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ABSTRACT 

In this paper we suggest a simple mathematical procedure to derive the classical probability density of quantum systems 
via Bohr’s correspondence principle. Using Fourier expansions for the classical and quantum distributions, we assume 
that the Fourier coefficients coincide for the case of large quantum number. We illustrate the procedure by analyzing the 
classical limit for the quantum harmonic oscillator and the particle in a box, although the method is quite general. We 
find, in an analytical fashion, the classical distribution arising from the quantum one as the zeroth order term in an ex- 
pansion in powers of Planck’s constant. We interpret the correction terms as residual quantum effects at the micro- 
scopic-macroscopic boundary. 
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1. Introduction 

In physics, a new theory should not only describe phe- 
nomena unexplained by the old theory but must also be 
consistent with it in the appropriate limit [1]. In this 
sense, Newtonian mechanics can be recovered from rela- 
tivistic mechanics in the domain of low velocities com- 
pared with the speed of light in the vacuum. Since its 
formulation, quantum mechanics has established itself as 
the most successful physical theory for the description of 
microscopic systems, such as atoms and elementary par- 
ticles. Unlike special and general relativity, relations 
between classical and quantum mechanics are more sub- 
tle, given that the conceptual framework of these theories 
are fundamentally different. While in classical mechanics 
it is possible to know the exact position and momentum 
of a particle at any given time, quantum mechanics only 
specifies the probability of finding a particle at a certain 
position [2]. 

The first statement of a mathematical procedure to ob- 
tain the classical limit of quantum mechanics can be 
traced back to Max Planck [3]. He postulated that classi- 
cal results can be recovered from quantum ones when 
Planck’s constant is taken to zero. Planck originally for- 
mulated this limit to show that his energy density for 
black body radiation approaches the classical Rayleigh- 
Jeans energy density when . A different approach 

is due to Niels Bohr [4]. He postulated that the classical 
behavior of periodic quantum systems can be determined 
when the principal quantum number is large. Bohr enun- 
ciated it in this way because in his model of the hydrogen 
atom the transition frequency between two neighboring 
energy levels tends to the classical orbital frequency of 
the electron when . Some researchers, however, 
have argued that the two methods are not equivalent 
[5-7]. 

0

1n

n

Textbooks and articles on quantum mechanics usually 
discuss a variety of ways to make the connection be- 
tween classical and quantum physics. Most of them are 
based on either Planck’s limit or Bohr’s correspondence 
principle. For example, the WKB [8-10] and quantum 
potential [11] methods and the phase space formulation 
of quantum mechanics are discussed using Planck’s limit, 
while some authors [2,12] compare the classical and 
quantum probability densities for both position and mo- 
mentum, showing that these distributions approach each 
other in a locally averaged sense (coarse-graining) for 
large quantum number . There are other proposals, 
like Ehrenfest’s theorem [13], based on semi-classical 
approximations to quantum mechanics. Another method 
is by means of coherent states. The standard coherent 
states of the one-dimensional harmonic oscillator [14-16] 
are localized wave packets which follow the classical 
equations of motion. However, for non-quadratic Hamil- 
tonians this only holds approximately over short times. *Corresponding author. 
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Wigner’s phase-space formulation of quantum me- 
chanics offers a comprehensive framework in which 
quantum phenomena can be described using classical 
language. The Wigner distribution function (WDF), 
however, does not satisfy the conventional properties of a 
probability distribution [17]; e.g., WDF is in general 
positive semi-definite. Therefore, in order to interpret it 
as a classical probability distribution, strictly one needs 
to restrict the analysis to situations where it is non-nega- 
tive (this is the case for coherent and squeezed vacuum 
states only) [18,19]. W. B. Case has made a careful dis- 
cussion of the classical limit and its difficulties via WDF 
[20]. 

According to Bohr’s correspondence principle, classi- 
cal mechanics is expected to be valid in the regime in 
which dynamical variables are large compared to the 
relevant quantum units [21]. In addition, some authors [2, 
12,22,23] suggest that we must compare the same physi- 
cal quantities in both approaches, e.g. probability distri- 
butions and not trajectories or wave functions. 

In 1924, Heisenberg made an attempt to give Bohr’s 
correspondence principle an exact mathematical form in 
order to apply to simple quantum systems. He suggested 
that for a classical quantity  f t  in the case of large 
quantum numbers, the following approximate relation is 
valid: 

   
 

 
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n m n
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      (1) 

where mf n  is the mth Fourier component of the clas- 
sical variable f  and  is the classical frequency 
[24,25]. The application of this procedure, however, was 
limited to the study of light polarization in atoms subject 
to resonant fluorescence [26,27]. 

 n

 ,QM

In 1926, E. Schrödinger proposed a different applica- 
tion of the correspondence principle applied to the quan- 
tum harmonic oscillator. His approximation consists of 
adding all the wave function oscillation modes, generat- 
ing a semiclassical wave packet [28], from which other 
interesting ideas have recently evolved [29,30]. On the 
other hand, discrepancies and discussion remains about 
the adequacy of Bohr’s correspondence principle [31-34]. 
Some authors suggest that the harmonic oscillator does 
not have a true classical limit when described by means 
of stationary states [35] and others argue that this system 
violates Bohr’s correspondence principle [36]. 

2. General Procedure 

In this paper, we suggest a conceptually simple mathe- 
matical procedure to connect the classical and quantum 
probability densities using Bohr’s correspondence prin- 
ciple. 

It is well know that for periodic systems, the quantum 
probability distribution (QPD) x n  is an oscilla- 
tory function, while the classical probability distribution 
(CPD)  CL x

   

 does not have this behavior. However, 
both functions can be written as a Fourier expansion, i.e. 

i
, , e d ,

px
QM QMx n f p n p   

   

       (2) 
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 ,QM p n  CL and f fwhere p

1n

 are the quantum and 
classical Fourier coefficients, respectively. In addition, 
we know that for simple periodic systems these distribu- 
tions approach each other in a locally averaged sense for 
large quantum numbers. This implies that the Fourier 
expansion coefficients should approach each other for 

: 

   , ~QM CLf .p n f p

n



            (3) 

In order to make this comparison we first substitute the 
value of the principal quantum number  by equating 
the quantum and classical expressions [2,12,23]. Note 
that the Planck constant keeps a finite value, so -de- 
pendent corrections may arise in Equation (3). 

Our proposal can be summarized as follows. First we 
calculate the coefficients of the expansion  ,QMf p n

n

 

 
by using the Fourier transform of QPD, and then obtain 
its asymptotic behavior for large . We then equate the 
classical and quantum expressions for the energy, to de- 
fine the value of the principal quantum number. Finally 
calculating the inverse Fourier transform we obtain, at 
least in a first approximation, the CPD. The procedure 
can be also applied to probability distributions in mo- 
mentum space. 

3. Examples 

The quantum mechanical systems we consider are the 
harmonic oscillator and the particle in a box. We find, in 
an analytical fashion, the classical distribution arising 
from the quantum one. 

3.1. Harmonic Oscillator 

The QPD for a one-dimensional harmonic oscillator is 
given by 

  221
, e ,

π 2 !
QM x

nn
x n H x

n
       (4) 

where 
m

[21,22]. One of the main differences be-  


tween the classical and quantum descriptions of the har- 
monic oscillator is that the QPD is distributed completely 
throughout the x-axis, while the CPD is bounded by the 
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classical amplitude. However, when increase the value of 
the principal quantum number , the QPD exhibits a 
confinement effect, akin to the classical behavior. 

n

We now calculate the Fourier coefficients. The corre- 
sponding integral can be found in many handbooks of 
mathematical functions [37,38]: 
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          (5) 

where n  is a Laguerre polynomial of degree . We 
remark that the mathematical structure of the coefficients 

 is similar to the Wigner function for the 
harmonic oscillator [39], but formally different, due to 
the dependence of the wave functions on parity [40]. 
Technically, the WDF is a member of the Cohen class of 
phase-space distributions which is related to the frac- 
tional Fourier transform [41], and not with the usual 
Fourier transform as is the case for the expansion coeffi- 
cients. 

The asymptotic behavior of Fourier coefficients for n 
large is also well known. Szegӧ [42] finds the following 
iterative relation: 
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(6) 

J  and Y  are the usual Bessel functions of the 0

first and second kind respectively, and 
1

2
N n 

N 
0

. 

Szegӧ shows that in  limit the iteration terms 
are strongly suppressed compared to J  Bessel func- 
tion. 

Using the above relation and 2 2
0

1

2
N m x  , we 

can write the asymptotic expression for the Fourier coef- 
ficients as follows 
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Finally, we compute the inverse Fourier transform. 
The first term can be obtained directly, while the iterated 
terms can be written as dimensionless integrals 
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where   is the classical action and the 
 0,i x x th

 

k  is the k  dimensionless integral. In particu- 
lar: 

 

       

0
i

3
1 0 0

0

0 0 0 0

, d e

d .

x

xi x x J

J Y J Y


  

    







   

 



   (9) 

We can also evaluate higher order iterations in a sim- 
ple fashion [42]. 

Note that the first term in equation (8) is -inde-
pendient and corresponds exactly with the CPD [2,12]. 
The remaining terms are proportional to increasing 

powers of 
S


, which are very small for classical systems, 

so these terms are strongly suppressed compared with the 
CPD. A residual oscillatory behavior, as observed in the 
QPD is preserved through the harmonic behavior of the 
iterated integrals. If we now consider Planck’s limit, the 
classical result is exactly recovered. This, however, is not 
necessary, as the correction terms are very small and 
seem to reflect a residual quantum behavior at the classi- 
cal level. In this particular system, a physical quantity 
that exhibits this residual behavior and can be experi-
mentally tested is the period of oscillation. From Equa-
tion (8), we find that at lowest order, the deviation from 
the classical period T is: 
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Therefore, although the deviation is too small to be 
measured with modern experimental methods, is not 
zero. 

A complete agreement of both the position and mo- 
mentum distribution functions at the classical limit is 
necessary for the theory to recover the classical results in 
the appropriate energy limit [43]. In this case, due to the 
symmetry of the harmonic oscillator, the QPD in mo- 
mentum space can be obtained easily, so the asymptotic 
behavior of the QPD for large quantum numbers is given 
by: 
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where p0 is its maximum momentum, 
2
0π

p
S

m
 is the  




 ,i p pclassical action and 0k  is the same dimension- 
less integral defined by Equation (9). 

Expectation values of physical quantities can be cal- 
culated using our previous results and the classical values 
are then recovered, i.e. 

 2 2ˆ QM 2, d ~ ,CLx x n x xx           (13) 

 2 2ˆ QMp p   2, d ~ ,CLp n p p  

ˆ ~ ,CLH E  

where we have not included the correction terms. These 
results do not ensure that the time dependence of position 
and momentum operators defined by the Heisenberg 
equation reduces to the classical equations of motion, due 
to the fact that the classical limit is not a single trajectory, 
but an ensemble of trajectories. 

3.2. Particle in a Box 

The infinite square well potential is one of the simplest 
examples discussed in an introductory course on quan- 
tum mechanics. This system is instructive for students 
because it shows the fundamental differences between 
quantum and classical mechanics; but likewise, should 
illustrate the quantum-classical transition. We briefly 
discuss this issue. 

The QPD in this case have a simple form [21,22]: 

  2 π
, sin ,

n x

L L
 
 
 

L

2QM x n            (14) 

where  is the length of the box. A simple calculation 
shows that the asymptotic behavior of Fourier coeffi- 
cients is 
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and finally the inverse Fourier transform gives 

      ,
1

, ~QM x n H L
L
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      (16) 

where H x  is the Heaviside step function [37,38]. 
The above equation coincides with the expected classical 
result, which is constant CPD inside the well. Thus, the 
classical expectation values of physical quantities are 
then recovered. 

4. Summary 

To summarize, the classical limit problem has been de- 
bated since the birth of quantum theory and is still a 
subject of research. In this paper, we present a simple 

mathematical formulation of Bohr’s correspondence prin- 
ciple. We consider the simplest quantum system, the 
harmonic oscillator, and obtain exact classical results. 
We think that this approach illustrates in a clear fashion 
the difference between Planck’s limit and Bohr’s corre-
spondence principle. 

Finally, using this simple procedure we find correc- 
tions to the exact classical result as a series in the ratio  

S


, which is very small for classical energies but not  

zero. It would be interesting to test whether this energy 
dependence could be observed for the case of real quan- 
tum systems approaching the microscopic-macroscopic 
boundary. We are currently analyzing other simple quan- 
tum mechanical systems in order to assess this possibility. 
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