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ABSTRACT 

A new modification of the Homotopy Analysis Method (HAM) is presented for highly nonlinear ODEs on a semi-infi- 
nite domain. The main advantage of the modified HAM is that the number of terms in the series solution can be greatly 
reduced; meanwhile the accuracy of the solution can be well retained. In this way, much less CPU is needed. Two typi-
cal examples are used to illustrate the efficiency of the proposed approach. 
 
Keywords: Homotopy Analysis Method; Boundary Layer Equations; Orthonormal Functions 

1. Introduction 

In 1992, Liao [1] proposed the Homotopy Analysis Me- 
thod (HAM) to solve nonlinear differential equations 
analytically. Since then, HAM has been used to investi- 
gate a variety of mathematical and physical problems [2]. 
As is well known, HAM has the advantage of indepen- 
dence on small physical parameters and adjusting the 
convergence region and convergence rate of the series 
solution over perturbation method. However, for some 
type of auxiliary operator (i.e. base functions), it is usual- 
ly time-consuming to get high-order approximation, and 
the number of terms appearing in high order approxima- 
tion is very huge. 

To improve the efficiency of HAM, many scholars have 
proposed different techniques. Yabushita [3] suggested 
an optimal HAM approach by minimizing the residual of 
governing equations. Marinca [4], Niu [5], Liao [6] de- 
veloped this kind of approach. Lin [7] suggested an itera- 
tive technique, in which the initial guess is continuously 
replaced by intermediate approximation to proceed the 
computation. Recently, we use orthonormal polynomials/ 
functions to approximate the right-hand side of the high- 
order deformation equations to prohibit the rapid growth 
of the terms appearing in approximate solutions. For dif- 
ferential equations defined on a finite interval, trigono- 
metric functions (or polynomial functions) are usually 
selected to express solutions. In this case, orthonormal 
trigonometric functions (or Chebyshev polynomials) are 
used to approximate right-hand side of high-order de- 
formation equations. In this paper, we generalize this 
kind of approach for nonlinear problems defined on 
semi-infinite intervals. The main idea is that orthonormal  

functions derived from Schmidt-Gram process are used 
to approximate the right-hand side of high-order defor- 
mation equations during computation. For different types 
of problems, the derived orthonormal functions are dif- 
ferent, which are closely related to the solution expres- 
sion. 

In the following section, the modified HAM (MHAM) 
is presented for boundary layer problems. In Section 3, 
examples are given to demonstrate it. Conclusions and 
some discussions are given in the last section. 

2. Analysis of the Method 

For convenience, a brief description of the standard HAM 
will be present first. Then the proposed truncation tech- 
nique will be followed. 

Without loss of generality, consider the differential 
equation 

  0N u t    ,              (1) 

where N is a nonlinear operator, t denotes the independ- 
ent variable,  u t  is an unknown function. Suppose  
 u t  could be expressed by a set of functions 

   0k t k                 (2) 

such that 

   
0

k k
k

u t a t




               (3) 

is uniformly valid, where k is a coefficient. In HAM, 
the zeroth-order deformation equation is constructed as 

a

        0 01 ;q L t q u t qc H t N t q    ;       ,  (4) 
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where 

   
0

; m
m

m

t q u t q




  ,          (5) 

L  is an auxiliary linear operator, and  H t the aux- 
iliary function. Applying the homotopy-derivative [8] 

 
0

1

!

m

m m
q

D
m q 





            (6) 

to both sides of Equation (4), we get the corresponding 
mth-order deformation equation 

     1 0 1,m m m mL u t u t c H t R m      1 ,   (7) 

where 

  1 1 ;m mR D N t q     ,          (8) 

and 
0, 1,

1, 1.m

m

m



  

              (9) 

Note that 1 2  can be obtained by solving linear 
Equation (7) one after the other. The mth-order appro- 
ximation of  is given by 

, ,u u 

 u t

0

m

m
k

U


  ku                (10) 

To measure the accuracy of m , the squared residual 
error for Equation (1) is defined as 

U

  2
dm mA

N U t     , 

where A  is the domain. 
If a successful homotopy analysis solution is obtained, 

the difficulty to get better approximation is that with the 
growth of order, the number of terms in higher-order ap- 
proximation will grow rapidly, resulting in an enormous 
amount of computing time. To address this problem, we 
propose a truncation technique. The basic idea is that the 
right-hand side of Equation (7) is approximated by a set 
of orthonormal functions. 

Suppose that 1m  can be expressed by a finite linear 
combination of linearly independent functions 

R 

 k t , 
. Note that 1, 2,k   k  may be slightly different 

from  k . Define a proper inner product in the linear 
space spanned by 1 2, , , N     as 

       ,
A

df g t f t g t  t ,     (11) 

where  is a weight function. In the framework of 
HAM, two typical kinds of base functions are usually 
used for boundary layer problems. 

 t

Case 1: suppose that 1m  can be expressed by finite 
linear combination of linearly independent functions 

R 

 e 0, 1,n m tt n m    

Note that (12) is dependent on three parameters  , m 
and n. To implement the orthonormalization, an order is 
given to (12) as follows (called triangular order): 

  1
1

2

en m t
m n m n

n
t  

  
 

 . 

The inner product is defined as 

     
0

, d .f g f t g t


  t  

Case 2: suppose that 1mR   can be expressed by finite 
linear combination of linearly independent functions 

  0, 1nt n     .          (13) 

The inner product is defined as 

     
1

, df g f t g t t


  .      (14) 

Applying the Schmidt-Gram process to the first  
functions 

N

1 , 2 , , N , we obtain  orthonormal 
functions 1 2

N
, , , Ne e e . Every time when 1mR   is got, 

we approximate it by 1 2, , , Ne e

N

e , to ensure that the 
number of terms in the right-hand side of Equation (7) 
will be no more than . That is to say, we replace 

1mR   with its approximation 

 1
1

,
N

m m i
i

R R e


 
ie           (15) 

to proceed the computation in HAM. 

3. Numerical Experiment 

To illustrate the efficiency of the truncation technique, 
two typical examples are considered. The codes are writ-
ten in Maple 13 on a PC with an Intel Core 2 Quad 2.66 
GHz CPU. The variable Digits in the experiments is to 
control the number of digits when calculating with soft-
ware floating point numbers in Maple. 

3.1. Example 1 

Let us consider the Blasius Equation (9) 

     1
0

2
f f f     ,        (16) 

subject to the boundary conditions 

     0 0 0,f f f  1    ,      (17) 

where the prime denotes the derivative with respect to  . 
Following Liao [9], we seek the solution  f   in the 
form 

  0,0 ,
1 0

en m
m n

m n

f a a   
 



 

   , 

where 0   is the spatial-scale parameter, and ,m n  is 
a coefficient. The auxiliary linear operator is chosen as 

a
0       (12) 
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     3 2

3 2

; ;
;

q q
L q

   
  

 
 

     
. 

The initial guess is 

 0

1 e
f



 



  . 

The zeroth-order deformation equation is constructed 
as in (4), and the th-order deformation equation as in 
(7) with homogeneous boundary conditions 

m

     0 0 0,m m mf f f m     1 , 

where 

     
1

1 1 1
0

1

2

m

m m k m k
k

R f f f  


   


    . 

For this example, the first kind orthonormal functions 
are used to approximate 1mR   every time when 1mR   
is got. Then 1m  is used to compute R 


mf  instead of 

. In the experiment, we set 1mR  4  , ,  
, and 

36N 
100s Digit 1H  . From Tables 1 and 2, we can 

see that though we use approximate m  (i.e. 1R 1mR 
 ) to 

do the computation, the residual error m  and  0f   
given by MHAM are almost the same as that given by 
standard HAM. From Table 3, we can see that the num- 
ber of terms in high-order approximation given by 
MHAM is 39, while that given by HAM grows exponen- 
tially. Moreover, it shows that MHAM needs less than 
ninth the CPU time used by HAM to get 50th-order ap- 
proximate solution. The curve of residual error and CPU 
time is plotted in Figure 1. From it we can see that the 
truncation technique greatly improves the efficiency of 
HAM. 

3.2. Example 2 

Consider a set of two coupled nonlinear differential equa- 
tions (see Kuiken [10] for details) 

     2 0f f              (18) 

     3 f                 (19) 

with the boundary conditions 

   0 0f f   0  0 1 , , ,     0f     

where   is the Prandtl number. 
Under the transformation 

1   ,   F f   , 

Equations (18) and (19) become 

     2 2 0F S F       ,     (20) 

     2 3S F S      ,       (21) 

with the boundary conditions 

Table 1. Comparison of   0f  given by MHAM and HAM 

in Example 1. 

Order m MHAM HAM 

10 0.3277556 0.3277556 

20 0.3318513 0.3318513 

30 0.3320404 0.3320403 

40 0.3320557 0.3320555 

50 0.3320573 0.3320571 

 
Table 2. Comparison of  given by MHAM and HAM in 

Example 1. 
mδ

Order m MHAM HAM 

10 11.9500 10  11.9500 10  

20 33.8793 10  33.8793 10  

30 41.1616 10  41.1616 10  

40 63.9192 10  63.9192 10  

50 71.4013 10  71.4008 10  

 
Table 3. Comparison of CPU time (seconds) and number of 
terms appearing in mth order approximation given by 
MHAM and HAM in Example 1. 

MHAM  HAM 
Order m

Terms Time (sec)  Terms Time (sec)

10 39 49.530  123 0.791 

20 39 103.837  443 9.52 

30 39 158.952  963 72.832 

40 39 215.133  1683 537.956 

50 39 271.667  2603 2488.035 

 

 
10-1

10-3

10-5

10-7

10-9

MHAM 
HAM 

E
rr

 

 
0        500      1000      1500      2000     2500 

CPU (s) 

Figure 1. Residual error versus CPU time in Example 1. 
Solid line: MHAM; Dash-dotted line: HAM. 
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 1 0F  , ,  1 1S      0F S    . 

We seek the solution  F  and  S  in the form 

 
2

n
n

n

F a 






  ,  
4

n
n

n

S b  



 


, 

where ,  are coefficients. n n

Following Liao [2], the auxiliary linear operators are 
chosen as 

a b

2

23FL



      

, 
2

25SL



      

 

and the initial guess of  F   and  S   as 

   2 3
0F       ,   4

0S    . 

Then the high-order deformation equations become 

     1 1
F

F n n n F FL F F c H R        n

0

, 

     1 1
S

S n n n S S nL S S c H R        , 

subject to the homogeneous boundary conditions 

       1 1n n n nF S F S      , 

and 

       
1

2
1 1 1 1

0

n
F
n n n j n j

j

R F S F F   


    


    , 

     
1

2
1 1 1

0

3
n

S
n n j n j

j

R S F S    


   


   . 

We find that 1
F
n  and 1nR 

SR   can be expressed in the 
form of finite combination of functions 

 4n n   ,              (22) 

and 

 6n n   ,              (23) 

respectively. Applying the Schmidt-Gram process to the 
first  functions in (22) and (23), respectively, we ob- 
tain two set of N orthonormal functions, denoted by 

N
Fe  

and . We use Se Fe  to approximate 1
F
nR   every time it is 

got, and  to approximate 1 . Then Se S
nR  1

F
nR 
  and 1

S
nR 
  

are used to proceed the computation. 
In the experiment, we set , 15N  1  , 1 3  , 

1 2F Sc c   , , and D . For 
different order approximation given by the two app- 
roaches, the quantity  is showed in Table 4, and 
the residual error for Equation (20) is compared in Table 
5. We can see that although we use 

1F SH H

 0f 

 igits 

1

100

F
nR   to proceed the 

computation instead of 1
F
nR  , the accuracy of the app- 

roximate solution is well retained. From Table 6, we can 
see that the number of terms in the high-order approxi- 
mation given by MHAM was kept within 16, while that  

Table 4. Comparison of  f 0  given by MHAM and HAM 

in Example 2. 

Order m MHAM HAM 

20 0.6971702145 0.6971702149 

40 0.6932675852 0.6932675846 

60 0.6932116278 0.6932116273 

80 0.6932116054 0.6932116060 

100 0.6932116316 0.6932116326 

 
Table 5. Comparison of  given by MHAM and HAM in 

Example 2. 
mδ

Order m MHAM HAM 

20 51.4233 10  51.4233 10  

40 94.3708 10  94.3708 10  

60 128.9385 10  121.1883 10  

80 136.0625 10  135.9355 10  

100 149.7190 10  149.5370 10  

 
Table 6. Comparison of CPU time (seconds) and number of 
terms appearing in mF  given by MHAM and HAM in 

Example 2. 

MHAM  HAM 
Order m

Terms Time (sec)  Terms Time (sec)

20 16 11.606  42 0.967 

40 16 25.428  82 6.177 

60 16 40.607  122 24.694 

80 16 57.112  162 77.267 

100 16 74.958  202 207.590 

 
given by HAM grows with the order . Moreover, it 
shows that MHAM needs less CPU time than the stan- 
dard HAM to get high-order approximate solution. The 
curve of residual error and CPU time is plotted in Figure 
2. From it we can see that the truncation technique is 
more powerful to get higher-order approximation than 
the standard HAM. 

m

4. Conclusion and Discussions 

In this paper, an efficient modification of HAM is pro- 
posed for solving boundary layer problems. Using the de- 
rived orthonormal functions, the right-hand sides of high- 
order deformation equations are approximated to reduce the 
rapid growth of terms in high-order approximate solution. 
Two typical examples show that the new approach can 
greatly reduce the terms in the approximate solution; 
meanwhile the accuracy can be largely retained. The new 
approach needs less time to get high-order approximation 
than the standard HAM. However, one unsolved problem 
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Figure 2. Residual error versus CPU time in Example 2. 
Solid line: MHAM; Dash-dotted line: HAM. 
 
of this approach is that there is so far no estimation the-
ory on how many orthonormal functions should be used 
to approximate 1n  when accuracy is prior given. We 
will try to generalize this truncation technique to solve 
PDEs in the next step. 

R 
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