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ABSTRACT 

The Mediterranean durum wheat landraces are ge- 
netically diverse and important sources for improving 
resistance to abiotic and biotic stresses and develop- 
ing adapted and productive durum wheat varieties in 
the Mediterranean region. To study the diversity two 
distant countries (Morocco and Syria) durum land- 
races were studied. Fifty-one microsatellites were 
used as molecular markers tool to determine the ge- 
netic structure and spatial adaptation of these land- 
races. We used two spatially-explicit methods (Baye- 
sian and Eigen) to determine the genetic diversity and 
structure of a population composed of Moroccan (98) 
and Syrian (90) durum wheat landraces. Non-spatial 
methods were also applied for comparison. A signifi- 
cant genetic difference was detected between the land- 
races originated from Morocco and Syria. Six sub- 
populations were revealed for each country using the 
Bayesian method and the Eigenanalysis, which gen- 
erated PC1 and sPC1, showed similar structure. Ei-
genanalysis exhibited a significant global genetic struc- 
ture for both countries landraces; and showed that 
neighboring landraces tend to have close genetic pro- 
file. The two first axes of PC1 and sPC1 had discri- 
minated four out of the six subpopulations revealed 
by the Bayesian methodology. Also, our study de-
tected the close relationship between the durum land- 
races from the coastal areas of Syria and the Moroc- 
can landraces from the Atlantic coastal regions where 
the Phoenicians/Carthaginians had settled in Moroc- 
co. These results demonstrate the importance of using 
the spatial models in genetic analysis of durum wheat 
landraces; and also recommend the use of the easily 
usable Eigenanalysis to analyze the genetic diversity 
and structure. 
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1. INTRODUCTION 

Breeding durum wheat for dryland and for the areas 
which are affected severely by drought and heat and 
other factors of climatic changes, such as in the Mediter-
ranean region, requires novel genes to be incorporated in 
future cultivars to cope with these stresses. One of the 
main objectives of the durum wheat breeding program at 
the International Center for Agriculture Research in the 
Dry Areas (ICARDA) is to improve resistance/tolerance 
to the Mediterranean abiotic and biotic stresses. Our ear- 
lier studies have shown that the Mediterranean durum 
wheat local landraces are important sources for resis- 
tance to abiotic and biotic stresses, to develop adapted 
and productive durum wheat genetic material combining 
high yield, improved grain quality, and resistance to the 
stresses, particularly to drought and foliar diseases [1]. 
The Mediterranean basin is rich in durum wheat land- 
races and Triticum wild relatives, which are found 
growing in different agro-ecologies. These Mediterra- 
nean landraces possess desirable traits related to resis- 
tance to drought, heat, and cold, such as early vigor, long 
peduncle, and high fertile tillering capacity; and to grain 
qualities required for different durum wheat end products. 
In the Eastern Mediterranean basin, Syria is considered 
as one of the most important habitats for Triticum wild 
relatives and landraces of durum wheat; and where some 
landraces are still grown by the farmers such as Haurani 
and Hamari [2]. Also in the Western Mediterranean basin, 
Morocco durum wheat landraces are grown in different 
agro-ecologies, altitudes, latitudes, and water regimes; 
and carry tolerance/resistance to various abiotic and bi- 
otic stresses [1,2]. Multi-allelic microsatellite markers 
can be employed for the determination of genetic struc-  *Corresponding author. 

OPEN ACCESS 

mailto:m.nachit@cgiar.org


Z. Kehel et al. / American Journal of Molecular Biology 3 (2013) 17-31 18 

ture and spatial adaptation of these landraces. The allelic 
variation is critical to the survival of a species and to the 
adaptation to drought, temperature extremes (cold and 
heat), and climate changes. The variation is revealed by 
genetic diversity; where a large gene pool is bound to the 
ability to survive under stressed conditions. The analysis 
of the structure of variations is important for breeding 
purposes, especially to identify genes or genomic regions 
involved in adaptation to these environmental stresses. 
Molecular markers and development of statistical tech- 
niques to analyze genotypic and phenotypic data have 
been recently made to study the genetic structure in sev- 
eral species [3]. The genetic structure is necessary for a 
valid association mapping, because it affects the pattern 
of linkage disequilibrium [4,5]; and also helps in the de-
tection of candidate genes of interest for breeding [6,7]. 
For this purpose, several computation programs have 
been developed [8]. The popular program to detect po- 
pulation structure among individuals is provided by the 
STRUCTURE program [4], which uses the Bayesian 
clustering method. The general principal of Bayesian 
method considers data and parameters as random vari- 
ables [9]. These random variables have a joint distribu- 
tion, called a-priori. Bayesian statistics aims manipulat- 
ing the joint distribution in various ways to infer the pa- 
rameters. Bayesian inference calculates the posterior 
distribution of parameters, which is the conditional dis- 
tribution of parameters given the data [9]. Moreover, in 
the last decade, there is increasing evidence that genetic 
diversity is mediated by space [10]. The geographical 
dimension (space) of genetic process uses space to dis- 
play graphically results from genetic analysis and ordi- 
nation methods [11]; and to compute spatial autocorrela- 
tion [12-15]. All these methods may reveal and quantify 
spatial pattern of genetic data, but they are not explicit. 
To be explicit, a method should include space into analy-
sis, in order to adjust the model used. In 2002, Dupan- 
loup et al. [16] developed the spatial analysis of molecu- 
lar variance; in 2005, Guillot et al. [17] the GENELAND; 
and in 2006, François et al. [18] the hierarchical Markov 
random field (HMRF) model. The last two programs 
were proposed as an improvement of the STRUCTURE 
program, they integrate geographic information to infer 
the number of populations and detect the genetic discon-
tinuities among these populations [19]. Other valid meth- 
ods are the classical multivariate analyses, such as clus- 
tering or Eigenanalysis. An Eigenanalysis is a mathe- 
matical operation on a square symmetric matrix, and is 
therefore central for linear algebra. The output of an Ei- 
genanalysis consists of a series of eigenvalues and eigen- 
vectors (each eigenvalue corresponding to an eigenvec- 
tor). Principal Component Analysis (PCA) and Corre- 
spondence Analysis (CA) are Eigenanalysis. 

One of the most used Eigeanalysis methods to inves- 

tigate structure is the principal components analysis 
(PCA) according to Cavalli-Sforza [20]. The PCA re- 
duces space scale and its utilization is not contingent on 
a particular genetic model; therefore Hardy-Weinberg 
equilibrium or linkage equilibrium are not required for 
the analysis. PCA is useful to infer and test the number 
of subpopulations/groups represented in a set of geno- 
types using Tracy-Widom test [21] and to correct for 
population stratification in trait-marker association [22]. 
A new tool for spatial pattern of genetic variability was 
developed by Jombart et al. [23] called spatial principal 
components analysis (sPCA). The sPCA is a modified 
PCA to study the genetic variance between individuals 
taking into account spatial autocorrelation of allele fre- 
quencies. 

Few studies were conducted on detailed population 
structure in durum wheat landraces. Our earlier work [24] 
studied genetic diversity and measured genetic distance 
between durum wheat cultivars and some landraces of 
diverse eco-geographical origin using Restriction Frag- 
ment Length Polymorphism (RFLP). Further, Maccaferri 
et al. [25] have studied the structure and Linkage Dis- 
equilibrium (LD) of an elite collection of durum wheat 
using STRUCTURE and TASSEL programs. Unweighted 
Pair Group Method with Arithmetic Mean (UPGMA) 
was used to separate white glumes, black awned, black 
glumes, and white awned, and classified wheat-like ac- 
cessions among 56 accessions of durum wheat using 
SSRs [26]. High and low molecular weight glutenin and 
clustering method were used by Moraguees [27] to study 
the genetic diversity between 63 Mediterranean durum 
wheat landraces. Zarkti et al. (2010) measured genetic 
distance and diversity of 23 Moroccan durum wheat ac- 
cessions of which 17 were landraces and using 7 SSRs; 
and assumed that the genetic variability found in durum 
wheat may be due to anthropogenic, geographical or en-
vironmental effects [28]. The present study aims to 1) 
determine the genetic diversity and the structure of the 
Moroccan and Syrian durum wheat landraces using a 
large set of microsatellite markers covering the whole 
genome of durum wheat; and 2) to analyze the data with 
the spatially-explicit Bayesian-based clustering method 
(GENELAND) and the Eigenanalysis (PCA and sPCA). 

2. MATERIAL & METHODS 

2.1. Plant Material 

The plant material consisted of 98 durum wheat land-
races from Morocco collected in 1985; and 90 from Syria 
collected in 1987 by the ICARDA Genetic Resources 
Unit (GRU). The landraces cover the main durum wheat 
agro-ecological zones of the two countries, for Morocco 
see Figure 1(a)) and for Syria see Figure 1(b)). The  

Copyright © 2013 SciRes.                                                                       OPEN ACCESS 



Z. Kehel et al. / American Journal of Molecular Biology 3 (2013) 17-31 

Copyright © 2013 SciRes.                                                                                

19

   

 

spatial coordinates (latitude, longitude, and altitude) 
were recorded. The two collections were genotyped at 
the ICARDA durum wheat-breeding program, using 51 
Gatersleben wheat microsatellites (gwm) covering all the 
14 chromosomes of the durum wheat genome (Table 1). 
Alleles were attributed according to the fragments size in 
base pair (bp). In this study, we analyzed three datasets: 
The combined dataset from both countries containing the 
188 landraces (population structure, spatial population 
structure, PCA and sPCA); and the separate dataset for 
each country (spatial population structure, PCA and 
sPCA). 
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2.2. Descriptive Locus Statistics 

In this study, we computed for each SSR locus and each 
population the following parameters using a program 
developed with Visual Basic for Application under Excel: 
Expected heterozygosity (He) or genetic diversity (GD) 
estimates the fraction of all landraces which would be 
heterozygote for any randomly chosen locus and is cal-
culated as: 
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where pi is the frequency of the ith allele and k is the total 
number of alleles of the studied locus. The expected het-
erozygosity over m loci (HE) is:  
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Observed heterozygosity (Ho) of a population is meas- 
ured by determining the proportion of loci that are het- 
erozygote and the number of landraces that are het-  

(b) 

Figure 1. Spatial distribution of the Moroccan (a) and Syrian (b) 
durum landraces. 
 
Table 1. Locus descriptive parameters for the Dataset and for the Moroccan and the Syrian durum wheat landraces populations. 

Dataset Morocco Syria 
Locus name Chromosome 

Na ASR(bp) Na ASP(bp) Ho He F Na ASP(bp) Ho He F 

gwm2 2AS, 3AS 11 110 - 124 5 110 - 124 0.01 0.16 0.94 9 112 - 121 0 0.77 1 

gwm6 4BL, 5A 21 185 - 214 14 185 - 209 0.03 0.85 0.96 17 187 - 214 0.07 0.94 0.93

gwm33 1AS, 1BL 30 105 - 190 20 115 - 190 0.11 0.87 0.87 20 105 - 177 0.09 0.86 0.9

gwm60 7AS 19 189 - 232 17 189 - 232 0.06 0.85 0.93 12 205 - 222 0.11 0.89 0.87

gwm63 7A 11 246 - 277 10 246 - 277 0.13 0.84 0.84 7 255 - 271 0.08 0.82 0.9

gwm99 1A 28 104 - 138 23 104 - 138 0.19 0.88 0.78 21 104 - 133 0.08 0.95 0.92

gwm107 3B, 4B, 6B 6 185 - 205 5 185 - 205 0.01 0.32 0.97 4 186 - 191 0 0.33 1 

gwm114 3B 16 114 - 132 13 114 - 129 0.06 0.84 0.93 9 115 - 132 0.02 0.54 0.96

gwm129 2B, 5AS 17 200 - 237 12 200 - 234 0.02 0.81 0.97 9 221 - 237 0 0.82 1 

gwm160 4AL 23 169 - 209 16 169 - 207 0.29 0.82 0.65 22 172 - 209 0.2 0.87 0.77
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gwm165 4A, 4BS 10 182 - 193 2 190 - 192 0 0.25 1 9 182 - 193 0.02 0.84 0.97

gwm169 6AL 22 178 - 228 11 178 - 197 0 0.79 1 19 180 - 228 0.02 0.9 0.98

gwm210 2A, 2B 10 164 - 191 7 165 - 191 0.27 0.37 0.29 7 164 - 187 0.06 0.36 0.85

gwm219 6B 28 153 - 190 19 153 - 190 0.06 0.9 0.93 19 154 - 182 0.11 0.74 0.85

gwm234 5A, 5BS 14 99 - 211 12 99 - 202 0.03 0.79 0.96 6 100 - 211 0.24 0.29 0.15

gwm257 2B 9 191 - 200 3 193 - 196 0 0.12 1 9 191 - 200 0 0.78 1 

gwm260 7AS 19 134 - 165 15 137 - 164 0.03 0.82 0.96 13 134 - 165 0.01 0.91 0.99

gwm264 1A, 1B, 3B, 7B 32 102 - 231 27 102 - 212 0.86 0.89 0.04 11 161 - 231 0.09 0.75 0.88

gwm268 1B 18 169 - 248 5 176 - 246 0.01 0.16 0.94 15 169 - 248 0.07 0.88 0.92

gwm282 7A 19 110 - 194 12 110 - 124 0.04 0.82 0.95 16 112 - 194 0.02 0.9 0.98

gwm285 3B 18 212 - 237 17 216 - 228 0.03 0.83 0.96 3 212 - 237 0 0.42 1 

gwm293 5A, 7B 17 135 - 205 10 136 - 205 0.03 0.69 0.96 12 135 - 137 0.06 0.76 0.93

gwm297 7BS 39 149 - 178 18 149 - 178 0.13 0.88 0.85 34 150 - 175 0.2 0.91 0.78

gwm311 2A, 6B 14 110 - 168 11 117 - 166 0.09 0.62 0.85 9 110 - 168 0.06 0.47 0.88

gwm319 2B 13 169 - 198 11 172 - 198 0.1 0.82 0.88 11 169 - 198 0.04 0.84 0.95

gwm344 7A, 7B 45 99 - 124 31 99 - 122 0.52 0.9 0.42 26 111 - 124 0.9 0.8 0 

gwm335 5B 38 136 - 256 12 151 - 256 0.04 1 0.96 29 136 - 244 0.13 0.98 0.86

gwm44 4A 15 173 - 274 9 204 - 274 0.01 0.67 0.98 10 173 - 271 0.02 0.46 0.95

gwm357 1A 33 101 - 146 18 101 - 146 0 0.95 1 28 101 - 136 0.04 0.99 0.96

gwm368 4B 60 103 - 131 31 107 - 125 0.12 0.95 0.87 45 103 - 131 0.18 0.94 0.81

gwm369 3A, 4B 12 232 - 288 9 243 - 268 0 0.65 1 11 232 - 288 0 0.85 1 

gwm376 3B 15 186 - 296 10 186 - 296 0.09 0.75 0.88 13 187 - 293 0.07 0.49 0.86

gwm408 5B 27 118 - 145 18 136 - 145 0.79 0.87 0.1 17 118 - 145 0.9 0.82 0 

gwm410 2B, 5A 11 136 - 190 9 136 - 185 0.01 0.8 0.99 11 148 - 190 0 0.78 1 

gwm413 1A, 1B 31 234 - 342 20 234 - 341 0.1 0.9 0.89 25 234 - 342 0.14 0.9 0.84

gwm448 2A 43 82 - 98 23 89 - 98 0.16 0.89 0.82 36 82 - 98 0.28 0.96 0.71

gwm471 7A 5 202 - 247 5 204 - 240 0 0.48 1 3 202 - 247 0 0.63 1 

gwm480 3A 20 105 - 191 8 105 - 185 0.08 0.87 0.91 18 110 - 191 0.06 0.9 0.94

gwm493 3B 20 172 - 181 13 172 - 181 0.88 0.82 0 18 172 - 174 0.82 0.88 0.07

gwm494 1B, 3A, 4A, 6A 45 130 - 176 26 138 - 176 0.87 0.89 0.03 37 130 - 176 0.88 0.92 0.04

gwm518 6B 19 173 - 208 14 174 - 206 0.16 0.83 0.8 16 173 - 208 0.02 0.89 0.97

gwm526 2A, 2B 31 126 - 228 20 126 - 226 0.1 0.91 0.89 21 126 - 228 0.03 0.95 0.97

gwm537 5B, 7B 10 129 - 158 8 132 - 149 0.41 0.67 0.39 7 129 - 158 0.33 0.44 0.24

gwm601 4A 25 202 - 238 17 207 - 229 0.09 0.88 0.9 23 202 - 238 0.29 0.91 0.68

gwm610 4A 43 121 - 140 34 123 - 140 0.44 0.96 0.54 32 121 - 128 0.73 0.93 0.21

gwm611 7B 12 149 - 186 9 149 - 181 0.03 0.79 0.96 10 153 - 186 0.01 0.88 0.99

gwm614 2A, 2B, 4A 36 122 - 216 24 134 - 216 0.35 0.82 0.57 27 122 - 178 0.21 0.83 0.74

gwm617 5A, 6A 31 142 - 158 18 142 - 158 0.43 0.95 0.55 28 147 - 156 0.54 0.88 0.38

gwm639 5A, 5B 21 111 - 190 20 111 - 174 0.64 0.83 0.22 10 111 - 190 0.66 0.74 0.11

gwm644 1B, 3B, 6B, 7B 8 128 - 184 8 131 - 184 0.03 0.99 0.97 3 128 - 182 0 0.96 1 

gwm666 1A, 3A, 5A, 7A 16 110 - 162 12 110 - 162 0.37 0.67 0.45 9 135 - 148 0.56 0.67 0.18

Abbreviations. Na: The number of observed alleles by loci. ASR (bp): Allele size range in base pair. Ho: Observed heterozygosity. He: Expected heterozygosity. 
F: The inbreeding coefficient. 
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erozygote for each particular locus. For a single locus 
with two alleles, Ho is defined by: 
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=
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2.4. Principal Component Analysis for 

Multi-Locus Data Over a series of several loci, Ho is the sum of Ho calcu- 
lated for each locus divided by the number of considered 
loci. Wright [29] developed F-statistics as measures of 
genetic structure. For a locus, F is defined as: 

Principal component analysis (PCA) on molecular data is 
based on the matrix of allelic frequencies for populations 
or individuals; which considers rectangular matrix C(n, 
m) with rows indexed by n individuals or populations 
and columns by m allele frequencies. In the case of the 
durum wheat landraces data probed with microsatellites, 
the values composing C are 2 for homozygote landrace, 
1 for heterozygote landrace, and 0 for no data. The matrix 
C is used for PCA analysis under two forms: normalized 
or not. The normalization can be done using the mean µ(j) 
and standard deviation σ(j) of each column j of C:  

e o

e

H H
F
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F has values between 0 for no genetic drift; and 1 fixa- 
tion of alternative alleles. 

2.3. Bayesian Genetic Structure 

We examined the genetic structure using the spatial 
model of GENELAND [17,30-32]. Structure was also 
used as a non-spatially-explicit method for comparison. 
The main difference between spatial and non-spatial 
methods is the consideration of the a priori distribution 
used in Bayesian statistics. While in STRUCTURE the a 
priori distribution is uniform through the studied space, 
in GENELAND, it is randomly modeled across space, 
using Poisson-Voronoi tessellation model. This model 
assumes that there is an unknown number of polygons 
that approximate the true pattern of population spread 
across space [30]. Markov Chain Monte Carlo (MCMC) 
simulation is used to infer these parameters and to esti- 
mate the posterior probability that the data fits the hy- 
pothesis of K populations [30]. For both programs, we 
tested values of K ranging from 2 to 8 with 3 independ- 
ent runs per test, using no admixture model with corre- 
lated allele frequencies [33], a 100,000 iterations burn-in 
followed by 106 additional iterations, from which every 
100th observation was recorded. The spatial studied do- 
main in both countries was divided into a grid of 2500 
pixels and GENELAND calculates the posterior prob- 
ability of every pixel and landrace to belong to a specific 
cluster (population). In addition, we used Nei’s minimum 
genetic distance [34] to compute genetic distance be- 
tween subpopulations from the two countries: 

     
 

,
,

C i j j
M i j
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The common method to visualize PCA results is to plot 
one eigenvector against another. Geographic coordinates 
for landraces or populations can be used to produce a 
contour or heat map using spatial interpolation technolo- 
gies found at any mapping software to show how an ei- 
genvector varies across space. Also, the test for the spa- 
tial autocorrelation of the PCA axes to assess the signify- 
cance of spatial pattern of molecular data was generated. 
The PCA analysis was conducted using the “ade4” 
package developed under R [35] (R Development Core 
Team 2008) by Dray and Dufour [36]. 

2.5. Spatial Principal Component Analysis 

We used the spatial principal component analysis (sPCA) 
to study the spatial population structure. As for PCA 
analysis, this method requires no assumption on Hardy- 
Weinberg or linkage equilibrium and does not assign 
landraces to discrete subpopulations. Jombart [37] im- 
plemented it under R. This is a “spatially explicit mul- 
tivariate method” that accounts for genetic variability 
and spatial structure. The use of sPCA aimed to analyze 
the studied set of durum wheat landraces allelic fre- 
quencies, in order to determine the genetic variability 
and to reveal the existing spatial patterns. The spatial 
information is incorporated in the analysis using a spatial 
weighting matrix w (wij, i = 1 to n, j = 1 to n, n is the 
number of locations) to describe spatial dependency be- 
tween landraces. If the location of landrace i is adjacent 
to the location of landrace j, the weight receives, for 
example, 1 and 0 if not. This matrix is more often a re- 
sult of a spatial connectivity network [38]. A spatial 
connectivity network is a graph constructed in Euclidean 
space and used to quantify the physical interconnectivity 
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where xij and yij are the frequencies of allele i at locus j 
for population x and y, kj is the number of alleles at locus 
j, m is the number of evaluated loci. 

2

1 1

1 j

x

km

i
j i

J x
m  

   

2

1 1

1 j

y

km

i
j i

J y
m  

   

AJMB 



Z. Kehel et al. / American Journal of Molecular Biology 3 (2013) 17-31 22 

of n landraces within space. The connection between 
nodes depends on their spatial distance and in general 
taking place between nearest landraces. The basic ele- 
ment of sPCA method is the spatial autocorrelation 
(SAU) under the form of Moran’s I [39,40]. The Moran’s 
I of a vector of allelic frequencies x of n landraces is: 

 
T

T

x Lx
I x

x x
 ,  

where L the standardized matrix of the weighting matrix 
w. L is row-standardized (each of its rows sums to 1 with 
diagonal values are 0). The values of Moran’s I range from 
+1 meaning strong positive SAU, to 0 meaning a random 
pattern to −1 indicating strong negative SAU. While the 
solution of PCA problem is to find eigenvalues of 

  1 TCOV X XX
n

 ,  

the sPCA define a criterion function 

      1
  TC x VAR x I x x Lx

n
. 

This function measures both spatial structure and the 
variability of the allelic frequency vector x. C(x) is 
highly positive when x has a large variance and a posi- 
tive SAU (global structure); and C(x) is highly negative 
when x has a large variance and a negative SAU (local 
structure). This function is the criterion used in sPCA. 
For X(n, m) composed by m allelic frequencies vectors of 
n landraces, the solution of sPCA is then giving by find- 
ing the maximum and minimum of the criterion function 
C. These max and min values are found by the eigen- 
value decomposition of 

 T TX L L X . 

At the opposite of PCA analysis, eigenvalues of sPCA 
can be positive or negative for global or local structure 
respectively. Global scores can identify subpopulations 
or groups of individuals that are genetically similar and 
local scores can discriminate between neighboring indi- 
viduals. To perform sPCA analysis, we used “adegent” 
package [37]. The test for global and local structure was 
executed using Monte Carlo test, implemented in the 
same package, using 106 permutations. A t-test to evalu- 
ate if the axes PC1, PC2, PC3 and sPC1 resulting from 
the Eigenanalysis can discriminate between the sub- 
populations found by GENELAND was computed using 
Genstat [41] for Windows. 

3. RESULTS 

3.1. The Combined Moroccan/Syrian Durum 
Wheat Landraces Dataset 

The total number of amplified alleles of the probed 51 

microsatellites loci for the 188 landraces was 1208 al- 
leles. The number of alleles per locus ranged from 5 for 
gwm471 to 60 for gwm368. The number of alleles per 
locus was higher in the Syrian landraces (28 loci) than in 
the Moroccan ones and equal in 4 loci. Almost 50% of 
locus showed a high value of heterozygosity for the Syr- 
ian than the Moroccan durum population. The marker 
with the highest heterozygous proportion was gwm494; 
and the lowest gwm257 (Table 1). For the genetic diver- 
sity, the expected heterozygosity was significantly (p < 
0.001) higher than the observed one, with a mean of dif- 
ference of 0.56. The non spatial Bayesian method 
(Structure) analysis separates clearly between the Mo- 
roccan and the Syrian durum landraces. However, 16 
landraces from the coastal areas of Syria were grouped 
with the Moroccan landraces population; and one land- 
race (Sherieh) was assigned equally to both populations. 
These results indicate that durum wheat in North Africa 
may have been introduced from the coastal areas of the 
Middle East where the Phoenicians had lived and later 
immigrated to the Western Mediterranean countries. This 
is supported by the strong relationship found in this study 
between the coastal durum wheat landraces from Syria 
and the Moroccan ones. Furthermore, landraces from the 
far south of Morocco, ICDW20038-Tiznit and ICDW 
20041-Tiznit were grouped with the Syrian coastal area 
populations (Figure 2(a)), suggesting that the durum 
wheat advanced from the coastal areas to South and East 
of Morocco. In the spatial Bayesian methods (GENE- 
LAND) analysis using 106 iterations, at 85% runs the 
number of populations detected was 2; and the remaining 
15% runs detected 3 populations. Distinction between 
the two populations was clearly shown if the number of 
populations K = 2 is considered (Figure 2(b)). When we 
consider K = 3, the third subpopulation is composed by 
19 landraces (16 from Syria and 3 from Morocco). This 
results suggest that our landraces population belong at 
85% to one or the other country using the GENELAND 
program. This is due mainly to the fact that the two 
countries are geographically distant. As for the PCA 
analysis, the two first eigenvalues explained 6% of the 
total variance and plotting the first axis against the sec-
ond axis demonstrated clear evidence for the structure 
and for the difference between the two durum landraces 
populations (Moroccan and Syrian) especially the first 
axis, which was positive for the Moroccan landraces and 
negative for the Syrian ones. Using the t-test, the means 
of the first axis significantly differ between the Syrian 
population and the Moroccan one (p < 0.001). However, 
the Syrian coastal landraces formed the exceptions found 
at STRUCTURE results and showed similarity to the 
Moroccan landraces (Figure 2(c)). The sPCA analysis 
gave similar results as the previous analysis with ap- 
proximately the same exceptions for the similarity be-  
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Figure 2. Genetic structure of the Moroccan and Syrian durum wheat landraces. (a) STRUCTURE chart; (b) GENELAND chart; (c) 
first principal component PC1 (Grey bars) and first spatial principal component sPC1 (Green points). 
 

3.2. Moroccan Durum Wheat Landraces  
Population 

tween Syrian coastal landraces and Moroccan landraces 
(Figure 2(c)). We used for sPCA a minimum distance 
connection network, in order to disconnect Syrian and 
Moroccan landraces imaging the spatial geographical 
distance. 

We observed 741 alleles in the Moroccan population 
using 51 microsatellites. For the range, the highest value 
was scored with 34 alleles at the locus gwm610; and the 
lowest with 2 alleles at gwm165. The average per locus 
was 14 alleles. Six of the studied markers were 100% 
homozygote (gwm357, gwm169, gwm369, gwm471, 
gwm165, gwm257) and 3 were higher than 80% het- 
erozygote (gwm493, gwm494, gwm264). Expected het 

Correlation between PC1 and sPC1 coordinates was 
very highly significant (p < 0.001) with an R2 of 98%. A 
correlation with groups between the two axes and using 
the landraces origin as factor was also highly significant 
(p < 0.001) with a coefficient of 0.98. 
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erozygosity ranged from 0.99 for gwm335 and gwm644 
to 0.11 for gwm257; and HE was 0.763 (Table 1). He was 
significantly (p < 0.001) higher that Ho and with a mean 
difference of 0.5. GENELAND estimated six Moroccan 
sub-populations at 95%, five at 3% and four at 2%. The 

degree of inclusion to a subpopulation of most landraces 
was more than 90% (Figure 3(a)). Maps of posterior 
probabilities of the six subpopulations are shown in Fig- 
ure 4; and were named P1M, P2M, P3M, P4M, P5M and 
P6M. Eleven landraces were attributed at more than 90%  

 
  (a) 

1 

0.8 

0.6 

0.4 

0.2 

0 

Moroccan durum wheat landraces 

Syrian durum wheat landraces (b) 

1 

0.8 
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Figure 3. GENELAND chart for the six Moroccan (a) and Syrian (b) subpopulations. 
 
  

(a) (b) (c)

(d) (e) (f)
 

Figure 4. Moroccan landraces population probability assignments on the Morocco studied area (high probability: white; low prob-
ability: dark). (a) P1M, (b) P2M, (c) P3M, (d) P4M, (e) P5M and (f) P6M. 
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to the subpopulation 1 (P1M), 7 of them are from Tensift 
and two from Doukala regions (South Casablanca-Mar- 
rakech region), region that is influenced by the Atlantic 
ocean, but this subpopulation contains as well 3 other 
landraces from the North-Eastern region of Oujda and 
Figuig, which is also influenced by the Mediterranean 
Sea. P1M represents the semi-arid and maritime (SAM). 
The second subpopulation (P2M) was attributed at 96%; 
and contains 2 landraces originated from the irrigated 
areas of the South-Eastern Atlas high plateaus and 3 
landraces from the highlands of Boulman and Nador 
regions in the eastern plateaus of Middle-Atlas and Rif 
Mountains. P2M represents the arid and cold plateaus 
(ACP). The third subpopulation (P3M) consists of 8 
landraces from southern warm areas of Morocco (Tata, 
Tiznit, Goulmine). P3M represents the arid and maritime 
areas (AM). As for the subpopulation (P4M), it has the 
largest number of landraces (46). The landraces of the 
P4M cluster are originated mainly from the western 
mountainous cold areas of the Atlas Mountains and Rif 
chains; P4M represents the rainfall-favorable high alti- 
tude-cold areas (RFHAC). Furthermore, most of the 14 
landraces of subpopulation 5 (P5M) were originated 
from the southern Atlantic lowland region of Morocco 
(Taroudant, Agadir, and Essaouira. P5M represents the 
irrigated/rainfall-favorable maritime areas (IRFM); and 3 
landraces from the northern Atlantic lowland region 
(Larache), representing the maritime high rainfall areas. 
These latter ones were assigned as well to P4M at 40%. 
The sixth subpopulation (P6M) had 15 landraces from 
Moroccan pre-and anti-Atlas areas (Beni Mellal, Kheni- 
fra, Errachidia and Ouarzazate), P6M represents the irri- 
gated continental/cold plateaus (ICCP) of the pre-and 
anti-Atlas plateaus of South-East Morocco. The results 
divided clearly the landraces originating from environ-  

mentally water stressed and non-stressed regions of Mo- 
rocco; with P1M, P2M, and P3M for the stressed and 
P4M, P5M, and P6M for the non-stressed conditions. 
The heterozygozity, the number of alleles, the individuals, 
and the agro-ecological regions of collection of landraces 
composing each subpopulation are summarized in Table 
2. 

P2M, P3M, and P5M found in the Eastern and South- 
ern parts of Morocco had the largest number of alleles 
per locus and the large values for heterozygosity com- 
pared with P4M of the highland areas. The P4M had on 
the other hand, the lowest number of homozygote loci. 
We used the matrix of allele frequencies without stan- 
dardization for PCA analysis. The first three eigenvalues 
were 52.23, 11.75, and 4.78 explaining 30.9%, 7.0%, and 
2.9% of the total genetic variability, respectively. The 
corresponding axes are symbolized PC1, PC2 and PC3 in 
this study. In the sPCA analysis, we used Gabriel graph 
as spatial connecting network. The spatial autocorrela- 
tion (SAU), under the form of Moran’s I, applied to al- 
lele frequencies showed that 30% of the alleles showed 
no SAU with a value of I = I0 = −0.01. Eighty alleles had 
a significant positive SAU with a maximum value of 
0.43 observed at the allele gwm282.217. The first (λ1) 
and the last (λ97) eigenvalues had the strongest variance 
with positive SAU value for λ1 and negative for λ97. The 
global and local tests presented by Jombart et al. (2008) 
showed a significant global test (p = 0.02) and 
non-significant local test (p = 0.26). Therefore, only the 
global structure is significant and then only λ1 is inter- 
pretable in the case of the Moroccan landraces; cones- 
quently, only the first sPCA axis, the sPC1 is considered. 
The SAU for sPC1 was 0.47, PC1: 0.28, PC2: −0.02 and 
PC3:0.27. This means a global structure is given by PC1 
and PC3. In addition to the positive value of SAU of PC1  

 
Table 2. Moroccan durum wheat subpopulations genetic information. 

Subpopulation P1M P2M P3M P4M P5M P6M 

Agro-ecological region 
Semi-Arid  

and Maritime 
areas (SAM) 

Arid and 
Cold plateaus 

(ACP) 

Arid and 
Maritime 

areas 
(AM) 

Rainfall-Favorable 
High  

Altitude-Cold 
areas (RFHAC) 

Irrigated 
/Rainfall-Favorable  
Maritime (IRFM) 

Irrigated  
Continental/ 

Cold Plateaus 
(ICCP) 

Number of individuals 11 5 7 46 14 15 

Total number of Alleles 205 140 217 471 405 302 

Min Alleles per locus 1 1 1 1 1 1 

Max Alleles per locus 11 5 7 22 14 13 

Number of Loci with Ho = 0 (%) 
32 

(63%) 
37 

(73%) 
24 

(47%) 
9 

(18%) 
16 

(31%) 
17 

(33%) 

Number of Loci with He = 0 (%) 
1 

(2%) 
2 

(4%) 
0 

(0) 
0 

(0) 
0 

(0) 
2 

(4%) 

HE 0.564 0.727 0.716 0.656 0.775 0.685 

Ho 0.184 0.102 0.17 0.187 0.223 0.182 

Ho is the observed heterozygosity and He is the genetic diversity. 
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and sPC1, mapping PC1 and sPC1 over the studied areas 
of Morocco showed a very strong visual spatial pattern 
schematized by a positive component for landraces from 
the high altitude (Rif and Atlas mountains) landraces and 
a negative component elsewhere (Figure 5). In general, 
neighboring landraces had close coordinates on the PC1 
and sPC1 axes. Correlation between PC1 and sPC1 co- 
ordinates was very highly significant (p < 0.001) with a 
coefficient of 0.87. A correlation between the two axes 
and using subpopulations found by GENELAND, as 
factor was also highly significant (p < 0.001) with a co-
efficient of 0.61. The t-test (Table 3) showed that only 
P2M could not be differentiated by the four axes (sPC1, 
PC1, PC2 and PC3). sPC1 and PC1 discriminated clearly 
between 4 out of the six Moroccan subpopulations de- 
tected by GENELAND. 

3.3. Syrian Durum Wheat Landraces Population 

The number of observed alleles was 836 with a maxi- 
mum of 45 alleles for the locus gwm368 and with a 
minimum of 3 alleles for gwm471, gwm644 and gwm285. 
Average number of alleles per locus was 16. The mo- 
lecular markers gwm369, gwm471, gwm257, gwm410, 
gwm129, gwm644, gwm107, gwm285, and gwm2 were 
homozygote (100%); whereas gwm493, gwm494, 
gwm344 and gwm408 were the most heterozygote. As for  

genetic diversity, values ranged from 0.99 for gwm357 to 
0.28 for gwm234 (Table 1). The genetic diversity over all 
loci was 0.79. The expected heterozygosity was signifi- 
cantly greater than the observed one, with a p < 0.001 
and a mean difference of 0.52. GENELAND analysis 
generated six subpopulations for the Syrian landraces at 
88% and five sub-populations at 12% (Figure 3(b)) and 
inferred posterior probabilities for each of the 2500 pixel 
of Syrian area belonging to these subpopulations (Figure 
6). Only 20 Syrian durum landraces were attributed to a  
 
Table 3. T-test value for subpopulations detected in Moroccan 
durum wheat landraces. 

Subpopulation/ 
Principal component

PC1 PC2 PC3 sPC1 

P1M <0.001 0.002 0.034 <0.001

P2M 0.221 0.751 0.763 0.321 

P3M <0.001 0.233 0.275 <0.001

P4M <0.001 0.043 0.002 <0.001

P5M 0.03 0.094 0.89 0.002 

P6M 0.514 0.006 <0.001 0.186 

PC1, PC2, and PC3: first, second, and third principal component, respec- 
tively. sPC1 is the first spatial component. P1M, P2M, P3M, P4M, P5M, 
and P6M are the six Moroccan subpopulations detected by GENELAND 
software. 
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Figure 5. Maps of the first spatial principal (a) and principal (b) components for the Moroccan durum wheat landraces. 
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Figure 6. Syrian landraces population probability assignments on the Syria studied area. (a) P1S, (b) P2S, (c) P3S, (d)P4S, (e) P5S 
and (f) P6S. 
 
population at more than 90%. Subpopulation1 (P1S) was 
clearly separated from other subpopulations and it was 
composed of 14 landraces represented mainly by the 
landraces: Haririe, Sourie, Souedie, which are originated 
from the coastal Mediterranean region of Syria (Latakia, 
Elghab and Alhafa). The P1S represents the rainfall-fa- 
vorable/maritime areas (RFM). Ten landraces were as- 
signed at 71% to the subpopulation2 (P2S) but also to 
subpopulation 5 (P5S) at 17%. Nine of the landraces were 
Souedie, and originated from the northeast of Latakia 
province, in addition to the landrace “Hamari” from 
Homs province. The P2S represents the rainfall-favor- 
able/high altitude areas (RFHA). The subpopulation 3 
(P3S) was the most diversified as inferred by GENE- 
LAND, according to the origin of landraces, but also to 
their nomenclature. They were mainly collected from the 
Northeast of Syria (Kamishli, Hassakeh and Ras Elayn); 
however, the third subpopulation (P3S) included also 
landraces from the coastal western part of Syria (Drei- 
kesh, Tartous and Sheikh Badr), Haurani from Albab 
near Aleppo and Biadi from Deir Ezzour were also des- 
ignated to this population. This subpopulation (P3S) is 
representing the high rainfall /irrigated/semi-continental 
areas (HRISC); with a percentage of inclusion up to 84%; 
the remaining landraces were also affected at 13% to 
population 5 (P5S). The largest subpopulation from Syria 
was P4S with 38 landraces. Fourteen (14) were “Hau- 
rani”, 9 “Baladi”, 9 “Biadi” and 2 “Hamari”. P4S had 

most landraces originated from the Syrian central North- 
South axis (Aleppo in the North to Qunaytera in the Go- 
lan Heights). The P4S represents the semi-arid continent- 
tal areas (SAC); some of landraces of P4S were also in- 
cluded in P5S at 13%. The fifth subpopulation P5S was 
difficult to differentiate from the other subpopulations 
(Figure 3(b)). Five (5) landraces (Baladi from Latakia, 
Hamari from Safita, Shihani from Hassakeh, Sourie from 
Alhafa, and Shihani Kandahari from Hassakeh) were 
inferred to this subpopulation with 50% and shared with 
P4S at 30%. This subpopulation mainly represents the 
high altitude/continental/high rainfall areas (HACHR). 
The last subpopulation P6S is composed by 5 landraces 
and included two landraces from Ras Alayn, two from 
Assanamayn, and one from Alqutayfa close to Damascus 
with inference at 99%. The P6S represents the arid-con- 
tinetal Areas of Syria (AC). A summary for the six Syrian 
subpopulations is shown in Table 4. As it was indicated 
earlier, P4S contains the largest number of landraces, but 
shows the smallest number of alleles per locus. P3S con- 
taining landraces from distant geographical areas but 
with similar moisture levels through rainfall or irrigation 
and temperatures (Tartous, Homs, Hassakeh, and Deir 
Ezzour) was the population with the largest heterozygos-
ity over all loci. As indicated earlier, the P3S is most 
diversified population; it has the lowest number of ho- 
mozygote loci compared with the other subpopulations in 
Syria. Generally, the Syrian durum landraces are found 
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to be grown in different agro-ecologies; i.e. the same 
landrace is cultivated in different environments, in con- 
trast to the Moroccan landraces, where geographical bar- 
riers are more prevailing than in Syria. In the PCA 
analysis based on the matrix of allele frequencies without 
standardization, the first three eigenvalues explained 
37% of the total genetic variability. The axes are sym- 
bolized PC1, PC2, and PC3. Moran’s I index computed 
for alleles frequencies for the Syrian landraces showed a 
high SAU (≥0.5) for 8 alleles. However, only 18 had a 
positive significant SAU. A maximum I of 0.89 was reg- 
istered for the allele gwm264.169, while 80 alleles 
showed no significant SAU with a value of I = I0 = −0.01.  

On the other hand, 3 alleles gwm293.168, gwm494.191 
and gwm666.100 showed significant negative SAU of 
−0.11, −0.4, and −0.55, respectively. Further, almost 50% 
of studied alleles had no significant SAU, indicating a 
random distribution over Syria. As for sPC analysis, we 
constructed a spatial network with Gabriel graph. Only 
the global structure was taken into account and it has 
been differentiated from other eigenvalues (p < 0.001), 
while the local test was not significant. Therefore, only 
the first axis (sPC1) is interpretable. PC1 and sPC1 
showed almost the same spatial pattern over the studied 
area of Syria (Figure 7). However, the global spatial 
pattern was less obvious than in the Moroccan case, as 

 
Table 4. Syrian durum wheat subpopulations genetic information. 

Subpopulation P1S P2S P3S P4S P5S P6S 

Agro-ecological 
region 

Rainfall-Favorable/ 
Maritime areas 

(RFM) 

Rainfall-Favorable/
High Altitude areas

(RFHA) 

High Rainfall/  
Irrigated/ 

Semi-Continental 
areas (HRISC) 

Semi-Arid 
Continental 

areas 
(SAC) 

High Altitude/ 
Continental/High 

Rainfall areas 
(HACHR) 

Arid-Continental 
areas (AC) 

Number of 
individuals 

14 10 18 38 5 5 

Total number of 
Alleles 

300 258 450 355 178 170 

Min Alleles per 
locus 

1 1 2 3 1 1 

Max Alleles per 
locus 

13 10 18 24 5 6 

Number of Loci 
with Ho =0 (%) 

22 
−43% 

21 
−41% 

16 
−31% 

21 
−41% 

24 
−47% 

29 
−57% 

Number of Loci 
with He = 0 (%) 

0 
0% 

1 
−2% 

0 
0% 

0 
0% 

3 
−6% 

2 
−4% 

HE 0.689 0.675 0.782 0.661 0.67 0.652 

Ho 0.183 0.222 0.21 0.171 0.2 0.192 

Ho is the observed heterozygosity and He is the genetic diversity. 
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Figure 7. Maps of the first spatial principal (a) and principal (b) components for the Syrian durum wheat landraces. 
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several neighbor landraces had diverse values for PC1 or 
sPC1. This is because several alleles showed negative 
SAU in the Syrian population, and additionally, the 
number of alleles with significant positive SAU was less 
present than in the Moroccan landraces population. Us- 
ing t-test analysis (Table 5), the P6S could not be dif- 
ferentiated from the other five subpopulations by the four 
axes PC1, PC2, PC3 and sPC1. Furthermore, the sPC1 
permitted to discriminate significantly between the first 
five subpopulations compared with three subpopulations 
for PC1 that was generated by GENELAND. Correlation 
between PC1 and sPC1 coordinates was very highly sig- 
nificant (p < 0.001) with a coefficient of −0.73. A corre- 
lation between the two axes using subpopulations found 
by GENELAND, as factor was also highly significant (p 
< 0.001) with a coefficient of −0.78. 

The Nei’s minimum genetic distance (Table 6) 
showed that the Moroccan subpopulation P1M from the 
semi-arid and maritime areas was the most distant ge- 
netically to all the subpopulations from Syria. Similarly,  
 
Table 5. T-test table for populations detected in the Syrian du-
rum wheat landraces. 

Subpopulation/ 
Principal 

Component 
PC1 PC2 PC3 sPC1 

P1S 0.016 <0.001 0.004 <0.001 

P2S 0.193 <0.001 <0.001 <0.001 

P3S <0.001 0.003 0.002 0.002 

P4S <0.001 <0.001 0.046 <0.001 

P5S 0.117 <0.001 0.121 0.003 

P6S 0.787 0.807 0.594 0.958 

the Syrian subpopulation P4S from semi-arid and conti- 
nental areas, was the most distant genetically to all the 
Moroccan subpopulations. As for the nearest genetically 
among the subpopulations of the two countries, P3S from 
the Syrian high rainfall/irrigated/semi-continental areas 
(Figure 6(c)) was the most nearest to the Moroccan sub- 
populations, particularly to P5M (Figure 4(e)) from the 
Atlantic Northwest and coastal areas of Morocco (irri- 
gated/rainfall-favorable/maritime areas), mainly where 
the Phoenicians had settled. The early center of Phoeni-
cian/Carthagians settlements in Morocco  
(http://www.phoenician.org/phoenician_colonies.htm) 
were Lixis (Larache), Tingis (Tangiers), Sala (Rabat- 
Salé), Zili (Asilah), and Mogador (Essaouira); and these 
areas are congruent with the prsence of subpopulation 
(P5M), which is genetically closed to the Syrian sub- 
population (P3S) from Syria (Tartous). Within Morocco, 
the genetically nearest subpopulations were P4M (rain- 
fall-favorable/high altitude-cold areas) and P6M (irri- 
gated continental/cold Atlas plateaus). As for the sub- 
populations of Syria, the genetically nearest were P2S 
(rainfall-favorable/high altitude areas) and P3S (high 
rainfall/irrigated/semi-continental areas). 

4. DISCUSSIONS 

We showed that similar spatial genetic patterns were 
found using the two approaches (Bayesian and Eigen) 
especially for the Moroccan population. The axis of the 
Eigenanalysis differentiated clearly between clusters 
revealed by the Bayesian method. The Eigenanalysis is 
easy to implement, has no assumption on data, and can 
help in understanding diversity and structure of a given 
population. The resulting axes are continuous and can be  

 
Table 6. Nei’s genetic distance for the Moroccan and Syrian durum wheat subpopulations. 

Morocco Syria 
Subpopulation 

P2M P3M P4M P5M P6M P1S P2S P3S P4S P5S P6S 

P1M 0.207 0.121 0.204 0.108 0.181 0.25 0.235 0.194 0.273 0.253 0.227 

P2M  0.145 0.088 0.092 0.097 0.154 0.18 0.111 0.198 0.164 0.17 

P3M   0.145 0.082 0.124 0.162 0.163 0.111 0.177 0.178 0.156 

P4M    0.076 0.057 0.134 0.178 0.11 0.199 0.17 0.148 

P5M     0.07 0.129 0.136 0.077 0.161 0.132 0.129 

M
or

oc
co

 

P6M      0.145 0.164 0.104 0.189 0.163 0.152 

P1S       0.11 0.083 0.145 0.123 0.129 

P2S        0.079 0.131 0.12 0.141 

P3S         0.09 0.091 0.087 

P4S          0.142 0.109 

S
yr

ia
 

P5S           0.156 

P = Subpopulation; M = Morocco, S = Syria. 
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used to correct phenotype trait and genotypic data for 
association studies [22]. This study showed clearly the 
geographic distribution of landraces in Morocco and 
Syria and confirmed that in general, landraces tended to 
group according not to their geographical origin [27], but 
also to their agro-ecological adaptation. The use of spa-
tial genetic structure helped largely to understand the 
mechanisms of adaptation of durum wheat landraces; and 
that environment (topography, landscape) has a consid- 
erable effect on population structure [19]. A detailed 
analysis of genetic discontinuities through barriers using 
Monmonier’s algorithm [42,43] may be needed for the 
association between the durum wheat germplasm genetic 
discontinuities and environmental barriers. These analy-
ses techniques, aided by marker-trait association, are a 
powerful tool in the hand of the breeders for deciding on 
the choice of the parental material in a crossing program 
[3,27,28]. The amplified alleles found in this study were 
more than twice than the durum wheat elite collection 
population [25]. This may be explained that our popula-
tions consisted of diverse landraces; whereas the men-
tioned previous work was mainly of improved genotypes. 
The genetic diversity found in the Moroccan and Syrian 
landraces was higher than the diversity found by Mora- 
gues and colleagues [27] for a group of Mediterranean 
durum landraces using low and high molecular weight 
loci. Moroccan and Syrian durum wheat landraces hold 
large genetic variability and considerable number of al- 
leles with the probability of having some of these alleles 
associated with stress tolerance, yield, and/or grain qual- 
ity [1,2]. The spatial autocorrelation (SAU) applied to an 
individual allele did not express the global spatial struc- 
ture we have in our data [15]. Therefore, SAU applied to 
one specific allele (example of an allele in association 
with a trait of interest) can be used to investigate the spa- 
tial distribution and the correlation of this allele with 
environmental and/or geographic variables [3]. 
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