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ABSTRACT 

A water distribution problem in the Mexican Valley is modeled first as a three-person noncooperative game. Each 
player has a five-dimensional strategy vector. The strategy sets are defined by 15 linear constraints, and the three payoff 
functions are also linear. A nonlinear optimization problem is first formulated to obtain the Nash equilibrium based on 
the Kuhn-Tucker conditions, and then, duality theorem is used to develop a computational procedure. The problem can 
also be considered as a conflict between the three players. The non-symmetric Nash bargaining solution is suggested to 
find the solution. Multiobjective programming is an alternative solution concept, when the water supply of the three 
players are the objectives, and the water authority is considered to be the decision maker. The optimal water distribution 
strategies are determined by using these solution concepts and methods. 
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1. Introduction 

Game theory is the most commonly applied methodology 
in decision making problems, when the decision makers 
have conflicting interests. The solution of a noncooperative 
game is a decision vector such that no decision maker 
can unilaterally change the decision and receive higher 
benefit. This solution concept is known as the Nash equi- 
librium [1].  

The limited amount of natural resources creates a con- 
flict between the users, since it is impossible to satisfy 
the demands of all users, so any user can receive more 
resources only in the expense of the others. It is well 
known that water shortage is one of the most worrying 
problems of the new millennium due to the increase of 
population, better living standards and the inefficiency of 
the way we use water [2]. This problem already became 
serious in the neighborhood of large cities with very 
large population. Mexico City with its 19 million inhabi- 
tants is considered the most populated city in the world. 
It is located in the Mexican valley where the very limited 
water resources are distributed between three users: ag- 
riculture, industry and domestic users. Therefore there is 
a conflict between them, and this conflict can be modeled 
by a three-person game, which will be the case study 
reported in this paper.  

There is a large variety of computer methods to find 
Nash equilibrium in non-cooperative games. A compre- 
hensive summary is given for example, in [1], where a 

combination of the Kuhn-Tucker conditions and nonlin- 
ear optimization is discussed in detail. We will apply this 
method in our case study, when an alternative algorithm 
is also developed based on duality theory. Nash equilib- 
rium assumes that each decision maker wants to maxi- 
mize its benefit without any consideration to the others. 

This problem can also be considered as a conflict be- 
tween the users, so conflict resolution methodology is a 
reasonable alternative approach, in which the decision 
makers select a Pareto optimal solution that satisfies cer- 
tain fairness conditions. Most solution concepts can be 
also considered as outcomes of negotiation processes. In 
our case study the non-symmetric Nash bargaining solu- 
tion is selected to find the solution [3]. A summary of the 
most commonly used conflict resolution methods is given 
for example in [4].  

In many countries, like in Mexico, the water supply is 
provided to the users by a single governmental organiza- 
tion. Therefore we might also consider this problem as a 
single-decision maker’s problem with three objective 
functions, where the water amounts supplied to the three 
users are the objective functions. A comprehensive sum- 
mary of the most popular methods for solving multiob- 
jective programming problems can be found for example, 
in [5].  

The application of game theory, conflict resolution and 
multi-objective programming in natural resources man- 
agement has a long history. The survey papers [6,7] gave 
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excellent overview of earlier works. More recently Do- 
nevska et al. [8] examined a similar problem to ours with 
water demands to agricultural and non-agricultural users 
in the Republic of Macedonia. Jensen et al. [9] invest- 
igated multiple usage of irrigation water. A multiobjec- 
tive design of water distribution systems under uncer- 
tainty was developed combining multi-objective optimiza- 
tion with evolutionary algorithms [10,11]. Wang, et al. 
[12] used game theory for a water distribution problem 
for the South Saskatchewan Basin in Southern Alberta, 
Canada.  

In our case study the non-cooperative Nash equilibrium 
of the three player game of the water users in the Mexi- 
can Valley will be first determined. All payoff functions 
and constraints will be linear, so taking advantage of the 
special structure of the model, the general solution algo- 
rithm based on the Kuhn-Tucker conditions can be sig- 
nificantly simplified and by using duality theorem an alter- 
native method can be developed. The non-symmetric 
Nash bargaining solution of the problem will be next 
determined, which requires the solution of a nonlinear 
optimization problem with linear constraints and quasi- 
concave objective function. In finding solutions based on 
the concepts of multiobjective optimization we will use 
the weighting method [5]. 

Since the three applied solution concepts are based on 
different types of instituting water distribution, our re- 
sults also show the consequences of different water dis- 
tribution mechanisms on the optimal solutions. Since in 
the Mexican Valley the water distribution is decided by a 
government organization, the concept assuming a single- 
decision maker has to be adapted, which is given by mul- 
tiobjective optimization. The comparison of the results 
still has practical importance by showing the possible 
consequences of changing the water distribution system. 
As we will see later, domestic water demands can never 
be satisfied, so there is a need of significant improvement 
of the distribution system and the utilization of the exist- 
ing water resources.  

This paper develops as follows. Section 2 will intro- 
duce the mathematical methodology. Section 3 will con- 
tain the model of the case study. Numerical results will 
be presented and the solutions methods will be compared 
in Section 4. The last section will conclude the paper. 

2. The Mathematical Methodology 

We will first present a nonlinear optimization problem to 
find the Nash equilibrium in a general class of n-person 
games, which will be later applied in the case study. 

Consider an n-person noncooperative game, and as- 
sume that the strategy set of player  is,  1k k n 

  0k k kk
X x g x   

where 
k

g  is a continuously differentiable vector variable, 

vector valued function, and the payoff of player k is, 
 1, ,k nx x   where k  is also continuously dif- 

ferentiable. Then  *, ,*
1 nx x  is a Nash equilibrium, if 

for all k, *
kx  maximizes the payoff of player k, 

 * * * * *
1 1 1, , , , , ,k k k k nx x x x x     

subject to the feasibility constraint   0kk
Assume that the Kuhn-Tucker regularity condition holds, 

then the Kuhn-Tucker necessary conditions imply the 
existence of a 

g x  .  

ku  vector such that 

 
 
   1

0

0

0

, , 0 ,

k

kk

T
kk k

T T
k k kn k k

k

u

g x

u g x

x x u g x







    

  (1) 

where k k  Equation (1) is the gradient vector (as row 
vector) of k  with respect to kx  and k k

g  is the 
Jacobian matrix of g

k
. 

Consider next the optimization problem  

Minimize  1

n T
kk k k

u g x
  

subject to k 

 
   1

0.

0,

, , 0 ,

1,2, , .

k

kk

T T
k k kn k kk

u

g x

x x u g x

k n







  








  (2) 

Since 0,ku   and   0,kk
 the objective function 

is zero if and only if all Kuhn-Tucker conditions are sat- 
isfied. Therefore every equilibrium of the n-person game 
is an optimal solution of Equation (2). Hence the equilib- 
rium of the game can be obtained by solving problem 
Equation (2). 

g x 

The sufficiency of the Kuhn-Tucker conditions for con- 
cave problems implies that if all components of 

k
g  and 

k  are concave in kx , then all optimal solution of Equa- 
tion (2) with zero objective function value are equilibria. 

Consider next the linear case, when 

 1 , , T
k kn k kk

x x c x   , 

and the strategy sets are defined by the linear constraints 
Equations (3) and (4). 

k k kA x b  (Individual constraints)    (3) 

k k
k

B x c  (Joint constraint).       (4) 

Using the previous notation Equation (5) is generated, 

 
k kk

kk l l k k
l k

b A x
g x c B x B x



 
    
 

       (5) 
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So conditions Equation (1) become 

 

, 0

0

0

0

0 ,

k k

k kk

l l k k
l k

T T
k k l l k kk k k

l k

T T T T
k kk k k

v w

b A x

c B x B x

v b A x w c B x B x

c v A w B






 

  

    


  



 



 (6) 

where vector is broken up to two parts. So problem 
Equation (2) can be rewritten as Equation (7). 

Minimize 

   1

n T T
k k l lk k kk

v b A x w c B x


   1

n

l  

subject to: 

, 0

1, 2, ,

0

k k

k k k

T T T T
k kk k k

v w

A x b k n

c v A w B




 


   

    (7) 

1
.

n

l ll
B x c


  

All constraints are linear, and the objective function is 
quadratic. 

An alternative approach can be introduced as follows. 
By duality,  * *

1 , , n x x  is an equilibrium if and only if 
for all k, *

kx  is an optimal solution of the linear pro- 
amming problem:  

Maximize T
k kc x  

subject to 

*

k k k

k k l ll k

A x b

B x c B x




 
 

The dual of this problem has the form Equations (8) and 
(9). 

Minimize 

 1

TnT
l lk k kl

b v c B x w


          (8) 

subject to 

 ,T kT
k k k

k

v
A B

w

 
 

 
c            (9) 

So a vector is optimal if and only if the primal objec- 
tive equals the dual objective, so the feasible solutions of 
Equation (10) give the set of all equilibria: 

, 0

1, 2, ,

k k k

k k

T T
k kk k k

T
T T

k k l l kk k
l k

A x b

v w

A v B w c k

c x b v c B x w


 
 
  


        




1

n

l ll
B x c


 . 

In computing the non-symmetric Nash bargaining so- 
lution assume that 1, , n   are the relative importance 
factors of the players. In addition, let *k  denote the 
minimal value of the payoff of player k, which can be 
obtained by solving the single-objective optimization 
problem of Equation (11):  

Minimize T
k kc x  

subject to 

1

, 1,2, ,l l l

n

l ll

A x b l n

B x c


 




          (11) 

Then the non-symmetric Nash bargaining solution can 
be obtained by solving problem in Equation (12): 

Maximize  *1

kn T
kk kk

c x


   

subject to 

1

, 1,2, ,

.

l l l

n

l ll

A x b l n

B x c


 




         (12) 

Notice that Equation (11) is a linear programming 
problem, and in the nonlinear model Equation (12) only 
the objective function is nonlinear, all constraints are 
linear.  

The application of the weighting method requires the 
optimization of a linear combination of the objective 
functions in Equation (13): 

Maximize 
1

n T
k kkk
c x

  

subject to 

1

, 1, 2, ,

,

k k k

n

k kk

A x b k n

B x c


 




          (13) 

where k  is the relative importance factor of player k as 
before. 

It is usually assumed 0k   that for all k, and 

1
1.

n

kk



  If for some k, 0k   then in the objective  

functions of both problems Equation (12) and Equation 
(13) the payoff of player k is completely ignored. Trade- 
offs between 0k   the players are obtained if for all 
k. 

3. The Case Study 

n (10) 

The three players are: agriculture, industry and domestic 
users. They can receive surface water, ground water and 
treated water. Surface and ground water supply can be 
obtained from local sources and also can be imported 
from other neighboring watersheds. Let k = 1, 2, 3 denote 
the three users, so the decision variables of each of them 
are as follows:  

ks  = surface water usage from local source; 
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kg  = groundwater usage from local source; 

k
*

t  = treated water usage; 

ks  = imported surface water usage; 
*
kg  = imported groundwater usage. 

So the strategy of each player is the five-element vector 

 * * .k k k k kkx s g t s g      

The payoff function of each player is the total amount 
of water received Equation (14): 

* * .k k k k k ks g t s g               (14) 

The players have two common constraints. The sup- 
plied water amount cannot be smaller than a minimal 
necessary amount  and cannot be larger than the 
demand, Dk, in order to avoid wasting water as described 
by Equations (15) and (16): 

min
kD

* * mi
k k k k k k

ns g t s g D            (15) 

* *
k k k k k ks g t s g D             (16) 

In addition, each player has its own individual con- 
straints. 

The agricultural users (k = 1) have two major condi- 
tions. Introduce the following variables: 

G = set of crops that can use only groundwater; 

i  = ratio of crop i in agriculture area; 

i

T = set of crops which can use treated water;  
w  = water need of crop i per ha; 

i i
all i

W a  w  = total water need per ha. 

Ground water has the best irrigation quality and treated 
water has the worst. Therefore water quality sensitive 
crops can use only ground water, and only the least sen- 
sitive crops are able to be irrigated by treated water. The 
ratio of available groundwater cannot be smaller than the 
water need of crops that can use only ground water  

*
1 1

* *
1 1 1 1 1

i i
i G

a w
g g

Ws g t s g



   


, 

which can be rewritten into a linear form Equation (17) 

   *
1 1 1 1 1 1 1 1 1 11s g t s g          *1 0  (17) 

with 1

i i
i G

a w

W
 


 Similarly, the ratio of treated water 

availability cannot be larger than the ratio of water need 
of the crops which can use treated water: 

1
* *

1 1 1 1 1

i i
i T

a w
t

Ws g t s g


   


 

which also can be rewritten into a linear form Equation 
(18): 

  * *
1 1 1 1 1 1 1 1 1 11 0B s B g B t B s B g          (18) 

with 1

i i
i T

a w
B

W



. 

The industrial users (k = 2) also have their own con-
straints. Introduce the following variables: 

gB  = minimum proportion of groundwater that Indus- 

try ha
roportion of treated water that Indus- 

 c

s to receive; 

tB  = maximum p

try an use. 
In order to keep a sufficient average quality of the water 

used by the industry, a minimum proportion of ground- 
water is specified, since groundwater has the best quality. 
The worst quality of treated water requires the industry to 
use only a limited proportion of treated water in its water 
usage. With given threshold values Bt and Bg these con- 
straints can be rewritten as  

*
2 2

* *
2 2 2 2 2

2
* *

2 2 2 2 2

.

g

t

B
s g t s g

t
B

s g t s g


   


   

 

Both conditions can be rewritten into linear forms 
Eq

g g

uations (19) and (20): 

 2 21g g gB s B g B * *
2 2g gt B s B g 21 0        (19) 

and 

  * *
2 2 2 2 21 0t t t t tB s B g B t B s B g          (20) 

Domestic users (k = 3) have only treated wat
lim

er usage 
itation, since it can be used for only limited purposes, 

such as irrigating in parks, etc.: 

3t
d* *

3 3 3 3 3

.B
s g t s g


   

 

where: 
aximum proportion of treated water that domes- Bd = m

tic s u ers can receive. 
This constraint is also equivalent with a linear inequal- 

ity given in Equation (21):  

  * *
3 3 3d dt B s B g3 3 1d d dB s B g B 0         (21) 

There are four additional interconnecting con
by

straints 
 the limited resources given in Equations (22)-(25): 

1 2 3 ss s s S              (22) 

1 2 3 gg g g S             (23) 

* * *
1 2 3

*
Ss s s S              (24) 

* * *
1 2 3

*
Ss s s S              (25) 

where 
maximum available surface water amount from 
urce; 

Ss = 
local so
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Sg = maximum available groundwater amount from 
local source; 

showing t at global optimum  obt he linearity of 
all constraints and payoff functions imply that the Kuhn- 
Tucke ition e also icie y op mal so- 

 largest population in the world, 
w

r than the demand, it 
sh

n in Table 4. 

bjective 
 

s. 

*
sS  = maximum available imported surface water 

amount; 
*
gS  = maximum available imported groundwater us- 

age. 
In 

es have to be used before importing water from 
ot

iven in Equation (14) and strategy sets 
de

lts 

tudy are the updated versions 
paper Salazar et al. [13]. The 

Equations (22) and (23) we require that all local re- 
sourc

her watersheds. 
This model is a three-person noncooperative game with 

payoff functions g
fined by constraints Equations (15)-(25) with all non- 

negative components. 

4. Numerical Resu

The data for the numerical s
of those given in the earlier 
numerical values are given in Table 1. 

Furthermore Ss = 58, Sg = 1702, *
sS  = 453, *

gS  = 
169. These values and min

kD , Dk are measured in million 
m

tive game is determined by solving the quadratic 
pr

 k = 3 

3/year , the other parameters are ratios, unitless quanti- 
ties. 

First the Nash equilibrium of the three-person nonco- 
opera

ogramming problem (7). The solution is presented in 
Table 2. 

The objective function value is zero at the solution 
 

Table 1. Model parameters. 

k = 1 k = 2 

 1  
min

D  
k 594 177 092.81

Dk 

0.066  

0.

966 230 2123 

α1 0.41   

β1 0.33   

Bg  

Bt  0.20  

Bd   06 

 
Table 2. Equilibrium solution. 

 Total k = 1 k = 2 k = 3 

sk 0 0 58 58 

gk 

h  is ained. T

r cond s ar  suff nt, so an ti
lution of problem (7) provides equilibrium. Notice that 
all demands of agriculture and industry are satisfied, 
however domestic users receive only 59.43% of their 
demand. The demand of agriculture is completely satis- 
fied with groundwater, so groundwater availability for 
the other users become very limited. In addition, the very 
restrictive constraint (21) limits the treated water usage. 
They are the main reason of the low water amount sup- 
plied to domestic users.  

The non-symmetric Nash bargaining solution is then 
computed by solving the optimization problem (12). Be- 
cause Mexico city has the

e give slightly higher importance to domestic users 
than to the others by selecting α1 = α2 = 0.3 and α3 = 0.4. 
The solution is shown in Table 3. 

Bargaining has to take care the interest of all players, 
so domestic users receive much higher amount of water 
than before. It is still much lowe

ows only 77.71% satisfaction.  
The weighting method is finally applied with the same 

weights as before by solving the linear programming 
problem (13). The results are show

Notice that domestic users receive even larger amount 
than before in the expense of the industry. 

In order to find the individual maximum o

Table 3. Nash-bargaining result

 k = 1 k = 2 k = 3 Total 

sk 58 0 58.00 0 

gk 526.4 101.8 1  

3  98. 6 4  

073.65 1702 

tk 18.7 46.00 98 63.76

*

k
s  0 0 453.000 453 

*

k
g  1

Total 966 230 

20.757 24.122 24.122 169 

1649.76  

 
Table 4. Weighting 

 k = 1 k = 2 k = 3 Total 

method solution. 

sk 58 0 58 0 

gk 647.22 83.60 9

31 8 3  10 2 4

71.180 1702 

tk 8.7 5.40 1.69 55.87

*

k
s  0 0 453 453 

*

k
g  0 0 169 169 

966 205.3 530. 7 1702 

75.

64

tk 0 0 75.702 702 

*

k
s  0 24.64 428.353 453 

*

k
g  0 0 169.000 169 

Total 966 230 1261.70  Total 966 177 1  694.87  
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function values we repeated the c utatio y the 
weighting method with weight selections w1 = 1, w2 = w3 

= 0; w = 0  1 an he m values e 

 problem of the Mexican Valley
ere agriculture, industry, and dom
layers in the game theoretic models, 

hich was derived based on the Kuhn-Tuc
co

e a very limited amount of water. In the ca
of
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966, 230 and 1960. For agriculture and industry these 
numbers show that their demands can be completely sat- 
isfied. However, for domestic users the maximum possi- 
ble water supply is only 92.3% of the total demand, 
meaning that there is no water distribution scheme which 
can satisfy all domestic demands. In all solutions all 
available surface and groundwater supplies are used, but 
the very restrictive constraints on the treated water ratio 
makes the use of more treated water impossible. In the 
cases of the equilibrium and the Nash bargaining solu- 
tions all demands of agriculture and industry are satisfied. 
Domestic needs are satisfied only on 59.43% and 77.71% 
levels, respectively. In the case of the weighting method 
agricultural demands are fully satisfied, industry receives 
only the minimum amount, and domestic users get only 
79.83% of their need. 

5. Conclusions 

The water distribution  
was considered, wh
tic users were the p

es- 

with the water supplies as the payoff functions and the 
objective functions in the case of multiobjective optimi- 
zation.  

The Nash equilibrium was first obtained by solving a 
special quadratic optimization problem with linear con- 
traints, w ker 

nditions. The non-symmetric Nash bargaining solution 
was then obtained by maximizing the non-symmetric 
Nash product. The application of the weighting method 
required the solution of a special linear programming 
problem.  

In the case of the game theoretical models all demands 
of agriculture and industry can be satisfied, but domestic 
users receiv se 

 multiobjective optimization (assuming a single deci- 
sion maker as is the case in the current system) the do- 
mestic users are able to receive larger amount than in the 
other cases at the expense of the industry. The numerical 
results well demonstrate that there is no water distribu- 
tion scheme which can satisfy all domestic demand. In 
all solutions all available surface and groundwater sup- 
plies have to be used. Water supply can be increased ei- 
ther by using more treated water on the expense of wors- 
ening water quality, or by increasing surface and ground- 
water supplies. Importing more water from neighboring 
regions would result in serious social conflicts, so more 
investment is needed for further developments and in- 

centives should be given to the users for more efficient 
water usage. Maybe a market driven pricing policy is 
needed in the near future. 
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