s function G(t,s) for the homo-
geneous BVP corresponding to (1)-(3) is positive on

(a,(f” (b))x(a,a(b)).

For a<t<s<o"(b) and tel,wehave
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Gts) _p (to"(@) 1
6o"(0).s] (" (b)-0" () 4

Similarly, for a<o(s)<t<o"(b) and tel we
have

G(t,s)
G(O'” (b),s)
G, (t,s)—(nil)!ﬁ(t—o—'(s))
_ s

[m]

3. Existence of at Least One Positive Solution

In this section, we establish a criteria for the existence of
at least one positive solution of the BVP (1)-(3). Let
y(t) be the solution of the BVP (1)-(3), and is given by

a(b)

- Jes) sy @)

forall te [a,a” (b)}
Define f= {y :yeC [a,O'" (b)]} with the norm

= t).
1=, gmax [y 1)
Then (,B,||||) is a Banach space. Define aset x by

- {y ef:y(t)=00n |:a,O'n (b)]
1 ®)
and min y (t) > W"y"}

We define the operator T :x — f by

a(b)
(Ty)(t)= [ G(t.3)f(s.y(s))as, ©)
forall te|a,o"(b)

Theorem 3.1. (Krasnosel’skii) Let B be a Banach
space, K< £ be a cone, and suppose that Q,, Q,
are open subsets of B with 0eQ, and Q cQ,.
Suppose further that T:KN(Q,\Q,)—>K is com-
pletely continuous operator such that either
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1) [Tul<[u]. ueKNoQ, and [Tul>u.
ue KNoQ,, or
2) [Tu|>[u. ueknoQ, and [Tu|<[u.

ue KMoQ, holds. Then T has a fixed point in
KN(Q, \Q )-
Theorem 3.2. If f°=0 and f_ =0, then the BVP
(1)-(3) has at least one positive solution that lies in « .
Proof: We seek a fixed point of T in . We prove this
by showing the conditions in Theorem 3.1 hold.
First, if y € k', then

(Ty)(t)= )G(t,s) f(s,y(s))As

g,c_,%

o

<

b)

G(a” (b),s) f(s.y(s))As

o —

so that

[Ty| < J':(b)G(a” (b).s) f(s.y(s))As

Next, if Yy €« , then

o(b)

= ;[ G(t,s) f(s,y(s))ds
o(b)
).s) f(s.y(s))as

p4n1£G(

1

Hence, T:x — x. Standard argument involving the
Arzela-Ascoli theorem shows that T is completely con-
tinuous operator. Since f’=0, there exist 7 >0 and

f(ty)
H, >0 such that maxte[wn (b)}— <n,, for

o(b)
0<y<H,,and 7, I G(o-”(b),s)AsSl. Let us choose

y ek with ||y|| =H, . Then, we have from Lemma 2.3,

o(b
0= T 6051 (5.(5))
gg(b)G(o-”(b),S) f(s,y(s))

< [ 6(a"(b).s)my(s)
o(b
<n J. G(G" (b),s)||y||Ass||y||,te[a,a" (b)}

a
Therefore, [Ty|<|y|| Hence, if we set

-

<H1}.
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Then

| (10)

Since f, =oo, there exist 7, and H, >0 such that

~ fty)
mlnte[a,o-"(b)} >'72 for y> H2 and
1 a(b)
2 J G(o‘"(b),s)Ale. If we set
p--4 2
H, =max{2H1, p-4" |-_|2},
and define

={yes:[y|<H.}.

If yexdQ,, so that ||y||= H,, then

miny() oyl = A,
And we have
o'(b)
(Ty)(t)= | G(t.s) f(s.y(s))As
o(b) 1 ]
) I p 70(0"(0).5) F(s.y(s)) s
1 o(b)
e !G(U"(b)sS)my(S)As
n o(b) }
p2_422(n—1) {G(O— (b),s)”y"ASZHy"

Thus, ||Ty|| > ||y|| , and so

| (11

An application of Theorem 3.1 to (10) and (11) yields
a fixed point of T thatliesin x((Q,\ Q). This fixed
point is a solution of the BVP (1)-(3). m|

Theorem 3.3. If f,=c and f” =0, then the BVP
(1)-(3) has at least one positive solution that lies in « .

Proof: Let T be the cone preserving, completely con-
tinuous operator defined as in (9). Since f, =0, there
exist 77, >0 and J, >0 such that

min (t y)zﬁ for 0<y<J, ,and
te[a,on(b)] y e
1 o(b)
ﬁm J. G(O'n (b),S)ASZI. In this case, define
a

Ql :{yeﬂ"y"<\]]} Then, for yEK‘ﬂaQI’ we have
f(s,y(s))2my(s), sel andmoreover,
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y(t) IO;nllly, tel. Thus
o(b)
(Ty)(t)= { G(t.s) f(s.y(s))As
o(b)

p-4
771 o(b) )
ReaECH | G(o" (b).s)ly]as
2ly|.
From which we have
ITy||=|y|. for y e kN0, (12)

It remains for us to consider f* =0, in this case,
there exist 77, >0 and J, >0 such that
f(ty)
te[a,on(b)}
o(b)
7, J G (o-" (b),s)As <1. There are two subcases.
a

max

<i,,for y>1J,,and

Case (i) f is bounded. Suppose L >0 is such that
f(t,y)<L,forall 0<y<oo.
)

o'(b
Let Jzzmax{ZJl,L j G(a“(b),s)AS}, and let

Q, ={yep:|y| <3}
Then, for y e x(10Q,, we have
a(b)
(Ty)(t)= J G(t.s)f(s,y(s))As
J(b)
< j G(o”(b),s)f(s,y(s))As

(b)

<L G(o”(b),s)As

<l-t<[a.0" ()]

D

and so

[Tyl|<|ly||, for y e kN6, . (13)

Case (ii) f is unbounded. Let J, >max{2J1,J_2} be
such that f(t,y)< f(t,J,) for 0<y<J,. Let

Q, ={yep:|y| <3}

Choosing y e x(10Q,,

Copyright © 2013 SciRes.

(

—
<

)(1)

G(t.s) f(s,y(s))As

Il
Q
O —

=N
=

IN
D —y
[

(cr” (b),s) f(s,y(s))As

X
=

G(a” (b),s) f(s,3,)As

IN
o

2
=

G (o-” (b),s)ﬁ2 [9,]|As

,te [a,a" (b)}

IN
o —y

<J,=|y
And so
[Tl <ly

An application of Theorem 3.1, to (12), (13) and (14)
yields a fixed point of T that lies in xN(Q,\ Q).
This fixed point is a solution of the BVP (1)-(3). m|

,fory e k(10Q,. (14)

4. Existence of Multiple Positive Solutions

In this section, we establish the existence of at least three
positive solutions to the BVP (1)-(3).

Let E be a real Banach space with cone P . A map
S:P—> [O,oo) is said to be a nonnegative continuous
concave functional on P, if S is continuous and

S(Ax+(1-4)y)=AS(x)+(1-2)S(y),

for all x,yeP and A€[0,1]. Let a' and b' be
two real numbers such that 0<a'<b’ and S be a
nonnegative continuous concave functional on P . We
define the following convex sets

P, ={ye P:||y||<a’},

P(s.a.b)={yeP:a'<5s(y),

y|<b}.

We now state the famous Leggett-Williams fixed point
theorem.

Theorem 4.1. See ref. [20] Let T:P, — P. be com-
pletely continuous and S be a nonnegative continuous
concave functional on P such that S(y)<|y| for al
y e P,. Suppose that there exist a’, b’, ¢’, and d’
with 0<d’'<a’<b’<c’ such that

1) {yeP(s,a,b’):S(y)>a}=@ and S(Ty)>a
for yeP(S,a,b"),

2) [ty <d’ for |y|<d",

3) S(Ty)>a’ for yeP(S,a’,c’) with |Ty|>b"

Then T has at least three fixed points y,, y,, Y,

in P, satisfying
[vll<d’a < (y), s[> d" S (y:) <@

For convenience, we let
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o(b)
D= max IG
a

teac

G(t,s)As and y = !

C =min —.
sel p ' 4

tel

Theorem 4.2. Assume that there exist real numbers

dy, d,,and cwith 0<d0<d1<i<c such that
v

f(t,y(t))<d_[;,forte[a,a"(b)]andye[o,do], (15)
f(t y(t))>$ fortelandye|d 4 (16)
) C ) 1 7/ )

f(t,y(t))<%,forte[a,o-”(b)] and y e[0,c]. (17)

Then the BVP (1)-(3) has at least three positive
solutions.

Proof: Let the Banach space E=C|:a,6n (b)} be
equipped with the norm

=, gmax [y ()]

We denote
:{ye E: y(t)ZO,t e[a,a”(b)]}.

Then, it is obvious that P is a cone in E. For yeP,
we define

S (y) = nlleiln|y(t)|, and Ty(t)
U(b)
- j G(t,s) f(s.y(s))As,t e[a,a” (b)}

It is easy to check that S is a nonnegative continuous
concave functional on P with S(y)<|y| for yeP
and that T :P — P is completely continuous and fixed
points of T are solutions of the BVP (1)-(3). First, we
prove that if there exists a positive number r such that

f (taY(t))<% for ye[0,r], then T:P. — P.. Indeed,

if ye P, then for te[a,o-n (b)}

G'(b)
<— max G(t,s)As=r
D le[a,a"(b)] :,!: ( )

Thus, |Ty|<r, that is, TyeP,. Hence, we have

Copyright © 2013 SciRes.

shown that if (15) and (17) hold, then T maps P,

into B, and P. into P,.Next, we show that

berlsa s

all ye P( S,d,, J In fact, the constant function
Ty

{yeP[S d. yj. (y)>d1}

Moreover, for ye P (S, d, ,i] , we have
Ve

};t@ and S(Ty)>d, for

d+d—

71 [z y(t)zminy(t)=S(y)=d,

for all tel . Thus, in view of (16) we see that
a(b)

a G(t,s) f(s,y(s))As

> min G(t.s)f(s.y(s))as

sel

S(Ty)=min

tel

d, .
>—min
C tel

G(t,s)As=d,.
|

as required. Finally, we show that if ye P(S,d,,c) and

||Ty||>%, then S(Ty)>d,. To see this, we suppose

that yeP(S,d,,c) and ||Ty||>i, then, by Lemma
Ve

2.4, we have

a(b)

$(Ty)=min j G(t,s)f(s,y(s))As
a(b)
7] 6(o"
o(b)
>y max .f G tS f(s,y(s))As

te[a o (

b),s) f (s,¥(s))As

forall te [a,a” (b)} . Thus

o(b)
S(Ty)2y max J'G (t.s) (s, y(s))As

te[azy(
=y|[Ty|> e
Y

To sum up the above, all the hypotheses of Theorem
4.1 are satisfied. Hence T has at least three fixed points,
that is, the BVP (1)-(3) has at least three positive solu-
tions y,, y, and Yy, such that
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76 K.R.PRASAD ET AL

||y,||< d,,d, <min,_, Y, (t),||y3||>d0,mintel y;(t)<d,.
o
5. Examples

Now, we give some examples to illustrate the main
result.

Example 1

Consider the following boundary value problem

yA(B) +|y2|(t2y+|y|2) =0,te[0,n]

y(0)=y*(0)=y"" (o () =o0.

The Green’s function for the homogeneous boundary
value problem is given by

(18)

2
%, t<s
G(t,s)=
S T
2 2 '

It is easy to see that all the conditions of Theorem 3.2
hold. It follows from Theorem 3.2, the BVP (18) has at
least one positive solution.

Example 2

Consider the following boundary value problem

5 _-8y?
y et g tefo]
y (19)
y(0)=y*" (0)=y*" =y*" (o(1)) =o0.

The Green’s function for the homogeneous boundary
value problem is given by

4
;—4, t<s

G(t,s)=
U P
24 24 7 '

It is easy to see that all the conditions of Theorem 3.3
hold. It follows from Theorem 3.3, the BVP (19) has at
least one positive solution.

Example 3

Consider the following boundary value problem on
time scale

Tz{O}U{%:neN}
y" 4 £ (ty)=0,te[0,]]NT
A(l) _ A(Z) _
U[E,E} y(0)=y* (0)=y* (0)=0

A

y*” (0)=y*" (0)=y*" (1)=0.

(20)

where

Copyright © 2013 SciRes.

100(y+1)
16(4y? +999)°

181499.98y +90749.981, ye [%,l}

f(ty)=
( ) 90749+, ye[1,3072]
21.16569y — 28800, ye [3072,4000]
—2880000, ye [4000,oo).
y+100

The Green’s function for the homogeneous boundary
value problem is given by

5
—1'[20 R t<s
G(t.s)= 5 s

t—s

t__u S< t

120 120

. . 13
A simple calculation shows that C=———,
1179648

D:L and yzL.Ifwe choose dozl, d =1
720 3072 2

and ¢ =4000 then, we see that all the conditions of
Theorem 4.2 hold. It follows from Theorem 4.2, the BVP
(20) has at least three positive solutions.

6. Conclusion

In this paper, we have established the existence of posi-
tive solutions for higher order boundary value problems
on time scales which unifies the results on continuous
intervals and discrete intervals, by using Leggett-Wil-
liams fixed point theorem. These results are rapidly aris-
ing in the field of modelling and determination of flagel-
late protozoan in a viscous fluid in further research.
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