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ABSTRACT 
Compressed sensing (CS) is a new technique for simultaneous data sampling and compression. In this paper, we pro-
pose a novel method called distributed compressed sensing for image using block measurements data fusion. Firstly, 
original image is divided into small blocks and each block is sampled independently using the same measurement oper-
ator, to obtain the smaller encoded sparser coefficients and stored measurements matrix and its vectors. Secondly, orig-
inal image is reconstructed using the block measurements fusion and recovery transform. Finally, several numerical 
experiments demonstrate that our method has a much lower data storage and calculation cost as well as high quality of 
reconstruction when compared with other existing schemes. We believe it is of great practical potentials in the network 
communication as well as pattern recognition domain. 
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1. Introduction  
With the development of the optical technology, the im-
age we got from the digital camera often has above 10 
million pixels, the real world becomes clearer in the 
electronic world, simultaneously, it becomes harder to 
store and transmit these images. In conventional imaging 
systems, natural images are often first sampled into the 
digital format at a higher rate and then compressed 
through the JPEG or the JPEG 2000 [1] code for efficient 
storage purpose. However, this approach is not applica-
ble for low-power, low resolution imaging devices such 
as a sensor network with limited computation capabilities. 
Fortunately, the compressed sensing theory (CS) [2-5] 
which is proposed by Donoho and Candes, who shows 
that under certain conditions, a signal can be precisely 
reconstructed from only a small set of measurements. 
Recently, CS has attracted considerable attentions in areas 
of applied mathematics, computer science, and electrical 
engineering due to its excellent performance. 

Compressed sensing acquisition of data might have an 
important impact for the design of imaging devices 
where data acquisition is expensive. Duarte et al. [6] de-
tail a single pixel camera that acquires random projec-
tions from the visual scene through a digital micro-mirror 
array. The Block diagram of a single pixel camera has 
showed in Figure 1. A similar acquisition strategy can 

be used in MRI imaging to reduce the acquisition time 
and increase the spatial resolution. 

In addition, Block-based CS for image is proposed 
[7], block measurement is more advantageous for real- 
time applications as the encoder does not need to send 
the sampled data until the whole image is measured, and 
the possibility of exploiting block CS is motivated by the 
great success of block DCT coding systems which are 
widely used in the JPEG and the MPEG standards.  

In this paper, we present a novel distributed CS me-
thod which uses block measurements data fusion to re-
construct original images. The main advantage is to de-
crease the storage of encoder and huge bytes of data traffic, 
and to need smaller calculate cost than that Block-based 
 

 
Figure 1. Block diagram of a single-pixel camera 
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CS restored from a set of sub-measurement recovery and 
joint sub-image. Therefore, our proposed method is more 
advantageous in many important and emerging applica-
tions, e.g., the sensor network system or network com-
munication. 

2. Background 
2.1.  Compressed Sensing 
CS builds upon the fundamental fact that we can 
represent many signals using only a few non-zero coeffi-
cients in a suitable basis or dictionary. Based on CS 
theoretic requirement that signal is assumed to be ap-
proximately sparse, we suppose that the transform coef-
ficients in the orthogonal basis Ψ of an N dimensional 
vector X are sparse, the signal X can be represented as 
[8]: 

=ΨX a                  (1) 
where a is an N  dimensional sparse coefficients vector, 
it has only K non-zero coefficients. In order to take com-
pressed sensing measurements, we let Φ  denote an 
M by N matrix with M×N. The measurement ma-
trixΦ should be uncorrelated with the transform ma-
trixΨ . M measurements are obtained by a linear system: 

= = =Φ ΦΨ ΦY X a a           (2) 
Where, sensing matrix R M N×= ∈Φ ΦΨ ,an 

n-dimensional Euclidean signal vector space is denoted 
by Rn . If the sensing matrix satisfies the Restricted Iso-
metry Property (RIP) [9,10], the sparse coefficients vec-
tor can be reconstructed as solving the following minim-
al l0 norm optimization problem: 

0arg min || || . .s t= =， Φa a a Y       (3) 

After obtained the sparse coefficients vector a , we 
can exactly reconstruct the original signal X  as follow: 

=ΨX a                 (4) 
Essentially, the optimization problem (3) is an NP- 

hard problem; usually we must convert the minimal l0 
norm optimization problem into the l1 norm or l2 norm to 
solve the sub optimization problem.  

The methods we often used to solve the l1 norm opti-
mization problem are orthogonal matching pursuit [11], 
iterative hard thresholding [12], gradient pursuits [13], 
convex optimization [14], non-convex minimization [15] 
and so on. 

2.2. The block-based CS with united sub-images 
The CS theoretic breaks the limit of Nyquist sampling 
rate, it can compress the data at the same of sampling, 
but the quantity of the CS measurement matrix’s column 
and row equal to the dimension of the signal and mea-
surements vector, respectively. In processing the high- 

resolution optical image, it still need to store the enorm-
ous measurement matrix and measurements vector, 
which takes a lot of time to reconstruct original image 
through solving the optimization problem. 

The block-based CS is proposed [16] to break the 
bottleneck of the enormous data quantity image trans-
mitted by band-limited communication network, which 
divides original image with huge gigabytes of pixels into 
many sub-images, which is projected and quantized in 
the encoder, block-by-block measurements decoded and 
reconstruction of subspace, finally, it make a recovery 
the original image from joint sub-images, as showed in 
Figure 2.  

In Figure 2, firstly the block-based CS divides the 
original big image into many small sub-image, next it 
gets every sub-image’s measurements of compressed cod-
ing. Every sub-images has been acquisition from block 
measurements of CS processing. Finally, original image 
is restored using joint reconstructed sub-images in a 
block-by-block manner. Since each block is processed 
independently in the block-based CS, Block-based mea-
surement is more advantageous for realtime applications 
because the encoder does not need to send the sampled 
data until the whole image is measured, the initial solu-
tion can be easily obtained and the reconstruction process 
can be substantially speeded up. However, the approach 
still need to store a large of data for measurements and 
sub-images, and there are complex calculate cost for un-
ion sub-images to recover original image. 

3. Distributed CS Based on Block 
Measurments Fusion  

In the block CS, it ignores the strong correlation of the 
sub-images, which employed to reconstruct original im-
age by union them. For the sake of mining the correlation 
among the sub-images and reducing the data storage as 
well as calculation cost, we present a novel method of 
distributed CS for image based on block measurements 
fusion, whose processing is shown in Figure 3. 

Being different from Block-based CS, the proposed 
method in this paper doesn’t reconstruct original image 
from a set of the recovery sub-images separately, but 
restored original sub-image’s block measurement matrix 
and its measurement vectors at firstly, and reconstruction  
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Figure 2. The diagram of block-based CS by joint sub-images. 
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Figure 3: The diagram of distribution CS based on block 
measurements fusion. 
 

original image though to synthesis measurement matrix 
and its measurement vectors using data fusion, so as to 
reduces the storage in the decoder and reduce the calcu-
lations from united sub-images. The associated algorithm 
is given in the next section detailedly.  

3.1. Synthese’s measurements matrix and its 
vectors  
In the decompressed of distribution CS, we get every 
compressed measurements blocks of n column by n 
column or m row by m row. Let n dimensional vec-
tor x denote one column of the original image. We can 
obtain the measurements of x by y = Ax , Rm∈y , 

where m is a number of measurement vector, Rm n×∈A is 
the measurement matrix. This process shows in figure 4. 

In [17], the authors indicate that if the measurement 
matrix is random gauss matrix, the sensing matrix can 
satisfy the RIP with high probability. The theoretic anal-
ysis and experimental results show that all of the differ-
ent measurement matrixes perform excellently and we 
can’t find which one is better than others. So we employ 
the random Gauss matrix with the normal distribution as 
the measurement matrix of CS. 

Suppose the column of image divided into u seg-
ments(or blocks), denoted by 1 2, , ..., ux x x , the number 

of every segment are 1 2, , ..., un n n ,respectively. In a cast 
of overlap segment with the neighbors, therefore, 

1 2 ... un n n n+ >+ + . In other case of no overlap seg-

ment ， 1 2 ... un n n n+ =+ + . Every segment’s com-

pressed measurements iy  can obtain as follow: 

; 1, 2, ...,i i i i u= =y A x            (5) 
Where, R i im n

i
×∈A is the i-th segment’s measure-

ment matrix, that is a block measurement matrix, im is 
the number of its compressed measurements. 

3.2.  Fusion algorithm 
The reconstruction optimization problem in CS is: 

1min || || , . .s t = Ψf y A f . which indicates that to 

reconstruct the sparse coefficients f of vector x , we 
must know the measurement matrix A , measurements 
vector y , and the sparse matrixΨ . Because the matrix 
Ψ doesn’t be used in the encoder, so we just need to 
synthesis the measurement matrix A and measurements 
of vector y of original image x  from every sub-block 
measurements. 

The reconstructed A  and y  satisfy the equation as 
follow: 
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  (6) 

Then we obtain: 
' ' '
1 2( ) ( ) ( ) ( ),..., u uj j,: j,: j,:= + +1 2+y A x A x A x   (7) 

Where, 1, 2,...,j m= .  

Using the equation (7), we know that every en-
try ( ), = 1, 2, ...,j j my of y , contains all entries’ informa-
tion of x .The measurements are obtained through mul-
tiplying measurement matrix by vector, so the every en-
try of A correlates with iA . 

As the case of no overlap segments,  

...n n n n+ =+ +1 2 u , 

every entry ( ), 1, 2, ...,i ik k m=y  of iy is obtained 
through multiplying one whole row of measurement ma-
trix by vector ix , so the rows of sub-measurement matrix 
just can be operated linearly and must treat the whole 
row as an entry. From the equation 
(6), ( ) = ( )j j,:y A x and 1 2 ... un n n n+ =+ + , the row 
number of all the sub-measurement matrix should be 
extended to m , and then fused the block matrix to recon-
struct the whole measurement matrix A, which shows in 
figure 5. 
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Figure 4. The projection of CS  

 
Figure 5: The fusion of block measurement’s data matrix. 

 
The next work is to expand the i im n× matrix iA to 

the im n×  matrix i'A . In the section 3.1, we let the 
measurement matrix be random Gauss matrix, so that the 
reconstruction whole matrix should also be random 
Gauss matrix satisfied the RIP. 

From the applied probability, if ( ) ~ N(0,1)i p,qA , 

and ( ) ~ N(0,1)k w,tA , let ( ) + ( )i ka p,q b w,t=S A A , 
where a and b are constant. 

So that  we can obtain: 2 2~ N(0, )a b+S . 
The encoder with high confidence nearly loses data 

so to bring error. By contrast, the low confidence ones 
should always happen, so we endue the 
sub-measurement matrix with different power val-
ue1 / pw , 1, 2, ...,k k u= , a high power is set to the matrix 
with a high confidence and vice versa, which can im-
prove performance the reconstruction of image. 

For the convenience of denotation, ,ASS i C de-
notes that let the i-th row of A  be the value of C , so 
the measurement matrix’s fusion formula can be 
represented as: 

1 1

2 2

1 1 1 1 1 ( ) ( )
1

2 2 2 2 2 ( ) ( )

( ) ( )
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  (8) 
Where, for the different i , at least the value of ( )pj i  

or ( ), 1, 2, ...,pk i p u=  should be changed.  

By the equation (8), =y Ax and i i i=y A x  , we can 
obtain the measurements’ vector fusion formula  as 
follow: 

=1

1
( ) = [ ( ( )) + ( ( ))]

pw

u

v v v v
v v

i j i k i∑y y y       (9) 

Where, 1, 2, ...,i m= ; the relation of ( )vj i and ( )vk i  
is same as equal(8).  

4. Experimental Results 
The proposed  distributed CS  based-on  block mea-
surements fusion(BMF-DCS) sampling and reconstruc-
tion algorithms were implemented using Matlab software 
with version 7.8.0 in PC Computer. For making a nice 
comparison, we refer to the resulting implementations as 
the Block CS for image based-on sub-images joint 
(SIJ-BCS) . In the numerical experiments, we choose 
three images Dock , Mountain and Cameraman for the 
experimental object, those test image is of 256×256 
pixels and its measurement ratio is 0.6. To evaluate di-
rectional transforms for CS reconstruction, we deploy the 
DCT matrix is as sparse matrix within both the SIJ-BCS 
framework and proposed BMF-DCS in this paper, and 
the orthogonal matching pursuit reconstructing algorithm 
is applied to solve the optimization problem.  

Fig.6-Fig.8 illustrates the several example visual re-
sults. The numerical experiments demonstrate that both 
the SIJ-BCS and BMF-BCS can reconstruct the original 
image with similar good visual qualities for Dock, 
Mountain and Cameraman. However, We note that the 
reconstruction images from BMF-BCS are smoother than 
that from SIJ-BCS. That is ,the reconstructed images by 
the SIJ-BCS method have many noises in the edges and 
blurred picture , but the reconstructed images using the 
BMF-BCS method is of smooth in the edges. 

 
Figure 6. Reconstruction of Dock image. (a) Original image; 
(b) SIJ-BCS reconstruction; (c) BMF-DCS reconstruction. 
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Figure 7: Reconstruction of Mountain image. (a) Original 
image; (b) SIJ-BCS reconstruction; (c) BMF-DCS reconstruc- 
tion. 
 

 

Figure 8: Reconstruction of Cameraman image. (a) Original 
image; (b) SIJ-BCS reconstruction;  (c) BMF-DCS 
reconstruction. 

 
To evaluate the performance of reconstruction by qu-

alitatively, We employ the processing time of recon-
struction image in the decoder (TOD) as the calculate 
cost, and use the number of data that stored in the de-
coder (NDD) to be represent the storage quantity, and the 
power signal-to-noise ratio(PSNR) is used for evaluation 
of the construction quality. Here, the PSNR is given by: 

1 1
2 2

max
0 0

PSNR 10

log{ / [ ( , ) ( , )] }
M N

x y
M N f x y x y

− −

= =

= ×

× × −∑ ∑ g f  (10) 

Table 1 tabulates the TOD, PSNR and NDD results 
of both our algorithms (MBF-BCS) and SIJ-BCS recon-
struction algorithms  on three 256×256 pixels  natural 
images Dock, Mountain and Cameraman. 

From table 1, we can see that, for the complex image 
Dock and Cameraman with symmetrical sparsity, these 
two methods perform similarly, the BMF-BCS recon-
struction PSNR is higher than the SIJ-BCS only by 1dB. 
For the simple image Mountain with asymmetric sparsity, 
the PSNR of BMF-BCS yields about 4.5 dB improve-
ments.  

Additionally, The SIJ-BCS method’s processing time 
of the decoder reaches more than 100 times the BMF- 
BCS methods, this result indicates that the BMF-BCS 
largely reduces the calculate cost of the decoder. In some 
sense, we can use some cheap equipments to achieve the 
work that achieved by the dear equipment before. The 
last column of Table 1, value of NDD shows that near 
half amount of processing data by the BMF-BCS method 
is  that by the SIJ-BCS method in the decoder, it imply 
our method can also reduce the cost of the equipment . 

As for image block CS method based on sub images 
joint, it ignores the correlations among the sub-images, 
whose reconstructing original images in manner of unit-
ed them .Therefore, the block CS method can only re-
construct the sparser images with high precision and the 
less sparser sub-images with low precisions. But the new 
method proposed in this paper can reconstruct the whole 
image with high precision because of the fault-tolerant 
data fusion used in the decoder to mine the correlation of 
the sub-images. 

5. Conclusion 
In this paper, we propose a novel distributed CS method 
based-on block measurements fusion in which we use the 
block measurement matrix and its vectors fusion to syn-
thesis the whole measurements, then to  reconstruct the 
original images, that need no joint sub-image. The sever-
al numerical experimental results show our algorithm can 
reconstruct the original image with a high precision, and 
largely reduce the storage and calculation cost for image 
reconstruction in the decoder. Compared with 

 
Table 1. Comparisons of reconstruction TOD, PSNR and 
NDD measured by different methods. 

 TOD/s PSNR/dB NDD 

Dock SIJ-BCS 4.336 17.25 65536 
BMF-BCS 0.031 18.34 39321 

Mountain SIJ-BCS 4.255 32.26 65536 
BMF-BCS 0.026 36.72 39321 

Camera-man SIJ-BCS 4.628 21.57 65536 
BMF-BCS 0.028 22.35 39321 
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existing schemes, the proposed new one contains a much 
lower data storage and a much lower calculation cost as 
well as high quality of image reconstruction. We think it 
is of practical potentials in the network communication 
as well as realtime object recognition domain. 
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