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ABSTRACT 

A general theory of inertia tends to be circular because momentum and therefore inertia are taken as assumptions in 
quantum field theories. In this paper we explore instead using position uncertainty to infer inertia with mediation by 
quasi-measurement interactions. This method avoids attachment to the reference frame of the source masses and is thus 
completely relativistic, overcoming a conflict between historical theories of inertia and relativity. We investigate what 
laws of motion result, and whether natural explanations for equivalence and dark energy emerge. 
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1. Introduction 

Quantum field theories have had outstanding success in 
explaining three of the four basic forces by means of 
energy fields, which when quantized, yield bosons that 
mediate force interactions. But the application of quan-
tum field theory to gravity is not straightforward because 
of the universality of gravity (the problem of equivalence) 
and because gravity theories employ Riemannian curved 
space-time (the problem of background independence). 
In this paper we examine a quantum field based on posi-
tion rather than energy in which mediating interactions 
are measurement-like and arise from position uncertainty. 
This is, as opposed to momentum-like arising from en-
ergy uncertainty. 

While General Relativity Theory (GRT) assumes the 
equivalence of inertial and gravitational mass, and de-
rives the inertial path of an object as a geodesic in a 
space-time metric, the inertial resistance to deviation 
from that geodesic still relies upon the assumption of 
Newton’s Law of Motion, F ma . Standard quantum 
field theories yield forces based on relative position, not 
acceleration, except in the special case of the Higgs field 
which provides inertial mass for W and Z bosons. There 
have been some esoteric attempts to define a general 
field theory of inertia, but such a theory remains largely 
an open question. 

Metric theories of gravity, those such as GRT which 
are based on Riemannian curvature of space-time, are 
widely thought to be the only viable way to satisfy the 
Equivalence Principle. A great deal of work has been 
done to experimentally verify the Equivalence Principle 
from the time of Galileo onward. However, the necessity 
of a metric theory of gravity in connection with equiva-

lence remains a convincing argument and not a rigorous 
theorem [1]. There may be alternative ways to satisfy the 
Equivalence Principle, yet not be a pure metric theory 
[2]. 

What constitutes a metric theory? In the strict sense, 
superstring theory is not metric, because of residual cou-
pling of gravitation-like fields to matter [1]. In the theory 
presented herein there is no gravitational field, or force, 
but uncertainty must be considered together with the 
space-time metric to determine trajectories, and there is a 
linkage of time and uncertainty with a field that deter-
mines inertia and indirectly gravity. If one measures dis-
tance with light path delay, the theory has non-Euclidean 
time and space, and excess radius near gravitating objects 
and is clearly metric. But in the way that the theory 
measures distance, it has non-Euclidean time and spatial 
uncertainty, and might be described as “metric-like”. 

It is well known that time is dilated in a gravitational 
field. Time dilation implies a corresponding velocity 
decrease, as the parts of a clock slow down. These 
changes can be linked to inertia, which as measured by a 
remote observer increases in proportion to time dilation 
in connection with conservation of momentum. Numer-
ous investigators have noted that inertia is proportional to 
gravitational potential, including Einstein [3,4], Sciama 
[5], Davidson [6], and Ciufolini and Wheeler [7]. 

In the reference frame of an object, using the object’s 
proper time, the inertia increase effect is not observable. 
As is well known from Special Relativity Theory (SRT), 
the time dilation exactly matches inertia increase. It is 
only a difference of inertia between reference frames, 
corresponding to a difference of potential, which is ob-
servable. Thus when Brans argued that all effects of the 
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metric of GRT on inertia could be “transformed away” in 
a sufficiently small reference frame [8], the point of po-
tential difference was dismissed. 

However, there is circularity to basing inertia on po-
tential. Potential is energy, and inertia is energy, so po-
tential is (or has) inertia (or mass). We cannot really use 
potential as a starting point. Neither can we use momen-
tum, since momentum includes an inertia component, 
and in fact we cannot use force either, since a force is 
equivalent to a series of momentum impulses, as for ex-
ample in a quantum field. Without force, mass or poten-
tial, it seems unlikely we should be able to use the gen-
eral notion of energy, either. What then? 

In a conventional quantum field, particles which have 
sufficiently definite position such that they cannot inter-
act directly without implying action at a distance, can 
interact via the field. The field conveys momentum via 
interactions with virtual particles, which are allowed by 
the uncertainty in energy. Since in explaining inertia we 
must also explain momentum and energy, we will look at 
a different aspect of uncertainty, the uncertainty of posi-
tion. This degree of uncertainty may allow particles to 
overlap in position and interact directly. The interaction 
that they have may be more akin to measurement, and 
instead of conveying momentum, it may convey infor-
mation about position and thereby mass. 

2. Uncertainty and Mass 

Consider the uncertainty principle in the form 
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If a mass is differentially small (and as far as we know 
there is no lower limit to mass, corresponding to the lack 
of an upper limit on wavelength), in the limit as m ap-
proaches zero, the position and/or velocity of the mass 
become undefined. The mass exists as a superposition of 
states which include all or almost all positions and ve-
locities. Such a description hardly corresponds to any 
notion of a “particle”. Perhaps we should use another 
word, such as “entity”. 

Also notice that it matters little whether we take the 
uncertainty in the form of position or velocity. If the un-
certainty of velocity is in the extreme, then the entity 
could shortly occupy any position even if it is not there 
now. 

We suppose, for purposes of this paper, that inertia 
arises through a quasi-measurement interaction with 
other particles (entities) in the universe. We specifically 
do not suppose it to be an ordinary quantum field interac-
tion, which would require the assumption of energy and 
momentum as its basis for effect. Before the interaction 

that produces inertia, we do not have momentum. With-
out inertia, any particle or object, no matter how large, 
would behave as our nearly mass-less entity, existing in a 
universe-filling superposition of position and velocity 
states, being everywhere and going everywhere else 
quickly all at once (superposition). 

The term “quasi-measurement” is intended to imply 
that like ordinary quantum measurement, this interaction 
restricts the possible states of the entity. Specifically, it 
conveys mass, which narrows the range of positions and 
velocities in which the entity is likely to be found. But it 
acts in the background against which all other processes, 
including ordinary measurement, occur, thus the term 
“quasi”. 

When measuring quantum mechanical properties an 
experimenter measures one quantum variable at the ex-
pense of randomizing a complementary variable. So 
there is in principle a certain amount of choice in where 
one takes one’s uncertainty. Using this thought as a guide, 
this paper makes another assumption, in order to simplify 
the mathematical approach. We assume that measure-
ments are made such that there is a consistent distribution 
of uncertainties in velocity, which on average can be 
factored into a constant. In other words, measurements 
are made of position, and it’s complement momentum 
(velocity) is allowed to be randomized. We also assume 
that all measurements are made as well as possible, or at 
least with consistent accuracy, so that the inequality be-
comes an approximate equality. Using these assumptions, 
we can re-write Equation (1) as 
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where k subsumes the constant and statistically averaged 
quantities. The author does not presume this formulation 
is the only possible one or that readers will easily accept 
it as an assumption. It is put forward as one method to 
make progress against a formidable problem, that of ex-
plaining the origin of inertia without resorting to the fa-
miliar but circular tools of momentum, force and energy. 

Now consider the essential quality of mass. It is some-
where, in a particular state of motion, and the more mas-
sive it is, the harder it is to change its position or velocity. 
It is the opposite of our supposed mass-less or nearly 
mass-less entity that is “everywhere”. 

If we add together many small-mass but vaguely-po-
sitioned entities, we do not get a larger entity with the 
same superposition of position states. The wave function 
becomes more concentrated and localized about a posi-
tion and trajectory, which except in certain exotic ex-
periments becomes easy to visualize and consistently 
measurable. The entity when so summed becomes a 
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“particle”, and at macro scales, an “object” with ex-
tremely definite position. The addition is non-linear with 
respect to the concentration of position. 

Consider now the introduction of a particle into the 
universe, one which ultimately will not be mass-less, but 
which under our assumptions will not have inertia until 
there is some kind of interaction with the other masses of 
the universe, or with fields or space-time metrics associ-
ated with them. One may consider this only a thought 
experiment, or one may consider it a real description of 
what happens when a particle is produced, for example 
by decay of other particles or of a photon. Even if the 
inertia is inherited, there presumably was an initial inter-
action at some remote time past in the creation of the 
universe. 

Initially, before it acquires inertia, this newly minted 
particle will be as indefinitely positioned as our mass- 
less entity, existing in a superposition of states of being 
everywhere and at every velocity. It is capable of inter-
acting with any other object-particle-field in the universe 
immediately, without delay. We know from quantum 
theory and careful quantum measurement experiments 
that though the particle may not use this property to 
“communicate” information between remote regions, it 
in fact does affect the state function of the particle eve-
rywhere whenever there is an interaction anywhere. 

These quasi-measurement interactions are measure-
ment-like. They are not carried out by 3rd party observ-
ers and do not result in complete collapse of the parti-
cle’s wave function. But apparently they result in its par-
tial collapse, so that for more massive particles, the wave 
function becomes more concentrated about a position. 

The particle’s state function gets information about the 
distribution of other matter in the universe two ways. At 
locations where it can or does interact (we cannot tell 
exactly whether it potentially or actually interacts, be-
cause we do not see these interactions, at least not in a 
form we recognize), then its state function logically 
would be updated to reflect something about the location 
of the other mass with which it interacted. The more fre-
quent or intense such interactions would update the state 
function to reflect greater proximity. At locations where 
it does not or cannot interact, the entity gets negative 
information, that there is no matter present there, and its 
state function is not constricted by the regions devoid of 
matter. 

The reader will have noticed the solution to many long 
standing puzzles in this simple qualitative argument. 
Since Newton, scientists have been resistant to the notion 
of action-at-a-distance. But the mechanism of quantum 
measurement and wave collapse is exactly such a mech-
anism, verified by many careful experiments. On the 
other hand, quantum measurement meticulously avoids 
communicating anything faster than the speed of light, 

and does not in any way violate special relativity. But the 
wave collapses instantaneously. 

In the next section we will show how to quantify the 
production of inertia from the quasi-measurement inter-
actions. 

3. Derivation of Potential 

Gravitational potential energy has historically been 
viewed as a fact owing to the ability to extract energy 
from falling objects. In the case of a single object M, the 
potential at radius R is 

 MV R GM R                (3) 

Summarizing the historical approach, as an object m 
approaches M from infinity in free fall, it gains a positive 
kinetic energy –mVM and the system develops a negative 
potential energy mVM so that the total energy change is 
zero, less any energy that is radiated. Potential can be 
generalized for multiple masses by a summation, and 
further generalized for the case of masses in various 
states of motion by the use of field equations, such as 
linearized GR [9], giving a generalized gravitational po-
tential VG. 

G x x
x

V GM R              (4) 

Continuing to summarize the historical view, in pre-
viously mentioned discussions [3-7], inertial mass was 
taken to be a function of, or approximate proportionality 
to, generalized gravitational potential. 

2
i Gm mV c                (5) 

For objects in space not near any large gravitating 
body, it is assumed 2 1V c G  , and indeed astronomical 
observations bear this out to within the limits of observa-
tional accuracy [10]. 

There have been three philosophical objections to for-
mula (5). 

One is that inertial mass would seem to be not always 
identical to gravitational mass. Or if it is, and 2V c G  
is not exactly equal to 1, then the mass of the universe is 
unstable. In the author’s opinion, this is a reference frame 
problem. The mass-less entities supposed as the initial 
state of particles would have some weighting factor in 
the quasi-measurement interactions which produce iner-
tia, which is unknowable since we cannot make meas-
urements in that mass-less initial state. But we can make 
mass measurements of real particles in an arbitrary ref-
erence frame and use those as the proto-masses m on the 
right side of (5). 

Another interesting objection, although not universally 
held, is that (5) should be a vector equation, and inertia 
should be anisotropic near large masses. Recently a proof 
has been given using the Equivalence Principle that iner-

Copyright © 2013 SciRes.                                                                                 JMP 



R. L. SHULER JR. 116 

tia based on potential, whether in a region of gravity or 
acceleration, has no directional component [11]. Appar-
ently, inertia is not produced by a vector-type interaction 
between masses, and is not, for example, analogous to 
counter-motive induction forces in an electric field. This 
observation suggests that inertia arises from a density of 
interactions which is locally without a vector component. 
It might have a gradient, but isotropy experiments con-
fined to a sufficiently small area could differentiate a 
gradient from a vector component. So we refine our as-
sumption regarding the generation of inertia, and assert 
that it arises from a density of quasi-measurement inter-
action, which is without explicit vector qualities and is 
local to the position states the particle obtains after iner-
tia is generated, governed by the uncertainty principle. 

The final objection to (5) is that it is based only on 
classical physics, and has neither quantum rationale nor 
relativistic compatibility. To the relativistic quantum phy- 
sicist, it at least conceals a deeper truth. 

Using (3), we put (5) into the form of the inertia gen-
erated by just one other entity, using VM relative to that 
entity, with the understanding the observable rest mass in 
remote space M or m is only a proxy for a pre-inertial 
mass generating capacity. Substituting for VM we have 

2m mGM Rci             (6) 

If the radius R is taken to be the quantum interval Δx, 
that is, if we look at the position-momentum states in 
which the two entities might be directly interacting, be-
cause the uncertainty of their position is of the order of 
the separation between them, then we can substitute x for 
R and now we have 

 2GM c x im m             (7) 

Now we have the same form as the last version of (2), 
the uncertainty principle. Though it begins with classical 
constants instead of quantum ones, it makes the same 
statement as our assumption that inertia was generated by 
quasi-measurement interactions governed by uncertainty. 
The advantage of the quantum statement is that it does 
not contain classical values which ambiguously depend 
on inertia: m, M and c. The advantage of the classical 
statement is that we can measure all the values in it. 

Both (7) and (2) should involve summations to obtain 
the total mass of a particle as contributed by all masses in 
the universe, and in the case of (2) also a sum of the in-
teractions with all components of an aggregate mass M. 
We do not have enough information at this time to spec-
ify whether all interactions are of the same or different 
intensities or what their size is, so it is sufficient at this 
point just to “count” hypothetical same-size interactions 
in determining mass. Thus the law of conservation of 
energy, which we take as an assumption, reduces to 
maintaining a constant count of the total number of in-

teractions. 
While the classical view was that force diminishing 

geometrically as 1/R2 was fundamental, and 1/R potential 
a consequence of integrating to obtain energy, the view 
here is that 1/R potential from uncertainty is fundamental. 
We claim this only for the mass-causing field of quasi- 
measurement interactions, not for any other kind of field. 
The uncertainty based interactions decrease linearly 
rather than geometrically because they are independent in 
each orthogonal direction, rather than space filling. This 
gives rise to the well known property of potential-based 
inertia that equal thickness shells of mass at great dis-
tances are more influential than those nearby [5]. 

The remainder of this paper will show how resistance 
to acceleration and a convincing form of relativistic gra- 
vity emerge from such an inertia formulation. We begin 
by reviewing the transformations of mass, time, velocity, 
force and acceleration when measured across a difference 
of potential. 

4. Laws of Inertia 

Combining (4) and (5) we can write the inertia of a mass 
m as a direct summation of the contribution factor from 
each other mass, bypassing the abstraction of potential: 

2
i x x

x

m m GM R c                 (8) 

As noted above, this summation is approximately 
“one” in normal space. In the vicinity of a gravitating 
object it is convenient to define an inertia factor, i.e. the 
factor of mass increase due to potential, as one plus the 
inertia due to the nearby mass [3,5]: 

 21im m GM Rc                (9) 

The symbol Γ is adopted for the gravitational inertia 
factor, to distinguish from the Lorentz factor γ which 
increases inertial mass due to relative velocity. So in the 
above case 21 GM Rc   . In a uniform field of 
strength g (acceleration) inertial mass is 

 21im m gh c                (10) 

giving an inertia factor of 

21 gh c                     (11) 

The relative potential of any second reference frame as 
observed from a first reference frame is 12 2 1 . If 
lowering a moving object (such as a clock mechanism) 
into a gravitational field, any velocity v must decrease by 
a factor of γ in order to conserve momentum, so we have 

   

v v  

m m

                  (12) 

                   (13)  
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implying 

  m v 

t t  

mv m v    

where the primed quantities are measurements made in 
the original frame from which the clock is lowered, and 
the unprimed quantities are measured in the frame of the 
clock. No change is noticed in the frame of the clock. 
Since the ticking clock would appear slowed in propor-
tion to v' then an observer remaining above the clock 
would observe fewer ticks, and more time between ticks, 
i.e. time dilation: 

               (14) 

If the object (still using a clock as an example) is not 
moving relativistically, then the Lorentz co-ordinate time 
transformation is not needed, only time dilation. 

To complete the list of inertial transformations, we can 
easily derive that in order to maintain consistent laws of 
motion for all clocks, including electronic orbits, we 
must also transform acceleration and force: 

2a a                      (15) 

F F  

0j j
j

m x

                   (16) 

It is not the actual force which changes, but its meas-
urement, since the coordinates have changed. For exam-
ple, consider a series of momentum impulses that would 
balance a force. The momentum of each impulse is con-
served due to complementary transforms of m and v. But 
due to time dilation, the measured rate of arrival of im-
pulses varies between frames. 

None of the aforementioned laws change the shape of 
any trajectory or orbit (i.e. they cannot explain relativis-
tic precession). This trajectory theorem is proved in [11], 
along with a more complete exposition of the above laws 
and their history. Only the force law was unknown prior 
to [11], but the acceleration law is not widely known. 

Since the speed of light transforms as any other veloc-
ity (keeping in mind the locally measured quantities do 
not change, only cross frame measurements), light path 
delay is not alone sufficient to measure distances. We 
could reverse transform light path delays using the veloc-
ity transformation. Another practical possibility is to use 
orbits, which according to the trajectory theorem do not 
change size, only timing. 

5. Resistance to Acceleration 

We now consider the question of resistance to accelera-
tion, as to why this should be related to mass, and what 
the essential notion of force is. Two arguments will be 
given, one based on momentum and one based on energy. 
The momentum argument will retain a conservation ar-
gument at its base, but will reduce that conservation to 
the preservation of an initial quasi-measured state. The 

energy argument will likewise assume that energy (mass) 
is conserved, which we have above defined as a counting 
of quasi-measurement interactions, but will address the 
mechanics of this in regard to reference frames, extend-
ing our argument that there is no preferred reference 
frame in the case of relativistic motion. 

What is motion? In the first place, it is always motion 
of something else. The mass m never is moving in its 
own reference frame. Its state function remains centered 
about its position. But in another reference frame, the 
future state functions of m may appear progressively 
shifted in position, and that is what we call velocity. The 
fundamental relationship of the quasi-interactions which 
defined the narrowed state function of m, and its mass, is 
changing. It is easy to imagine that this is simply impos-
sible, and that is exactly the position we take-in the ag-
gregate. No object can move itself. It is fixed forever in 
relation to the other masses. 

We introduce the assumption of single (or static) 
measurement. According to this principle, any particular 
isolated partition of matter and energy is measured but 
once, and whatever position and velocity it is granted by 
this process remains forever unalterable. In the reference 
frame of the center of mass of the partition, velocity is 
always zero. An ordinary centroid computation, weighted 
with mass and distance, then corresponds to the known 
macroscopic law of conservation of momentum. If the 
component masses of m are mj and their future distances  
from the original position are ∆xj, then  

mv

.  

From this, conservation of momentum   easily 
follows. 

There are two escapes from this principle, which are 
well known from the classical law of conservation of 
momentum. By the rocket principle (action-reaction), 
energy or material may be ejected from a partition (group) 
with a corresponding reaction of the group. In this case, 
the velocity of the center of mass of the group is still zero, 
though the shape of the group distorts radically. 

By the interaction principle, any part of one group may 
interact either directly or through fields with any other 
group. In this case, a new partition is drawn around the 
interaction parts, and the velocity of the center of mass of 
this new partition remains zero. 

Whether this discussion adds any deeper understand-
ing to the conservation of momentum is a question of 
philosophy. As far as physics is concerned, we have 
given the equivalent statement in terms of the quasi- 
measurement origin of mass and momentum, and it ap-
pears at least to be a reasonable assumption. 

Force, then, must be a measure of the exchange of 
momentum. To obtain a concept of force, we use our 
earlier suggestion that a force is equivalent to a series of 
momentum impulses, such as for example: 
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F ma j j jm v t                (17) 

where j j j  describes an arrival rate of momentum 
impulses completely absorbed by the mass m. Such a 
view is consistent with the position already taken by 
quantum mechanics that forces are transmitted through 
quantum fields by the production or absorption of virtual 
particles, i.e. bosons, the force carriers of the field. 

m v t

i im m

For kinetic energy, i.e. inertial mass due to motion, the 
formulation is well known from SRT: 

                       (18) 

where the factor γ is the Lorentz-Fitzgerald factor: 

2 21 1 v c 

m

m

                (19) 

and where c is the locally measured velocity of light, mi 
is the inertial mass of object m measured in the rest frame 
of m, and i  is the inertial mass of m measured by an 
observer where each is moving with respect to the other 
at velocity v. 

For our formulation of inertia to be consistent, i  
needs to be the result of an increased interaction density 
of the quasi-measurements. This cannot be due to Lor-
entz contraction of distances to distant masses because 
direct use of source masses might attach the effect to a 
particular reference frame defined by the average motion 
of the distant masses. 

In view of our assertion that the quasi-interactions do 
not convey information about relative velocity, only po-
sition, then a contraction of the interaction density by the 
factor γ in one dimension (along the velocity vector) pro- 
duces exactly an interaction density contraction of γ. 

Consider a mass m. It is by definition always at rest 
with respect to itself. No matter what its velocity relative 
to other masses, it always perceives that any change in its 
motion, say to give a velocity v' would cause it to per-
ceive a higher density quasi-measurement interaction 
field, and thus to experience more interactions. 

By our postulate of conservation of energy, these in-
teractions cannot simply be manufactured. They have to 
come from somewhere. If the existing mass m represents 
a certain interaction density, then the increase is given by 

.  1 m 
Consider the case where a mass m is moving at near 

the speed of light, and a force is applied which, in the lab 
reference frame, would slow m down, thus reducing its 
relativistic mass in the lab frame. The energy removed 
from m is transferred to something else in the lab, and 
this case is not difficult. 

Now consider the same case from the original refer-
ence frame of m. In that frame, before the acceleration, it 
appears that the quasi-measurement interaction density 
perceived by m would increase, so m will not oblige to 
change its state of motion without the necessary energy. 

In the old pre-acceleration frame of m, if we imagine 
some observer to be continuing in that frame, the mass of 
m has indeed increased. 

The mass of m in its own present frame, of course, 
never changes as we pointed out earlier, because of the 
compensating effect of time dilation. But the mass of the 
lab has significantly decreased. The external mass (en-
ergy) of the universe is not conserved across an accelera-
tion event in the frame of the accelerated object. 

To clarify this position, consider a hypothetical case in 
which there existed an absolute reference frame. In that 
case, one might suppose that quasi-measurement interac-
tions were absolute events, and only the mass of objects 
moving relative to the absolute reference frame would 
have increased mass according to the Lorentz formula. 
Then to reduce velocity would release energy, not require 
it, and might be expected to happen spontaneously, just 
as electronic orbits of high energy decay spontaneously 
to lower states, with the emission of photons. So far as 
we know, this does not happen, and energy is instead a 
quantity which exists relative to a reference frame. By 
contrast, momentum is conserved across reference frames. 

It is well known that Newton’s law of motion 
F ma  is equivalent to the laws of conservation of 
energy and momentum, and either can be derived from 
the other. The new elements in our discussion are the 
mapping of the conservation laws onto a quantum 
model of inertia causation, one which is independent of 
the reference frame of the source masses, and the dem-
onstration that inertia caused by mass proximity and 
inertia from relativistic motion have a consistent expla-
nation. 

6. An Imbalance of Uncertainty 

We will now deal with gradients in the quasi-measure- 
ment interaction density. Suppose a particle m moves 
lower in a potential field so that  

2p x m v x         

m
v x

. 

Because of the larger mass term , the product 
   v x 

m m

 can be smaller than  while still upholding 
the uncertainty principle. What this means is that as the 
object goes lower in the field, either the uncertainty of its 
position or its velocity or both will decrease. 

Consider the mass m in Figure 1 shown at two posi-
tions, with two values of inertial mass mi and i i  

1

. 
Let the dashed circle represent the space in which there is 
some fixed probability ϕ of finding m (e.g. in a particular 
measurement). The probability of finding the particle 
outside the circle is  . If ϕ is chosen to be near to 1, 
i.e. to include the area in which the particle will most 
likely be found, then 1   will be very small. Because 
of the increased mass at the lower position, the area for 
the same probability ϕ is smaller. 
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Figure 1. Imbalance of uncertainty. 
 

The probability described here is related to the parti-
cle’s wave function. The wave function describes the 
probability of finding the particle as a function of space 
and time. Time is dilated for a particle at R , so the 
wave function is stretched in time as perceived by an 
observer at R. The particle does not perceive its prob-
abilities changing any more than it perceives its mass 
changing. But to an observer at R, the probability of a 
particle at R later being observed at  within a fixed 
period of time ∆t, is greater than the probability of the 
particle again being observed at R after having been ob-
served at , also within a period ∆t, where ∆t is always 
measured at R. 

R

R

m
m

R

R

R

The main concern is with the probability of finding the 
particle higher or lower, not with horizontal motion. The 
expected value (or average value) of the position of the 
particle is at its current location. Divide the space about 
the particle into two regions, above and below the current 
position, shown by the shaded bands. Let the upper edge 
of the dark band represent the expected excursion con-
sidering only upward excursions, and the lower edge of 
the light band represent the expected excursion below the 
current position, within some interval ∆t. By excursion, 
we only mean the probability of finding the particle in a 
measurement. The particle need not actually move. It 
exists in a superposition of states, and we call a meas-
urement an “excursion” if the particle is not at the nomi-
nal (last measured) position. 

There is an imbalance of probabilities between the po-
sitions of mi and i  due to the difference in inertia be-
tween mi and i . The lower position is illustrated to be 
at the expected excursion from the upper. But once down 
to , the expected upward excursion is less than what 
is required to return to R. 

R

An hypothesis is put forward that if there is an interac-
tion that causes the probability envelope of a particle to 
change in both size and position, then motion is induced. 
This interaction need not be an explicit macroscopic 
measurement. It may occur in the quasi-measurement 
background interactions. 

For example, if for a particle nominally at R there is an 
interaction at , allowed by the uncertainty principle, 
which causes the particle’s probability envelope to be 
constricted based on location at , then the particle’s 

position would have shifted. It seems that the object 
would more likely be found at the lower position after 
some time. Not only would its position have changed, but 
it would acquire some velocity, based on the time inter-
val and the distance between observations. Once created, 
the velocity would continue due to conservation of mo-
mentum. (Of course, the position and velocity of a com-
panion large object M causing the gradient will also shift, 
conserving momentum.) After a further time interval, the 
object would likely relocate downward again. As rea-
sonable as this argument seems, there appears to be no 
precedent for it and no established way to calculate such 
acceleration. 

Note that the particle m does not “move” from R to 
 . It is discovered by a measurement-like interaction at 

R, and some ∆t later it is discovered at . In between, 
it existed only as a superposition of states. Experiments 
involving entangled particles and the Bell theorem sug-
gest that it is pointless to think of it existing as a particle 
in between. While this does not make hidden variable 
theories impossible, it does require them to embrace su-
perluminal communication, which for the purposes of 
this paper can be bent to the same end result as far as the 
behavior of particles in a potential gradient is concerned. 
In either case, processes inside the wave packet are not 
limited to the speed of light. 

R

7. Imbalance Becomes Acceleration 

A few minutes spent considering alternatives for calcu-
lating the acceleration due to the change in uncertainty in 
a potential gradient reveal that there is a missing pa-
rameter. There are relations which provide a maximum 
bound of momentum and position, or of energy and time. 
There is not a relation that says how quickly, at maxi-
mum, these values can be updated. This becomes a free 
parameter. 

In order to quantify the free parameter, we will use 
hypothetical opportunities of measurement at various 
points. We will imply that these form a sequence in time, 
and as in the above discussion, any pair in the sequence 
will imply a velocity, even though there is not any 
physical particle moving between the points, only the 
superposition of states allowing discovery at either or 
both of the points, according to the probabilities of the 
wave function. It is only a model for computation of a 
quasi-interaction update parameter, not a description of a 
physical process. Further take any changes in uncertainty 
as being applied to ∆x, for convenience in calculation, 
based on the same rationale by which we already chose 
∆x for the inertia derivation. We do not assume that the 
opportunities of discovery are identical to the quasi- 
measurement interactions. They may be, or it may be that 
many quasi-measurement interactions are necessary to 
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update a particle’s mass. The opportunities for discovery 
are only assumed to be points at which the particle’s 
mass can be updated. 

Figure 2 shows conceptual drawings of how the op-
portunities for discovery might behave in purely compu-
tational model. The opportunities for discovery are the 
vertices of the line graph, and the line shows ordering, 
not path of motion because the particle may exist only as 
superposed states between discoveries. 

In Figure 2 part (a) there is a random gyration. This is 
not of much use. In part (b) we show a gyration to the 
side and back. Side and back gyrations of equal length 
occur with equal probabilities, as no change in mass is 
involved, and can be ignored. In part (c) we show gyra-
tions down and up, which do not occur with both equal 
probabilities and expected values. 

In the following model an update of mass is supposed 
at the end of each excursion (out is one excursion, back 
is another) which causes the probability envelope to be 
re-determined. In the vertical direction this gives unequal 
excursions, –h and +h/Γ, where Γ is the relative inertia 
factor 21 gh c . Examining only the vertical compo-
nents of excursions, since the horizontal components 
don’t create acceleration, this can be diagrammed as in 
part (c). 

If one could discover how rapidly the process in Fig-
ure 2 part (c) repeats, one would know the acceleration 
attributable to the potential gradient. However, this ap-
pears to be a free parameter, so instead the converse pro-
cedure will be applied. Assuming that all the acceleration 
g manifests through this mechanism, the free parameter 
will be determined. 

8. A Hypothetical Velocity 

Several factors are apparent. How many of the excur-
sions are vertical? How often do the excursions happen? 
With an observable particle like a large molecule, we 
would eventually determine all these parameters. Inside 
the hidden quantum world it is not a very useful ap-
proach. Instead, one can make quite arbitrary assump-
tions about some of these virtual quantities, and let the 
remaining quantity be the free parameter. 

Consider again only excursions of the out and back 
type, with equal probabilities in equal time periods, and 
only their vertical components. Given two points and a 
time interval (in this case, the points of update of mass, 
or points of discovery), we impute a velocity, even 
 

m m m

(a) (b) (c)

h h'
h

 

Figure 2. Hypothetical point of discovery configurations. 

though nothing observable is happening between the two 
points and no path or continuity is implied. This “veloc-
ity” will only be used as a proxy for computing time in-
tervals. Assume that the vertical such velocity compo-
nent is always Ev

t t t

, meaning “effective” or “equivalent” 
velocity. Assume that as soon as one out and back excur-
sion ends another begins. The author cannot emphasize 
enough that we are not postulating a physical process. 
We are reducing an unobservable physical process to 
arbitrary equivalent elements. It is a computational mo- 
del, not a physical model. 

Let all measurements including time be made at the 
original particle position, so that for the two excursions 

1 2    
h v t  Eh v t  

. One can now solve for acceleration by 
first finding ∆h. We have E and . We 
have E Ev v  from (12), giving:  

 1 1Eh h h v t        

21 gh c  
1x  

Since  is very close to 1 for small h, we 
use the approximation that for , 1 1 1x x   , 
giving: 

2
Eh ghv t c  

v

 

An expression can now be written for the velocity v 
imparted to the particle m over the interval of the entire 
excursion pair 2∆t. This will yield the average velocity 

avg  over that interval. Assume that the velocity at the 
end of the interval will be double the average velocity. 

2

2

2 2

2

avg E

avg E

v h t ghv c

v v ghv c

    

   
 

Now solving for the acceleration a: 
22 2Ea v t ghv tc      

and substituting for h: 

2 2 2 22 2E Ea gv t tc gv c           (20) 

It turns out that the height h of the excursion does not 
matter. It cancels out of the equations. So does the time 
period ∆t within which each half of the excursion takes 
place. With the restrictive assumptions above, that leaves 
only Ev . This one parameter rolls up all the other vari-
ous parameters. The free parameter can now be chosen as 

2Ev c a g giving  . 
If the sequence of mass discovery points is described 

by continuous vertical excursions at the “equivalent” 
superluminal velocity 2c , then gravitational accelera-
tion along a potential gradient can be viewed as the in-
fluence of inertia on the uncertainty of the particle’s po-
sition. 

Notice that the particle’s mass, either gravitational or 
inertial, was not needed to deduce the acceleration, just 
as one would expect from the Equivalence Principle. The 
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acceleration appears directly. If a force is applied to re-
sist the acceleration, this must be proportional to the par-
ticle’s inertial mass. 

This view of gravity does not stray from the basic 
premise that forces are conveyed by interactions with a 
virtual particle field. Acceleration arises from the influ-
ence of the inertia-causing field (of quasi-measurement 
interactions) on uncertainty, and a force must be applied 
if one resists acceleration, which corresponds to the in-
tuition of the free falling observer as Einstein suggested. 

One further thing is interesting about this hypothetical 
velocity 2Ev c . Computing the Lorentz factor  

2 21 1 Ev c   gives 1 i 

i

. So length and time  

aren’t contracted or dilated and mass isn’t increased, but 
all these quantities are imaginary, if the Lorentz factor 
has any meaning in this situation. In other areas of phys-
ics and engineering,  often signifies real behavior, but 
of a different sort than expected. Quantities which are 
conserved under Lorentz transformation, like the real 
momentum of the particle, would still be real, and still 
conserved. Presumably the particle remembers its mo-
mentum, even when unobserved, as well as its charge 
and gravitational mass, and the sequence of opportunities 
for discovery must conform to the conservation of mo-
mentum, even while by virtue of the quantum veil it is 
exempt from other velocity restrictions. 

9. Orbital Predictions 

Note that in (20) acceleration depends on the ratio 
2 22v cE . VE and c both depend on Γ via the velocity 

transformation (12) which is necessitated by time dilation. 
The Γ factors cancel, and thus from any particular point 
of view, acceleration itself is not a function of relativistic 
parameters, and to a fixed observer appears undiminished 
by relativistic effects. We will now show that this condi-
tion leads to orbital precession values in close agreement 
with General Relativity. 

For a comparison baseline of gravitational effects the 
Schwarzschild metric will be used, which is known to 
give a correct result for planetary orbits in the solar sys-
tem. Taking the form given by Brown [12]: 

 2 2 3r r m 2 2d dr m          (21) 

and re-writing using our notation and units, we have 

  23R GM c2 2 2a GM R v R    

  21 3GM Rc2 2 2a GM R v R     (22) 

For 23 1GM Rc 
 

we can use the small x approxima-
tion, 1 1 1x x   , thus: 

   2 2 2 21 3a GM R v R GM Rc        (23) 

Since (23) is in the frame of the object, which is free 

falling, a = 0. What we have left is the balance of gravi-
tational acceleration and centripetal acceleration. The 
Newtonian centripetal acceleration is reduced by 
 21 3GM Rc  which can be factored, ignoring high 
order terms, as  21 GM Rc , where 

 21 GM Rc   . 

We can rewrite (23) as 

 2 2 3GM R v R            (24)  

Whenever equations of orbital motion in the frame of 
the orbiting object can be reduced to this form, the ob-
served value of planetary precession will be obtained. 

We can derive a relation between the gravitational 
relativistic factor for weak fields, Γ, and the lateral velocity 

Lorentz factor  0.52 21 1 v c   . For circular orbits, 

tangential velocity is given by: 

v GM R

1x

                 (25) 

This is a good approximation to average velocity for 
near circular planetary ellipses if R is taken as the semi 
major axis. Substituting for v in the Lorentz factor for-
mula and using the usual approximations for operations 
on 1  x for  we have: 

 0.52 0.51 1 GM Rc    

1.5

            (26) 

The total relativistic transformation factor for an or-
biting mass will then be 

                   (27)   

Figure 3 shows how an accelerated frame of differen-
tial width ∆x can be applied to an orbit. For simplicity, a 
 

MM

g=GM/R2

x

R



Rv
Rg



mm

v

 

Figure 3. Orbit represented with accelerated frames. 
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circ b-

to gravity ∆Rg 
eq

ular orbit is assumed, which allows the orbiting o
ject to enter and leave local accelerated frames conven-
iently at the same height R. In the limit as ∆x → 0 an 
accurate representation will be obtained. 

Setting the radial displacement due 
ual to the radial displacement outward ∆Rv due to iner-

tial continuation of v gives the expected result for bal-
anced gravitational and centripetal force,  

2 2g GM R v R  . 

This equation has been derived so fa out regard to 
re

r with
lativistic factors. Accounting for m’s relativistic motion, 

notice that centripetal acceleration v2/R doesn’t change. 
A new ∆x is marked using m’s coordinates, leaving the 
diagram of the accelerated frame unchanged. The num-
ber of ∆x’s that m finds in an orbit is not a factor since 
neither R nor v changes. However, the constant gravita-
tional acceleration will be perceived through m’s time 
dilation and must be transformed by the inverse of (15) 
giving: 

  

 

22 2

2 2 3

v R

v R

 


          (28) 

This has exactly the same form as our benchmark (24). 

ho

 

GM R

GM R 

This shows the precession agrees with experiment. But 
w does an observer at m understand the additional ac-

celeration and write equations of motion? It is apparent 
that certain physical constants used in connection with 
quantities that are transformed by inertia may themselves 
require transformation, and the gravitational constant G 
is one of those. In order to make acceleration constant in 
the remote reference frame, then the gravitational con-
stant must be transformed like acceleration, and we have 
a new law of inertia: 

2
G G                    (1) 

Note that when written according t
th

o the conventions of 
e other inertial transforms, the primed frame is the re-

mote observer. But in the orbital analysis G  corre-
sponds to our normal gravitational constant. 

The reader may wonder if we can and should use Γγ in 
al

ng the 
di

10. Light Paths 

e consequent velocity slowing, will 

 interval ∆x we have

l the inertial transformation laws. Whenever the quan-
tity transformed is scalar (such as time, above), or a vec-
tor at right angles to the relative motion, there is no dif-
ficulty in this. But for components parallel to motion, we 
run into the Lorentz length contraction, and the Lorentz 
transformation of time as a function of displacement 
along the direction of motion which de-synchronizes 
clocks (time skew) in one of the reference frames. 

In the case of transformations of components alo
rection of motion, the full Lorentz transformation may 

be viewed as composed of two parts. The first part is just 
the transformation indicated by the laws of inertia. The 

second part is the length contraction, which must also be 
associated with time skew. 

Time dilation, and th
have a steering effect separate from any falling effect. 
Referring to Figure 4, consider two parts of a wave or 
particle separated by ∆h and traveling horizontally at v 
and v2 respectively. 

After a horizontal x v t   , and 
we assume  2 2x v t v t      . Two form rtical 
points on th d at an angle ϕ such that 

erly ve
e object will be turne
   2tan x x h v v t h            . The veloc-

le ϕ so that a 
vertical velocity component ∆vh is added, where 
ity vector v will be turned by this same ang

tan h v    . Equating the two expressions for ϕ we 
have  h v v v t h  

n expression
    . We can rearrange this 

into a  2 1h t v 1 h  
ith the gravitational a

   . This value 
∆vh/∆t is aligned w cceleration g 
(assumed to be vertical in the figure). Substituting for ϕ 
using (11), using for 1x , and simplifying we have: 

  
2v v 2 2
2

1 1h v g h c h g
t c
     


    (2) 

For light, we have v c  and therefore  hv t g   . 
Since hv t   is adde  the explicit acce s 
already we have a total apparent acceleration of 2g. 
This value is well known to agree with observations of 
stellar deflection in the vicinity of the sun [13,14]. 

d to leration g a
 noted, 

11. General Laws of Motion 

masses A and B, a Two body problems. Consider two 
negligible test mass X in between them, as in Figure 5. 
 

x=v t

v

v2

h

x2=v2 t


v

vh

 

Figure 4. Setup for speed gradient refraction. 
 

xA B

R

(v)

 

Figure 5. Two body problem with test mass. 
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The asses test mass x derives its inertia from the two m

A and B, 
20.5x Rc

. It matters  

any relative constant motion v of A or B or both, by our 
 

A Bm m
m


 not whether there is 

hypotheses. At the instant of the configuration of the 

figure, the defined distance from x to either mass is 
1

R . 
2

Take this configuration as our baseline reference, and 
no

te that the stretching of the wavelength of light 
in

f the value of the proto-masses 
m

We now t in a manner 
th

utward r

gre-
ga

otropic. This means it 
is

co-variant acceleration field. In the frame of 
a 

w consider what happens if R is doubled. The inertia at 
x is half. An observer at x still measures c at 3 × 108 m/s, 
but any object that had started moving during the old 
conditions of smaller R will now be going twice as fast in 
reference to the original reference frame, including pho-
tons. But its measured speed, by clocks ticking twice as 
fast, will be the same, and its transit time will be the 
same. The fact of a doubling of all distances in this “uni-
verse” will be un-noticeable except for a halving of the 
wavelength of any old light emitted before the expansion. 
Thus inertia theory implies a certain relativity of dis-
tance. 

We no
 this instance is remarkably like the stretching of light 

in the case of space-time expansion in metrical theories, 
and is calculated the same way. This is in addition to any 
Doppler shift due to underlying relative velocities sepa-
rate from the expansion. 

Notice that regardless o
A and mB, the inertial mass of each of A and B is pro-

portional to the product of the two proto-masses, so that 
 Ai Bim m  always in a two body system. 

 modify our thought experimen
at is not possible, even in theory, but which serves to 

illustrate the interconnectedness and relativity of inertial 
relationships. Assume that  A Bm m . Suppose that sud-
denly B were given an o adial velocity v as 
shown in the shaded part of Figure 5, while A were held 
in place. X’s distance had been defined equally with re-
spect to A and B. Now one of them accelerates away. If x 
were very close to B and its inertia almost entirely de-
fined by B, then it would accelerate away with B, re-
maining in B’s reference frame, and vice versa if it were 
close to A. Given its position half way in between, it will 
accelerate away at half the rate of B, maintaining but 
scaling the original relationships. X would feel no force, 
and its path of motion would be analogous to what is 
called a geodesic in metrical theories. It would be impos-
sible to tell whether A or B had accelerated, or both. 

Frame dragging. We have treated inertia as an ag
te result of summation, making an exception only for 

proximity to a single massive object with the “one plus” 
formulation of (9). This is valid in the case of a more or 
less homogeneous universe, but not in the general case of 
cosmological situations, or even of multi-body massive 

object situations. In [11] it is found that the laws of iner-
tia coincide generally with GRT in describing gravita-
tionally captured objects, in which most of the inertia of 
an object is due to a massive proximate neighbor. It is 
very difficult to move the smaller object relative to its 
position in regard to the massive one. But this is only due 
to the inertia of the small object relative to the massive 
one. Inertia is not absolute. The two objects together may 
be moved with the same total effort as they could be be-
fore they were brought close together, for their aggregate 
inertia relative to the rest of the universe has not changed. 
Similarly, in GRT, near the horizon of a black hole, it is 
basically impossible to move an object due to time dila-
tion. But the entire black hole can be moved. The mass of 
the black hole plus the in falling object is no greater than 
the sum of the two when separate. 

In [11] inertia was found to be is
 as difficult to move the fallen object tangentially as it 

is radially. If one then starts a rotation of the massive 
object, the in fallen object will be dragged along in the 
same relative position just as x was dragged in the two 
body example above, and this phenomenon is analogous 
to frame dragging in GRT. However, if a falling object 
gradually comes into proximity to an already rotating 
object, it is less clear what happens. Acceleration causes 
dragging, but the acceleration of uniform rotation is not 
tangential. 

A vector 
distant observer at normal potential (Γ = 1) and apply-

ing only to non-relativistic objects (slow moving, not in 
deep gravitational fields) we can formulate the law of 
gravitation based on linear decomposition 

2 ˆc m V GM R      a x 2
i G x x

x
G        (31) 

where x̂  is a unit vector from m to Mx, and which for a 
osingle “ ther” mass M reduces to the classical law as it 

should in the non-relativistic case 2a GM R . The 
mass of the falling object m or mi d ter the 
equation, upholding equivalence. For rapidly moving 
objects or deep gravitational fields, other factors are 
needed, but first we’ll develop a simple co-variant equa-
tion of motion. 

In order to b

oes not en

e able to sum the gravitational accelera-
tion with actual forces acting on an object to obtain its 
net motion, we can obtain a pseudo force version of (31) 
by multiplying by mi, the effective inertial mass. 

2ˆm m GM R i i x x
x
G G   (32) 

The second rule is frame dragging from any accelera-
tio

F a x        

ns of the masses Mx. These are attenuated according to 
the proportion of the inertia mi due to object Mx: 

2
x xm GmM Rc  giving: 
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2

x i x
x x

x x
x

m m

m GM R c



 





X x x

X x

F a a

F a
      (33) 

After a moment, one realizes that (33) is a re-statement 
of

 giving the 

i  A G XF a F F             (3) 

In a strict 2-body problem, there is n
ie

e two or more masses are 
bo

 to formulate the simplest 
 investigating how quasi- 

s not 
vi

w

rrect results if one assumes un-delayed sig-
na

 mass around” without waving the waver as well, 
so

im m 

 Newton’s law of motion, without using inertia. If an 
object has acceleration a due to an applied force, then in 
its frame all the Mx appear to have an incremental accel-
eration −a, which produces a frame dragging force −F 
that exactly balances the applied force. The constant ac-
celeration −a can be factored from the summation, and 
the remaining summation is recognized as the inertial 
mass mi, and the equation reduces to im  F a , the 
mirror image Newton’s law of motion, force 
of inertial resistance to acceleration. 

It would appear that it is a simplification to think of 
inertia as being due to a scalar potential defined by a qua-
si-measurement field. This simplification is useful in 
calculating local motion, such as the rate of clocks. But 
in fact inertia appears to be only a special case of frame 
dragging. Taking the general notion from [11] that time 
dilation implies inertia increase, and observing that GRT 
already has a notion of frame dragging, one might con-
clude that if not already contained in the usual metrical 
analysis of GRT, something like Equation (33) should be 
added. This finding that inertia is a special case of frame 
dragging would appear to apply to a large class of theo-
ries. 

In addition to the unexpected link between inertia and 
frame dragging, it appears that the sum of aG and aX (or 
pseudo forces FG and FX) is zero in any reference frame, 
such as that of a free falling object. Therefore, in an arbi-
trarily moving reference frame, for an object m, the sum 
of all accelerations is zero (free fall) unless there is an 
applied force, FA, so we have the following co-variant 
law of motion: 

m

o way for the bod-
s to apply force on each other, outside of gravitation. 

Any energy exchange between them would constitute 
additional mass not localized at one of the two bodies. 
Notice that since each object gets all of its inertia from 
the other in a 2-body problem, that whenever one object 
experiences an acceleration from the gravitation of the 
other aG, it imparts an equal acceleration aX to the other 
due to frame dragging. Therefore, a strict 2-body system 
would continue its initial velocity indefinitely. 

Angular momentum. It would be remiss to offer a the-
ory of inertia without discussing it in light of the famous 
thought experiment given by Newton, in which a bucket 
of water is rotated in an otherwise empty universe, and 
the water nonetheless crawls up the side of the bucket as 
normal. Ernst Mach disputed this claim, and countered 

that if the universe rotated about the bucket, the water 
would react as if the bucket were spinning. Brans gives a 
summary of the debate in the context of current theory 
and recent experiments [15]. 

Equation (34) can be used to define angular momen-
tum in the usual way, wher

und, causing linear momentum to become a rotation in 
the presence of a centripetal binding force. The binding 
force acts perpendicularly to the rotation, and other mat-
ter in the universe is perceived as countering with out-
ward radial acceleration. However, the direction is dif-
ferent at every point in the rotation, so that the symmetry 
necessary to support Mach’s argument does not exist. 
The acceleration vectors of a rotating universe add up 
approximately to zero. The author is preparing a separate 
account of this unexpected result with illustrations. 

12. Relativistic Motion 

The purpose of this section is
possible equation to use for
measurement field dynamics might affect cosmological 
situations in which velocities are highly relativistic. 

Speed of propagation. We have based inertia and grav-
ity on a quantum measurement process which doe

olate SRT even though correlated measurements ap-
pear to be instantaneous in some frames, or out of order 
in others. But our intuition may not be comfortable with 
this idea, because it seems as though we could “wave a 
mass around” and generate a signal at some remote loca-
tion. There is a tendency, even on the part of the author, 
to think that surely changes in the quasi-measurement 
field must be limited in propagation speed. So this dis-
cussion section will address this disconnect between our 
strong intuition, and what has been derived and observed. 

A “signal” would be a gravitational wave. Physicists 
have been looking for such signals for many decades, 

ith large expensive experiments that were thought to be 
capable of finding such signals. So far at least, none have 
been found. 

The Newtonian limit of gravitation is well known to 
only give co

ls. GRT as a superset also has this property. How GRT 
accomplishes this is not at issue here, only that it does, 
and this mystifies non-specialists and even many gradu-
ate students. Our theory is no different than GRT in this 
regard. 

Since gravitation and inertia are universal, one cannot 
“wave a

 that the center of mass does not move and only near 
field signals can be generated. These local signals require 
propagation of the masses themselves, which is limited 
by SRT. Consider a stellar explosion. It will be roughly 
spherical, and until one comes within the outer layers of 
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the expanding sphere, the gravitational field is un-
changed. 

A second difficulty also arises because of the universal 
action of gravity (and frame dragging). It affects every-
th

e masses in opposite directions. 
Th

can we see them coming, most likely they can 
be

field, there should be a Lorentz force, corre-
sp

rticular formulation they may appear 
to 

n. For example, when an 
ob

ent type interactions which do not 
vi

relativistic velocities, but also relativistic gravita-
tio

jects near enough that each gets a 
su

is a reasonable approximation in at least some 
si

 an observer at normal 
po

ing. So how does one detect a signal? This is closely 
related to the Equivalence Principle. One cannot deter-
mine the difference between being in a gravitational field 
and being free of gravitational effects, except by looking 
for a reference beyond the suspected gravitational field. 
Suppose, then, something can hurl a mass from another 
planetary system into our vicinity so that we can detect 
its gravitational effects. To do so, we must rely on sig-
nals which propagate from outside the range of that ef-
fect after the mass is present. To minimize that detection 
delay, it will have to get close, which means it is travel-
ing close to the speed of light, otherwise we would sim-
ply see it approaching. 

Such an energetic event as we hypothesize cannot sim-
ply throw a pair of larg

e energy release will be chaotic, tremendously in-
creasing entropy, and thus going in every direction, pro-
ducing the spherical case we already classified as unde-
tectable. 

If one postulates less energetic trajectory maneuvers, 
not only 

 predicted thousands of years in advance. If the event 
can be predicted, there is no communication. Since celes-
tial objects are always mutually interacting, there is even 
an ambiguity about the ultimate cause of trajectory 
events. 

Finally, if potential or gravity propagated as does an 
electric 

onding to the derivation of magnetism from the electric 
field. The author’s own attempt to formulate inertia 
from gravitomagnetic induction did not produce a con-
vincing result. Sciama’s somewhat different approach 
to inertia as induction [5] was criticized for appearing to 
require propagation backward in time, and Sciama 
never produced a promised second paper, though Da- 
vidson suggested the result was already contained wi- 
thin GRT [6]. 

How then do inertia events appear in different refer-
ence frames? In a pa

have a different ordering, but as we have shown, this 
cannot have detectable consequences at remote locations 
faster than light travels. In other words, at a particular 
location, we cannot discern a detectable difference be-
tween using the equations of motion with state informa-
tion brought to us on light rays, and the actual motions 
we observe. Some other observer, with a different light 
horizon, might observe our entire section of the universe 
being frame-dragged by remote events, but since every-
thing including light gets dragged we have to wait for 
external signals to detect this. 

The flip side of this is that we can use any information 
we do have to predict motio

ject accelerates, we can calculate inertia as if it is im-
mediately interacting with the old positions of objects we 
see with old light, knowing there will be no perceptible 
difference to us, and certainly not waiting for induction 
fields to propagate from distant objects (as in the critique 
of Sciama’s theory). 

Our conclusion is that having argued from the starting 
position of measurem

olate SRT, having found multiple blocks to the possi-
bility of violating SRT in our final result, and having 
experimental data or lack thereof from gravity wave ex-
periments and solar system dynamics, the burden of 
proof is reasonably met. If at some future time the grav-
ity wave experiments are successful, and can be corre-
lated with optical signals, then this aspect of the theory 
would need revision. Meanwhile, the peculiarities of 
measurement based interactions appear to offer unique 
solutions to historically difficult problems in inertia the-
ory. 

Limits of scope. By relativistic equations, we mean not 
only 

nal situations such as proximity to very massive ob-
jects. The full description of inertia theory for multiple 
proximate massive objects can be quite complex, effec-
tively a set of N simultaneous equations with N variables 
in the case of N nearby massive objects. We will not de-
scribe this general case herein, although it may well be 
relevant and necessary for some astronomical and cos-
mological problems. 

To give the reader a feel for the problem, consider just 
two very massive ob

bstantial portion of its inertia from the other. Their 
resistance to motion relative to each other can be much 
greater than the sum of their independent inertias, if each 
was alone at their proposed locations. But if we try to 
apply equations of motion independently to each of them 
using this large inertia, the result will be incorrect, be-
cause the pair together has no more resistance to joint 
motion than the sum of their independent inertias without 
the presence of the other, as we have previously empha-
sized. 

In order to develop a simple computational model 
which 

tuations, we will exclude massive objects from having 
any nearby neighbors, unless a large group of neighbors 
are approximately equally near. 

Equation for relativistic velocities. For our purpose we 
will use the reference frame of

tential  1  , even though in the cosmological case 
this is somewhat contrived. The reader may consider that 
we might ell assume some asymptotically small 
value of Γ which could be positioned at any remote van-

 as w
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tage point, and we can use the laws of inertia to transform 
these observations into a 1   reference frame. We do 
this not only to facilitate comparison with our natural 
observations, but more im antly, because the frame 
of co-moving observers, often used in GRT, does not 
seem to be available in quasi-measurement field dy-
namics. 

To make a relativistic equation of motion we must ac-
count for

port

 f ors which depend on the relative positions 
an

act
d velocities of the interacting particles. The transverse 

velocity in a gravitational field which produces double 
bending of light adds a factor of  2 21 T c v  to each 
gravitational acceleration term, where we use Tv  to 
indicate the transverse component of ity vector 
of relative motion between m and Mx. In the s ple 
problems we’ll consider, primary velocities will be radial, 
and small tangential velocities that might arise among 
orthogonal directions will be balanced by symmetry, so 
we won’t use this factor. 

We need a relativistic force law that references the rate 
of change of momentum

 the veloc
im

, not velocity, otherwise viola-
tions of SRT would appear. But we do not have a force. 
The solution is to create the mathematical fiction of a 
“pseudo force” Fp by multiplying gravitational or inertial 
acceleration by the inertial mass of the falling object as 
measured by the observer: 

p iF m a                  (35) 

The mass he full relati
 

mi is t
tential and relative velocity:

vistic mass from both po-

im m                   (36) 

where m ass of an
frame. We w use the conv

 is the rest m
 can no

 object in the observer’s 
entional formulation: 

 d d d dp it m t F ρ v           (37) 

where v is the velocity. 
A relativistic equation of motion in a 

cities and mass distribu-
tio

vector 
reference frame 

where 1   and where velo
ns are symmetric and velocities are radial can be found 

by substituting (37) into (34): 

 d dim t  A G XF v F F          (38) 

Notice that one wishes to handle pa
at the velo ht, a wavelength form
m

 dragging) term does. In this case it is the 
ac

g GRT to cosmology occupied most 
is not realistic to adapt a new theory 

aries continuously across space, it is 
on

 purpose outside the 
tra

. This is a general 
ca if 

city of lig

e

rticles traveling 
ulation of mo-

entum is needed to avoid an indeterminate Lorentz 
mass factor. 

The FG term does not have an acceleration factor, but 
the FX (fram

celeration of the remote mass MX. However, this is not 
an inertial mass, it is the pre-inertial mass generating 
factor (for which we have used rest mass as a proxy). As 
such, it does not have a relativistic form, and there is no 
protection from excessive speed from this term. But no 

protection is necessary since this term co-accelerates 
broad regions of masses. 

13. Cosmology 

The work of adaptin
of a century, and it 
entirely in a single paper. But there is also an obligation 
address the feasibility thereof. We present here hypothe-
ses as to how quantum inertial gravity might fit or ex-
plain various cosmological observations and theories, 
based on known properties of quantum inertia theory but 
without quantitative analysis as to sufficiency, which is 
left to future work. 

Event horizons. Notice that since inertia and therefore 
the speed of light v

ly meaningful to enforce SRT locally, just as in metri-
cal theories. Objects at some distances from each other 
may have superluminal relative velocities. The speed of 
light is a local constant, but as viewed from other refer-
ence frames, is transformed based in the relative inertia 
just as any other velocity. Therefore, remote objects in a 
lower inertia potential can be moving much faster than 
the local speed of light. However, unlike GRT, it is not 
clear that there are any horizons at the cosmic level. 
Light propagating toward those distant objects would 
speed up as it moved through regions of lower potential 
(less inertia). Of course the propagation distance will be 
limited by the age of the universe. 

Dense gravitation. The theory certainly allows mas-
sive, dense objects, which for any

ditional radius of an event horizon resemble black 
holes. At ten times the gravitational radius, there is less 
than half a percent difference in time dilation, light paths, 
or other physics. At a mere 10% beyond the gravitational 
radius, there is still only a 50% difference in time dilation. 
Effects which occur at greater than this radius would be 
difficult to distinguish at interstellar distances. The mass 
at which neutron stars further collapse would be essen-
tially identical. The endpoint of that collapse is an im-
ponderable question in either theory. 

Red shift. In an expanding field of masses, 1/R is con-
stantly getting smaller as R’s get larger

se of the two body problem discussed above. To a neu-
tral observer (e.g. at a great distance from the expanding 
field, or very near a massive object contributing most of 
the observer’s inertia), the inertia of the individual 
masses in the expanding field decreases with time. So 
clocks speed up, including photon emission processes. 
Therefore, observers in the field will have clocks that 
accelerate through time, and will view old light as red 
shifted, because it was emitted in a past epoch when time 
dilation was greater. 

Expansion and accelerated expansion. Hubble-like 
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expansion has been shown to be a normal, in many cases 
in

one solar mass, each pair positioned 
al

 this 

inertia of zero. 
In

y GRT or other metrical theories, these objects 
w

evitable, endpoint of a system of masses in motion, 
with our without a Big Bang [16]. But inertia theory 
contains features that greatly encourage it. Consider the 
field of expanding masses described above. Momentum 
is conserved across reference frames with different iner-
tial potentials. Therefore as the inertia of the masses de-
creases with expansion, their velocity increases to con-
serve momentum. 

Figure 6 shows numerical solutions for six masses 
having a total of 

ong one of three orthogonal axes of motion, initially at 
a radius of 1000 meters, given various initial velocities 
outward relative to the center of mass. The velocities are 
expressed as a percent of the local velocity of light. 
These masses are contained in our normal universe with a 
background inertia of 1  . The chosen velocities are 
grouped about the escape velocity, approximately 70.7% 
of the velocity of light at radius for this mass. The final 
trajectories above this velocity quickly become straight lines, 
indicating constant velocity, since the initial inertia factor is 
only about 2.5 times the background inertia. 

Figure 7 shows the same mass configuration in an oth-
erwise empty universe, with a background 

 this case inertia continually decreases as the masses 
expand, and so there is a continual acceleration, shown 
by the concave upward trajectories, which persist indefi-
nitely. One curve with double mass and double initial 
radius is shown also. Not shown are solutions for very 
low background inertias. Up to a background inertia of 
0.009 the curves are similar to these, but when carried 
out far enough the acceleration ceases. At larger back-
ground inertias, the initial velocities must be substan-
tially increased (like those in Figure 6) to avoid rapid 
collapse. 

For the masses embedded in the normal universe, if 
analyzed b

ould be well within the gravitational radii of the group, 
beyond an event horizon, progressing to a singularity. In 
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Figure 6. Six element solar mass expansion in normal space. 

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0.000 0.008 0.016 0.024 0.032

R
a

d
iu

s 
in

 M
e

te
rs

Time in seconds, reference to =1.0

26.98451%c

26.98452%c

26.98455%c

26.9847%c

27.275%c      
2x mass        
2x R0

 

Figure 7. Six element solar mass cosmology. 

quasi-measurement dynamics this is not the case. It is 
possible that two objects may part from any distance. 

As a group of expanding masses pass beyond the point 
where their self-gravitation is the dominant force, and the 
acceleration due to decreasing inertia becomes dominant, 
then dark energy might not be needed to explain accel-
eration of expansion, or less of it might be needed. There 
seems to be potential for quasi-measurement inertia the-
ory to fit cosmological accelerated expansion. Whether 
actual data fit using a realistic computational model will 
require extensive analysis and consideration of alterna-
tive configurations. Phase changes and all the attendant 
comple possi-
le additional complexities, will be needed. It might be 

for 
m

n. The increasing accel-
er

 

xity of current cosmological models, with 
b
possible to determine if “other universes” exist by testing 
whether a small initial background inertia is required 

odels to fit astronomical data. 
Isotropy. While the universe increasingly shows signs 

of large scale structures and flows as we observe it more 
closely, it is still usual to think of it as largely isotropic. 
This would be a difficulty for any flat space-time theory, 
were it not for other cosmological observations that in-
dicate the universe is closely balanced so as to be nearly 
flat anyway. A field of expanding matter might appear 
quite isotropic from most locations. The asymmetry in 
velocities looking “outward” vs. “inward” might not be 
apparent, even over large scales, due to the inherent 
Hubble-like ordering and the possible dominance of ag-
ing red shift over velocity red shift. The greater time di-
lation looking “inward” would add to the apparent dis-
tance of objects in that directio

ation due to low inertia near any boundary would blur 
that boundary perhaps beyond recognition. 

Dark matter. There is no practical difference between 
metrical and inertia theories with regard to galactic rota-
tion curves. Dark matter is still required. 

Inflation. Looking at an initial small dense universe, 
the reverse of arguments regarding acceleration of ex-
pansion can be made. Suppose the initial expansion, 
caused by whatever caused the “Big Bang” (which is not 
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addressed by any gravitation theory), was highly super-
luminal. It is not clear that such a state is prevented by 
SRT, since the relative positions of masses may not be 
changing very fast, if at all, and no local violations of 
SRT may be observed. Time dilation would be severe 
because of the density, and inflation would occur in a 
very small amount of time relative to an embedded ob-
se

flation. The au-
th

. Quantum-in- 
er

e traveler’s clock, correspondingly, would be tick-
in

r argument deriving it from the uncer-
tainty principle, gives agreement for planetary orbits in 

ts near the gravitational radius of an 

million miles in 
th

t to expect 
th

Classical inertia theory with its myriad transforms can-
cide what the acceleration of gravity 

rver. In this case, either the self-gravitation or other 
energy phase change process, along with diminishing 
time dilation, contributes to the end of in

or concedes that much more work would need to be 
done on this conjecture, but feels it likely that some of 
the work already done could be adapted. 

Special Relativity. The variability of the speed of light 
in inertia theory provides no relief for space travelers or 
communicators. Consider the geometry of potential. The 
fastest potential can diminish and speed increase is 1/R. 
But any path between objects, owing to geometry, would 
increase at least proportional to R. Adding the time re-
quired to ascend and descend in the potential field, it 
seems likely that a proof could be given that it is not pos-
sible to find a better path between objects than that of an 
ordinary light ray. Indeed, inertia theory, with its com-
plete agreement with established theory on light bending, 
is compatible with the path of light as a minimum time 
path. 

Multi-verse, brane, and string theories
tia theory does not say anything about higher dimen-

sions, neither requiring them nor ruling them out. It does 
offer a kind of alternative to the multi-verse theory, in 
which there might be very large accumulations of matter 
(universes) with vast separation between them. This 
would preserve the fractal structure we have seen so far 
in observations of the cosmos. It might not be completely 
impossible to travel between such regions. The inertia 
field would be very low in the void. Little time would 
pass in the dense material regions while a traveler was 
moving between them near a speed of light which is 
much greater than the speed of light in the dense regions. 
But th

g very fast, perhaps even after relativistic time dilation 
is considered, so some means of preservation would be 
required. As in other relativistic travel scenarios, the 
universe of origin would likely be gone before the trav-
eler could return. 

14. Verification 

There seem to be three important verification questions 
(at least). First and most important, a new method of 
producing equivalence is described. The existence of this 
method suggests that demonstrations of equivalence do 
not exclusively confirm metric gravity. Even if the me- 
thod is ultimately found to contain some flaw, it suggests 

a direction in which one can look for additional methods 
of producing equivalence. Since equivalence is a pillar of 
the verification of General Relativity, a new verification 
issue arises with the metric theories [1]. 

Second, while use of a classical 1/R potential function, 
as supported by ou

the solar system, orbi
object would differ. Seeing no obvious reason to deviate 
from our 1/R arguments, we tentatively suggest that di-
rect observation of light bending or orbits in the vicinity 
of what should be the gravitational radius of a massive 
object, would allow differentiation of our theory from 
metrical theories which predict an event horizon. But if 
the gravitational radius is obscured, or if attempting 
measurements within the solar system, we will find some 
difficulty owing to the close agreement. At one million 
times the gravitational radius (about 2 

e case of the sun), predictions of time dilation differ 
only in the 13th decimal place. 

Third, experiments need to be suggested and formu-
lated which are capable of distinguishing metric and 
quantum-inertial cosmologies. We might have suggested 
that flat space-time at large scales could be used, but this 
observation was made before the quasi-measurement 
theory was developed. All theories use free adjustment 
parameters to meet one of more observations, with GRT 
using dark energy to explain flat space-time, and qua-
si-measurement gravity using a hypothetical quantum 
velocity to explain the strength of gravity, so neither the-
ory is free of free parameters. Both theories must employ 
dark matter to explain galaxy rotation curves. 

There could possibly be an argument made that the 
weakness of gravity is explained by the new theory, but 
this is not really a comparison to metric theories; it is 
more a comparison to traditional quantum approaches to 
gravity. 

15. Conclusions 

Even though inertia as a function of potential (at least, 
gravitational potential) is nominally a part of current or-
thodox theory, its dynamics are little explored because of 
the presumption that curvature of space-time explains 
gravitational motion. Steve Weinberg writes in the pref-
ace to his seminal work on cosmology and gravitation, 
“But now the passage of time has taught us no

at the strong, weak and electromagnetic interactions 
can be understood in geometrical terms, and too great an 
emphasis on geometry can only obscure the deep con-
nections between gravitation and the rest of physics” 
[17]. 

not in and of itself de
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 for the case of a single dense mass, rather than the
cl

uiva-
le

ona

Papers of Alb  The Swiss Years: 

ton, 1956. 

y No-

is, and whether gravity is to be transformed like a force 
or acceleration, or whether it is something else. Such a 
question depends on the nature of gravity. In the theory 
of quasi-measurement dynamics, we conclude that grav-
ity is reference frame independent, that the acceleration 
of gravity is not divided by Γ2 like acceleration. This 
leads directly to the correct precession of Mercury. 

Quasi-measurement dynamics is at odds with GRT, 
because it is an alternate causal explanation of trajecto-
ries. But inertia theory is common to both. In GRT, the 
potential function is described by the Schwarzschild so-
lution  

[7]

assical potential function, and the explanation of inertia 
is in terms of time dilation, where time dilation is metri-
cal rather than seen as being caused by an inertia induc-
ing field. Since no convincing quantum formulation of 
GRT has been found over quite a long period, then the 
quasi-measurement theory merits examination, despite 
some difficulties it is likely to cause for cosmology. 

Dynamics derived from the concept of a quasi-meas- 
urement field provide an example of how the Eq

nce Principle, and other local features of gravity such 
as precession and light paths, can be satisfied with a 
mechanism which is suggestive of metric gravity (i.e. 
metric-like), but which arises naturally from quantum 
phenomena. In this theory gravity is not a separate force, 
but acceleration arises as an artifact of the operation of 
the inertia causing field and its effect on time, velocity 
and spatial uncertainty. 
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