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ABSTRACT 

Using quasi-time dependent semi-classical transport theory, within relaxation time approximation, we obtained coupled 

electronic current equations in the presence of time varying field, and based on general scattering mechanism, ε  . 
In the vicinity of Dirac points, we find that a characteristic exponent 2    corresponds to acoustic phonon scatter- 

ing, 1    long-range Coulomb scattering mechanism and 1    is short-range (delta or contact potential) scat- 

tering in which the conductivity is constant of temperature. The 0   case is the ballistic regime. In the low-energy 

dynamics of Dirac electrons in graphene, the effect of the time-dependent electric field is to alter just the electron 
charge by  01 Ωe e i    making electronic conductivity non-linear. The effect of constant magnetic field at finite 

temperature is also considered. 
 
Keywords: Boltzmann Transport Equation; Relaxation Time Approximation; Graphene Energy Spectrum; Electronic 

Conductivity; Scattering 

1. Introduction 

Quite recently, semiconductor nanostructures have be- 
come the model of choice for investigation of electrical 
conduction. The unique two-dimensional material gra- 
phene which was first thought to be an academic material 
is not an exception. This 2D nanomaterial is fast becom- 
ing better candidate for electronic devices. Not only be- 
cause of its noble electronic transport properties [1], but 
it also promises a good future in graphene based elec- 
tronics industry. Graphene has received a wide academic 
attention and serve as a bridge between condensed matter 
physics and high energy physics [2]. The advantage of 
this planner material is that, one can easily change its 
electronic properties by introducing tunable gap in the 
sample or changing the number of graphene planes [3]. It 
is also possible to fabricate free standing graphene sheets 
[4]. Intrinsic superconducting states can also be realized 
in graphene [5]. These among other things, means that 
the electronic properties of graphene can easily be tai- 
lored to fit device conditions. 

The crystal structure of graphene is made up of mono- 
layer of carbon atoms arranged in hexagonal lattice. The 
low energy dynamics of fermions in graphene is charac- 
terized by linear dispersion,   Fk v | p ∽

graphene, a relevant scattering potential (mechanism) is 
essential. However, as we shall see in this report, one 
does not need to consider any explicit form of scattering 
potential. It was shown in [6] that Boltzmann theory with 
long-range coulomb scattering can account for all ex- 
perimental findings. Especially, when the electronic den- 
sity around Dirac points are normalized. Also, within the 
Boltzmann theory using random phase approximation, 
coulomb scattering has been predicted to be the dominant 
scattering mechanism [7]. Several theories including 
Boltzmann Transport Equation (BTE) suggest a non- 
universal behavior of minimal conductivity which none- 
theless coincides with experimentally observed value 
times, i.e. π, πthory exp    [8,9]. The same BTE pre- 
dict other transport coefficients which agree well with 
experiment [9-11]. 

In this brief report, we reproduce transport properties 
of graphene. Within the BTE formalism and with energy 
dependent relaxation time depending on power law, we 
showed dependence of graphene’s transport coefficients 
on applied field frequency. The remaining of this paper is 
organized as follows: Section 2 formulates BTE and pro- 
vides arguments leading to a quasi-time dependent (t- 
BTE) solution. In Section 3 we used the t-BTE to derive 
coupled current equations from which we derived con- 
ductivity and other transport quantities. The conductivity 
tensor is re-derived in the presence of magnetic. The last 

| . In a clean- 
ed sample, the conduction and valence bands touch at 
two inequivalent Dirac points located at the corners of 
Brillouin zone. To understand the low energy transport in  
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Section 4 contains discussion, conclusion and some 
recommendations. 

2. BTE and Quasi-Time Dependent Solution 

A time time-dependent linearized BTE has the following 
form [12] 

     

 

t r r

f p
f p v p T e

T e

f p

  


                   
 

, (1) 

where  f p  depends on and , i.e. t ,r p  f t ,r , p  
The group velocity,  is constant of time, v  f p  is 
the scattering term and is the lattice temperature. The 
applied electric field has the form 

T
   0cos ΩE tE t  , 

0  is the static electric field. Exact analytical solution of 
(1) is very difficult to obtain. Especially, the non-linear- 
ity of the scattering term and the fact that velocity can 
generally depend on time. In view of this, we adopt some 
approximations including relaxation time approximation 
where 

E

        0Γf p f p f   p .      (2) 

Γ  is inverse of relaxation time  . f  and are 0f  the 
time-dependent (equilibrium) and time-independent (non- 
equilibrium) Fermi-Dirac distribution functions. Moti- 
vated by [13] in the absence of magnetic field ( B 0 ), 
we consider a picture where the only time dependent 
quantity in (1) is the electric field. Note that Mensah so- 
lution considered the space term as perturbation. Under 
the above simplified assumptions together with the steady 
state solution [12,14], the quasi solution is 

     
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Γ Γ
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Γ d  e d  e

ε
           

ε

t t

r r

f p t f p e t v p

f p
T E t

eT e

 

 
  

                   

 
 (3) 

so that it can easily reduce back to [13] when Ω 0 . 

2.1. Coupled Currents and Transport  
Coefficients 

The sheet current for electron and energy flux in gra-
phene are defined by the formulas 

   s v
e v

g g e
J v p f p

A
           (4) 

and 

   εs v
p

g g e
J p f p

A   .         (5) 

Where sg , vg  are spin and valley degeneracies and 
 A  is graphene sheet area. We convert the sums in (4) 
and (5) to integrals following 

 
π

2 π 0
d d

2π -
p

A
p p


  


. 

Substituting (2) in to (3), (4) and simplifying using an 
energy dependent relaxation time of the form 

  Λε   ,                 (6) 

where A  is constant of energy with dimensions of 
s J   and   is characteristic exponent which deter- 
mines the specific type of scattering mechanism involved. 
One easily obtains coupled current equations 

    Ω Φe r rJ S T            (7a) 

  Φr rJ TS K T     .         (7b) 

Where the measured electrochemical potential gradient, 
 Φ r e E    . The coefficients in (5) are 
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22min e h   is the minimal conductivity in graphene 
and the constant 0  is defined through u 2

0 Λu   . It 
has dimension of energy square. 

Now, to derive a particular type of scattering mecha-
nism, we consider specific cases when 2  ,   , 

1   and constant   which correspond to  = 
+2, +1, −1, 0 respectively. Because the electronic con- 
ductivity,   is the only coefficient depending on fre-
quency, we specifically study this quantity for various 
  values. For 1   , the conductivity in (8) assumes 
the form 

 
 1 2

0

1
Ω

1 ΩΛ
min

u




2
 


.       (11) 

This is characterized by short-range potential that has 
the form of contact (or delta) potential and may be due to 
localized impurity (defect) in the sample [9,10,15]. For 

0  , we get 

 
 0 2

0

Ω
1 ΩΛ

min

u

 
2




,        (12) 

which corresponds to coherent [9] or random Dirac mass 
scattering, and describes the ballistic scattering for elec- 
tronic conductivity in graphene. Behavior of the elec- 
tronic conductivity, 0  resulting from these processes  
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Figure 1. 0  : Normalized conductivity is plotted against 

cΩ Ω  at fixed values of doping; μ = 1.0 eV, 0.8 eV, 0.5 eV 

with  and .   . 0 1 eBK T V 2 12 3 m V s.    1

 
is shown in Figure 1 at fixed values of chemical poten- 
tial (doping). Finally, for 1   , the electronic conduc- 
tivity becomes 
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This is an important and dominant scattering mecha- 
nism in graphene [16]. It is characterized by unscreened 
long-range Coulomb (charged impurity) scattering [7]. 
The second term in (13) is inevitable at finite tempera- 
tures. This extra term was missing in [9]. It is the contri- 
bution due to scattering by phonons. From (13) conduc- 
tivity departs slightly from linearity behavior at low fre- 
quencies. Figure 2 depicts this situation. 

The conductivity for acoustic phonon scattering is 
identified with 2   , 

   
 

23 2

2 2
0

π
Ω

1 ΩΛ

Bmin k T

u 2

 









.       (14) 

2.2. Resistivity, Thermal Conductivity and  
Thermopower 

In this section we turn to (7) to compute other transport 
properties of graphene. Specifically, we will calculate the 
resistivity  , thermal conductivity,  and thermo- 
power, 0  for 


S 1    We will drop the   subscript 

in the following equations. By inverting (7), one can find 
these quantities that experimentalist usually like working 
with. We will write our equations similar to the format in 
[9]. The resistivity is,  
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thermal conductivity 

 

Figure 2. 2   : Normalized conductivity is plotted against 

cΩ Ω  at fixed values of doping; μ = 1.0 eV, 0.8 eV, 0.5 eV 

with  and . BK T V. 0 1 e 2 12 3 m V s.    1
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and thermoelectric power 
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The new physics emerging from these equations is the 
linear dependence of these quantities on . Note that 
electron density  dependence in our equations is self 
manifest, since one can easily incorporate it through [9] 

2Ω
n

2n   at zero temperature or  

 
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 
2

22
2

1 1 π

π 3 BT

F

n T K
v


 

  
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      (18) 

for finite temperatures. 

2.3. Magnetoconductivity 

The BTE for non-zero magnetic field is realized from (1) 
by making the transformation  or adding 
the term 

E E v H  
   v H g p   in the linearized BTE. This 

simple replacement will not yield a general solution, be- 
cause of the cross product. It ensures that . 
To find the general solution, one usually obtains separate 
solutions for magnetic and electric fields and superim-
pose them [12]. Here, we obtained the solution as follows; 
if the lattice temperature is constant of space, (1) be- 
comes 

  0H  v v
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The electrochemical potential is now defined as  
 Φe e' e' E      , with  1 ΩΛe' e i   . We 

have assumed time independent magnetic field. The right 
hand side of (19) can be seen as an expansion of  f p' , 
where  

 Fev
p' p p H

p


    ,          (20) 

so that  
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We need to invert (20) and put it in (19). To do this, we 
make  the subject as p

2 2

1

1
p p p

H



  


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where  Fev | p |  . Equation (21) now becomes 
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after dropping the prime. Notice the energy dependence 
of   through , i.e. 1   . Where 2Λ Fev   is 
identified as the mobility in units of centimeter square 
per volts per second. Now, to compute the electric cur-
rent, (23) is used in (4) with 1    to get 
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1eJ
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
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The presence of magnetic field vector has created off 
diagonal elements in the electric current density tensor. 
To compute the components of the new tensor we write 
(24) in an indicial notation as 
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The longitudinal and transverse components of the 
magnetoconductivity tensors are  
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The rest of the components are determined through the 
relations xx yy   and xy yx   . In terms of mag- 
netoresistivities, (26a) and (26b) are usually written as  
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with the resistivity 1xx   and the Hall resistivity 
 xy H   . In terms of electron concentration 

xyn, H ne  , where 1 Hne R  and HR  is the Hall 
coefficient. In general,   is complex. For this reason, 
we make the replacement     2

1 1  1H 1  i H    
So that both longitudinal and transverse electronic con- 
ductivities, in the presence of constant magnetic field, for 

1    take the form 
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and 
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Where the temperature dependent zero frequency con- 
ductivity is  

   
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We now observe the effect of crossed magnetic and 
electric field on graphene by plotting longitudinal con- 
ductivity with frequency and magnetic fields in Figures 
3 and 4. 

3. Discussion and Conclusions 

The advantage of our approach is that, one does not need 
to go through rigorous process of calculating the specific 
scattering rate  Γ  . For instance, unlike in [9], finite 
temperature conductivity was found by separately calcu- 
lating phonon and normal relaxation times. Quite re- 

 

 

Figure 3. Normalized longitudinal conductivity with cΩ Ω  

and αH at fixed values of doping; Top: μ = 0.5 eV, Middle: μ 
= 0.3 eV, Bottom: μ = 0.2 eV, μ ≥ 2 KBT and α = 2.3 

2 1m V s 1   . 
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Figure 4. Normalized transverse conductivity is plotted 
against cΩ Ω  and αH at fixed values of doping. Top: μ = 

0.5 eV, Middle: μ = 0.3 eV, Bottom: μ = 0.2 eV, μ ≥ 2 KBT 
and 2 1 12 3 m V s.    . 

 
cently, a specific form of scattering potential was em

ain
ased on semi-clas- 

si

- 
ployed for studying scattering processes in graphene su- 
perlattice [17]. In this brief article, we obtained similar 
results without knowing a priori the exact form of the 
scattering potential. The challenge, however, is that cer- 
tain material properties (constants, like permittivity), are 
not integral part of our results. Nonetheless, they can 
always be found by comparing with literature. But in this 
report, we do not care so much about numerical values of 
those constants; we only want to demonstrate the validity 
and the new physics inherent in our approach. In a static 
electric field Ω 0 , the results obtained agrees well 
with what was obt ed in [9-11,18]. 

Using phenomenological theory b
cal BTE, we reproduce transport properties of graphene 

without knowing the type of scattering process. We 
found that a characteristic exponent of 1    corre- 
sponds to charged impurity scattering and minant 
mechanism in the absence of acoustic phonons. Chemical 
potential plays an important role in scattering. It directly 
connects low scattering processes on one hand and 
dominant scattering processes on the other hand. That is, 
ballistic is proportional to short-range, 0 1

is a do

  , and 
acoustic phonon is proportional to long- lomb 
scattering, 2 1

range cou
   . In Figures 3 and 4, a universal 

scaling beh th conductivities shows up in the 
regime cΩ Ω  and and strong magnetic field, 1

avior of bo
H � . 

That is,  1xy ~ Hxx ~ 
near ene

. 
The li trurgy spec m employ

so

trum could be used. 

. Guinea, N. M. R. Peres, K. S. Novo- 
selov and A. K. Geim, “The Electronic Properties of 
Graphene,” Re , Vol. 81, No. 1, 
2009, pp. 109- dPhys.81.109

ed yhere ma  hide 
me interesting physics, in view of this a further studies 

could be done using somewhat complex band structure. 
For instance, a gap spectrum or full tight binding spec-
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